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This web page tries to illustrate the kernel smoothing methods implemented and other useful functions for spatial point patterns analysis in the
R package Spatialkernel. Two kinds of kernel smoothing methods are implemented in the R package Spatialkernel, kernel regression estimate
of the type-specific probabilities in a multivariate Poisson point process and kernel density estimate of the intensity function of an
inhomogeneous Poisson point process with edge-correction algorithm implemented against an arbitrary polygon area. An example also gives a
brief application of the functionality in the package.

If you cannot view this web page properly, please download a pdf version of this page from Section Downloads.

Spatial Multivariate Poisson Point Process

The multivariate point process we discussed here is a inhomogeneous Poisson process that generates points in two-dimensional space with each
point marked with one of several categorical types. The data are a partial realisation of the Poisson point process with categorical component
processes being stochastically independent. Data of this kind are usually denoted as (xi, mi), where xi are the spatial locations and mi are the
marked categorical types, within a study area of A. Without losing generalization, we suppose mi = 1, 2, … ,  and mi = k means that the point at
spatial location xi is of kth category of types.

Spatial segregation exists if particular types of points predominate in particular regions in the study area. Spatial segregation effects can be
describe in terms of the component intensity functions λk(x). If λj(x) ⁄ λk(x) = ρij is a constant, then no spatial segregation exists, different
categorical type of data points are randomly intermingled. 

For the purpose of spatial segregation analysis, we do not have to estimate the component intensity functions. We introduce the type-specific 
probabilities, pk(x) = λk(x) ⁄ ∑jλj(x), the conditional probability that we know a point is at location x, that point is of kth categorical type with
probability pk(x). Therefore, the null hypothesis of no segregation can be described as pk(x) = pk, a constant.

Kernel Regression Estimation

A kernel regression estimator is adapted to estimate the type-specific probabilities,

pk(x) = ∑j wh(x - xj) I(mj = k) ⁄ ∑j wh(x - xj),

where wh(x) = w(x ⁄ h) ⁄ h2, w(x) is a standard kernel function, I is the indicator function. Note that we use  pk(x) for both variables and their
estimators. Without causing confusion, we will use the same notations for both variables and their estimators thereafter.

Bandwidth Selection

We proposed to select a bandwidth for the kernel regression by maximizing the cross-validated log-likelihood function based on the
leave-one-out type-specific probability estimator at data points,

pk
(i)(xi) = ∑j≠i wh(xi - xj) I(mj = k) ⁄ ∑j≠i wh(xi - xj).

Spatial Segregation 

Simulations for the Monte Carlo spatial segregation test are sampled by randomly re-labelling of the categorical marks whilst preserving the
observed number of points of each categorical type. Pointwise segregation test also being carried out to mark the areas where the estimated
type-specific probabilities are significantly greater or smaller than the spatial average. The test statistics chosen is a measurement of the total
deviance of estimated type-specific probabilities from their typewise mean values,

T = ∑k ∑j (pk(xj) - pk(.))²,

where pk(.) is the mean of pk(xj) over those j where mj = k.

Temporal Changes

Spatial segregation analysis can be generalized to multivariate spatial-temporal Poisson point process where each point is marked with a time
group (time-period) sequence number. For the spatial-temporal point process, the data are denoted as (xi, mi, ti), where xi are the spatial
locations, mi are the marked categorical types, and ti are the time-periods. The spatial locations are within a study area of A. 

Within each time-period, we can estimate the type-specific probabilities using kernel regression methods with a common bandwidth selected by
the cross-validated log-likelihood functions pooled over time-periods. The kernel regression estimator of thetype-specific probabilities within
each time-period is 

pk(x, t) = ∑j wh(x - xj) I(mj = k) I(tj = t) ⁄ (∑j wh(x - xj) I(tj = t)).

The null hypothesis of the temporal changes over time-periods is that the spatial patterns of the type-specific probability surfaces of each
categorical type will not change over time-periods, that is, pk(x, t) = pk(x), which is constant with respect to the time-periods t. The test statistics
adopted is



P = ∑t ∑k ∑j (pk(xj, t) - pk(.)(xj))²,

where pk(.)(xj) is the mean of pk(xj, t) over time-period t. The simulations are sampled from the type-specific probability surfaces, pk(.)(xj),
which are the approximate true type-specific probability surfaces under the null hypothesis of no temporal changes over time-periods,
preserving the number of points in each time-period.

Intensity Estimation of Inhomogeneous Poisson Point Process

The intensity function of the inhomogeneous spatial Poisson point process can be estimated by the kernel density estimator,

λ(x) = ∑j wh(x - xj) ⁄ ah(x),

where ah(x) = ∫A wh(u - x) du is the edge-correction adjustment factor, proposed by Berman and Diggle (1989). 

An example: The Lansing Woods Tree Data

We use the Lansing Woods tree data to illustrate the basic usages of the functionality in the R package spatialkernel. We present the spatial
distribution of the three different kind of trees in an arbitrary polygonal area, the estimated type-specific probabilities and the estimation of
spatial segregation. We also present the estimated intensity for overall threes with edge-correction applied against the polygon boundary. Both
the kernel regression estimation of the type-specific probabilities and kernel density estimation of the overall intensity use Gaussian kernel.

Spatial distribution of the Lansing Woods trees in an arbitrary polygonal area

The Lansing Woods tree data we used consist of oak, hickory and maple trees, confined within a arbitrary polygonal area. 

Estimated type-specific probabilities

The estimated type-specific probability surfaces show obvious spatial segregation. Each estimated type-specific probability surface shows
spatial variations over the polygonal area. This is confirmed in the spatial segregation test below.   

Contour lines of pointwise spatial segregation test 



The Monte Carlo spatial segregation test gives a p-value of 0.001 in 999 simulations, which clearly reject the null hypothesis of no segregation.
The contour lines show the areas where the estimated type-specific probabilities are significant great than the average (labelled with 0.025) and
areas where the estimated type-specific probabilities are significant smaller than the average (labelled with 0.0975). 

Estimated intensity and inhomogeneous K function

We use the kernel density method to estimate the univariate point process of overall trees and then estimate the inhomogeneous K function.

The edge-correction method proposed by Berman and Diggle (1989) is applied. The kernel density estimate of the overall intensity uses the
same bandwidth selected by the cross-validated log-likelihood function in the type-specific probabilities. The estimate of the inhomogeneous K
function use the estimated overall intensity.
Caution should be taken when estimate the inhomogeneous K function and the intensity using the same data. See Diggle, P.J. et al (2006) for a
cautious note. 
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If your browser supports math poorly, here is a pdf version of this page. If you want to try the package, please download the latest version
in source file or binary for Windows. 

Thanks for reading this page.


