
RUnit - A Unit Test Framework for R

Thomas König, Klaus Jünemann, and Matthias Burger
Epigenomics AG

April 13, 2012

Contents

1 Introduction 2

2 The RUnit package 4

2.1 Test case execution . 4
2.2 R Code Inspection . 7

2.2.1 Usage . 7
2.2.2 Technical Details . 8

3 Future Development Ideas 10

Abstract

Software development for production systems presents a challenge to the de-
velopment team as the quality of the coded package(s) has to be constantly
monitored and verified. We present a generic approach to software testing for
the R language modelled after successful examples such as JUnit, CppUnit,
and PerlUnit. The aim of our approach is to facilitate development of reli-
able software packages and provide a set of tools to analyse and report the
software quality status. The presented framework is completely implemented
within R and does not rely on external tools or other language systems. The
basic principle is that every function or method is accompanied with a test
case that queries many calling situations including incorrect invocations. A
test case can be executed instantly without reinstalling the whole package -
a feature that is necessary for parallel development of functionality and test
cases. On a second level one or more packages can be tested in a single test
run, the result of which is reported in an well structured test protocol. To

1

verify the coverage of the test framework a code inspector is provided that
monitors the code coverage of executed test cases. The result of individual
test invocations as well as package wide evaluations can be compiled into a
summary report exported to HTML. This report details the executed tests,
their failure or success, as well as the code coverage. Taking it one step
further and combining the build system with a development and release pro-
cedure with defined code status description this approach opens the way for a
principled software quality monitoring and risk assessment of the developed
application. For our code development we have utilised the described system
with great benefit w.r.t. code reliability and maintenance efforts in a medium
sized development team.

1 Introduction

The importance of software testing can hardly be overrated. This is all the
more true for interpreted languages where not even a compiler checks the
basic consistency of a program. Nonetheless, testing is often perceived more
as a burden than a help by the programmer. Therefore it is necessary to pro-
vide tools that make the task of testing as simple and systematic as possible.
The key goal of such a testing framework should be to promote the creation
and execution of test cases to become an integral part of the software devel-
opment process. Experience shows that such a permanently repeated code -
test - simplify cycle leads to faster and more successful software development
than the usually futile attempt to add test cases once the software is largely
finished. This line of thought has been pushed furthest by the Extreme Pro-
gramming [1] and Test-First paradigms where test cases are viewed as the
essential guidelines for the development process. These considerations lead
to various requirements that a useful testing framework should satisfy:

• Tests should be easy to execute.

• The results should be accessible through a well structured test protocol.

• It should be possible to execute only small portions of the test cases
during the development process.

• It should be possible to estimate the amount of code that is covered by
some test case.

Testing frameworks that address these aspects have been written in a va-
riety of languages such as Smalltalk, Java, C++ and Python. In particular,
the approach described in [2] has turned out to be very successful, leading

2

– among others – to the popular JUnit library for Java [3], which has been
ported to many other languages (see [1] for an extensive list of testing frame-
works for all kinds of languages). Accordingly, the RUnit package (available
at sourceforge [5]) is our version of porting JUnit to R, supplemented by
additional functionality to inspect the test coverage of some function under
question.

One may wonder why R would need yet another testing framework even
though the standard method, namely executing R CMD check on ones com-
plete package at the shell prompt, is widely accepted and applied. We think,
however, that the RUnit approach is more in line with the above listed re-
quirements and can be seen as a complement to the existing process in that:

• test cases are called and executed from the R prompt

• the programmer decides which result or functionality to put under test-
ing, e.g. formating issues of textual output do not need to matter

• test and reference data files need not be maintained separately but are
combined into one file

• test cases need not be limited to testing/using functionality from one
package checked at a time

Moreover, testing frameworks based on JUnit ports seem to have become
a quasi standard in many programming languages. Therefore, programmers
new to R but familiar with other languages might appreciate a familiar testing
environment. And finally, offering more than one alternative in the important
field of code testing is certainly not a bad idea and could turn out useful.

Before explaining the components of the RUnit package in detail, we
would like to list some of the lessons learned in the attempt of writing useful
test suites for our software (a more complete collection of tips relating to a
Test-First development approach can be found in [4]):

• Develop test cases parallel to implementing your functionality. Keep
testing all the time (code - test - simplify cycle). Do not wait until
the software is complete and attempt to add test cases at the very end.
This typically leads to poor quality and incomplete test cases.

• Distinguish between unit and integration tests: Unit tests should be
as small as possible and check one unit of functionality that cannot be
further decomposed. Integration tests, on the other hand, run through
a whole analysis workflow and check the interplay of various software
components.

3

• Good test coverage enables refactoring, by which a reorganisation of the
implementation is meant. Without regular testing the attitude ‘I better
do not touch this code anymore‘ once some piece of software appears
to be working is frequently encountered. It is very pleasing and time-
saving just to run a test suite after some improvement or simplification
of the implementation to see that all test cases are still passing (or
possibly reveal some newly introduced bug). This refactoring ability is
a key benefit of unit testing leading not only to better software quality
but also to better design.

• Do not test internal functions but just the public interface of a library.
Since R does not provide very much language support for this distinc-
tion, the first step here is to clarify which functions are meant to be
called by a user of a package and which are not (namespaces in R pro-
vide a useful directive for making this distinction, if the export list
is selected carefully and maintained). If internal functions are directly
tested, the ability of refactoring gets lost because this typically involves
reorganisation of the internal part of a library.

• Once a bug has been found, add a corresponding test case.

• We greatly benefitted from an automated test system: A shell script,
running nightly, checks out and installs all relevant packages. After
that all test suites are run and the resulting test protocol is stored
in a central location. This provides an excellent overview over the
current status of the system and the collection of nightly test protocols
documents the development progress.

2 The RUnit package

This section contains a detailed explanation of the RUnit package and exam-
ples how to use it. As has already been mentioned the package contains two
independent components: a framework for test case execution and a tool that
allows to inspect the flow of execution inside a function in order to analyse
which portions of code are covered by some test case. Both components are
now discussed in turn.

2.1 Test case execution

The basic idea of this component is to execute a set of test functions defined
through naming conventions, store whether or not the test succeeded in a

4

central logger object and finally write a test protocol that allows to precisely
identify the problems.

Note, that RUnit - by default - sets the version for normal, and

all other RNGs to ’Kinderman-Ramage’, and ’Marsaglia-Multicarry’,

respectively. If you like to change these defaults please see ?de-

fineTestSuite for argument ’rngNormalKind’ and ’rngKind’.

As an example consider a function that converts centigrade to Fahrenheit:

c2f <- function(c) return(9/5 * c + 32)

A corresponding test function could look like this:

test.c2f <- function() {

checkEquals(c2f(0), 32)

checkEquals(c2f(10), 50)

checkException(c2f("xx"))

}

The default naming convention for test functions in the RUnit package is
test... as is standard in JUnit. To perform the actual checks that the
function to be tested works correctly a set of functions called check ...

is provided. The purpose of these check functions is two-fold: they make
sure that a possible failure is reported to the central test logger so that
it will appear properly in the final test protocol and they are supposed to
make explicit the actual checks in a test case as opposed to other code used
to set up the test scenario. Note that checkException fails if the passed
expression does not generate an error. This kind of test is useful to make
sure that a function correctly recognises error situations instead of silently
creating inappropriate results. These check functions are direct equivalents
to the various assert functions of the JUnit framework. More information
can be found in the online help.

Before running the test function it is necessary to create a test suite which
is a collection of test functions and files relating to one topic. One could, for
instance, create one test suite for one R package. A test suite is just a list
containing a name, an array of absolute directories containing the locations
of the test files, a regular expression identifying the test files and a regular
expression identifying the test functions. In our example assume that the test
function is located in a file runitc2f.r located in a directory /foo/bar/.
To create the corresponding test suite we can use a helper function:

testsuite.c2f <- defineTestSuite("c2f",

dirs = file.path(.path.package(package="RUnit"),

"examples"),

5

testFileRegexp = "^runit.+\\.r",

testFuncRegexp = "^test.+",

rngKind = "Marsaglia-Multicarry",

rngNormalKind = "Kinderman-Ramage")

All that remains is to run the test suite and print the test protocol:

testResult <- runTestSuite(testsuite.c2f)

printTextProtocol(testResult)

The resulting test protocol should be self explanatory and can also be printed
as HTML version. See the online help for further information. Note that for
executing just one test file there is also a shortcut in order to make test case
execution as easy as possible:

runTestFile(file.path(.path.package(package="RUnit"),

"examples/runitc2f.r"))

The creation and execution of test suites can be summarised by the fol-
lowing recipe:

1. create as many test functions in as many test files as necessary

2. create one or more test suites using the helper function defineTest-

Suite

3. run the test suites with runTestSuite

4. print the test protocol either with printTextProtocol or with print-

HTMLProtocol (or with a generic method like print or summary)

We conclude this section with some further comments on various aspects
of the test execution framework:

• A test file can contain an arbitrary number of test functions. A test
directory can contain an arbitrary number of test files, a test suite
can contain an arbitrary number of test directories and the test runner
can run an arbitrary number of test suites – all resulting in one test
protocol. The test function and file names of a test suite must, however,
obey a naming convention expressible through regular expressions. As
default test functions start with test and files with runit.

• RUnit makes a distinction between failure and error. A failure occurs
if one of the check functions fail (e.g. checkTrue(FALSE) creates a
failure). An error is reported if an ordinary R error (usually created by
stop) occurs.

6

• Since version 0.4.0 there is a function DEACTIVATED which can be used
to deactivate test cases temporarily. This might be useful in the case
of a major refactoring. In particular, the deactivated test cases are
reported in the test protocol so that they cannot fall into oblivion.

• The test runner tries hard to leave a clean R session behind. Therefore
all objects created during test case execution will be deleted after a test
file has been processed.

• In order to prevent mysterious errors the random number generator is
reset to a standard setting before sourcing a test file. If a particular
setting is needed to generate reproducible results it is fine to configure
the random number generator at the beginning of a test file. This
setting applies during the execution of all test functions of that test file
but is reset before the next test file is sourced.

• In each source file one can define the parameterless functions .setUp()
and .tearDown(). which are then executed directly before and after
each test function. This can, for instance, be used to control global
settings or create addition log information.

2.2 R Code Inspection

The Code Inspector is an additional tool for checking detailed test case cover-
age and getting profiling information. It records how often a code line will be
executed. We utilise this information for improving our test cases, because
we can identify code lines not executed by the current test case code. The
Code Inspector is able to handle S4 methods. During the development of the
Code Inspector, we noticed, that the syntax of R is very flexible. Because
our coding philosophy has an emphasis of maintenance and a clear style, we
developed style guides for our R coding. Therefore, one goal for the Code
Inspector was to handle our coding styles in a correct manner. This leads to
the consequence that not all R expression can be handled correctly. In our
implementation the Code Inspector has two main functional parts. The first
part is responsible for parsing and modifying the code of the test function.
The second part, called the Tracker, holds the result of the code tracking.
The result of the tracking process allows further analysis of the executed
code.

7

2.2.1 Usage

The usage of the Code Inspector and the Tracker object is very simple. The
following code snippet is an example:

> library(RUnit)

> ## define sample functions to be tested

> foo <- function(x) {

+ x <- x*x

+ x <- 2*x

+ return(x)

+ }

> test.foo <- function() {

+

+ checkTrue(is.numeric(foo(1:10)))

+ checkEquals(length(foo(1:10)), 10)

+ checkEqualsNumeric(foo(1), 2)

+ }

> bar <- function(x, y=NULL) {

+

+ if (is.null(y)) {

+ y <- x

+ }

+

+ if (all(y > 100)) {

+ ## subtract 100

+ y <- y - 100

+ }

+

+ res <- x^y

+ return(res)

+ }

> track <- tracker(); ## initialize a tracking "object"

> track$init(); ## initialize the tracker

> a <- 1:10

> d <- seq(0,1,0.1)

> resFoo <- inspect(foo(a), track=track); ## execute the test function and track

> resBar <- inspect(bar(d), track=track); ## execute the test function and track

> resTrack <- track$getTrackInfo(); ## get the result of Code Inspector (a list)

> printHTML.trackInfo(resTrack) ; ## create HTML sites

8

Note, that the tracking object is an global object and must have the
name track. The inspect function awaits a function call as argument and
executes and tracks the function. The results will be stored in the tracking
object. The result of the function (not of the Tracker) will be returned as
usual. The tracking results will received by tr$getResult(). With printHTML

the result of the tracking process will be presented as HTML pages.

2.2.2 Technical Details

The general idea for the code tracking is to modify the source code of the
function. Therefore, we use the parse and deparse functions and the ca-
pability of R to generate functions on runtime. To track the function we
try to include a hook in every code line. That hook calls a function of the
tracked object. The information of the tracking will be stored in the closure
of the tracking object (actually a function). Because the R parser allows very
nested expressions, we didn’t try to modify every R expression. This is a task
for the future. A simple example for the modifying process is as follow:
original:

> foo <- function(x)

+ {

+ y <- 0

+ for(i in 1:x)

+ {

+ y <- y + x

+ }

+ return(y)

+ }

modified:

> foo.mod <- function(x)

+ {

+ track$bp(1) ;

+ y <- 0

+ track$bp(2);

+ for(i in 1:x)

+ {

+ track$bp(4) ;

+ y <- y +x

+ }

+ track$bp(6);

9

+ return(y)

+ }

Problematic code lines are:

> if(any(a==1)) {

+ print("do TRUE")

+ } else print ("do FALSE");

This must be modified to

> if(any(a==1)) {

+ track$bp(2);

+ print("do TRUE")

+ }else{

+ track$bp(3);

+ print("do FALSE");

+ }

The problem is the else branch, that cannot be modified in the current ver-
sion.

3 Future Development Ideas

Here we briefly list – in an unordered manner – some of the avenues for future
development we or someone interested in this package could take:

• extend the checkEquals function to handle complex S4 class objects
correctly in comparisons. To this end R core has modified check.equal
to handle S4 objects.

• reimplement the internal structures storing the test suite as well as the
test result data as S4 classes.

• record all warnings generated during the execution of a test function.

• add tools to create test cases automatically. This is a research project
but – given the importance of testing – worth the effort. See [3] for
various approaches in other languages.

• improve the export of test suite execution data e.g. by adding XML
data export support.

10

• add some evaluation methods to the code inspector e.g. use software
metrics to estimate standard measures of code quality, complexity, and
performance.

• overcome the problem of nested calls to registered functions for code
inspection.

• allow automatic registration of functions & methods.

References

[1] http://www.xprogramming.com

[2] http://www.xprogramming.com/testfram.htm

[3] http://www.junit.org/

[4] http://www.xprogramming.com/xpmag/testFirstGuidelines.htm

[5] https://sourceforge.net/projects/runit/

11

	Introduction
	The RUnit package
	Test case execution
	R Code Inspection
	Usage
	Technical Details

	Future Development Ideas

