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Abstract

R package rootSolve (Soetaert 2009) includes
• root-finding algorithms to solve for the roots of n nonlinear equations, using a

Newton-Raphson method.
• An extension of R function uniroot

• Functions that find the steady-state condition of a set of ordinary differential equa-
tions (ODE). These functions are compatible with the solvers in package deSolve
(Soetaert, Petzoldt, and Setzer 2010c), (Soetaert, Petzoldt, and Setzer 2010b), which
solve initial value differential equatons. Separate solvers for full, banded and gener-
ally sparse problems are included. These allow to estimate the steady-state of 1-D,
2-D and 3-D partial differential equations (PDE) that have been rewritten as a set
of ODEs by numerical differencing, e.g. using the functions available in package
ReacTran (Soetaert and Meysman 2010).

• Functions that calculate the Hessian and Jaobian matrix or - more general - the
gradient of functions with respect to independent variables.

Keywords: roots of nonlinear equations, gradient, Jacobian, Hessian, steady-state, boundary
value ODE, method of lines, R.

The root of a function f(x) is the value of x for which f(x) = 0.
Package rootSolve deals with finding the roots of n nonlinear (or linear) equations.
This is, it finds the values

x∗i (i = 1, n)

for which
fj(x∗) = 0 (j = 1, n)

Package rootSolve serves several purposes:

• it extends the root finding capabilities of R for non-linear functions.

• it includes functions for finding the steady-state of systems of ordinary differential equa-
tions (ODE) and partial differential equations (PDE).

• it includes functions to numerically estimate gradient matrices.
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Figure 1: Root found with uniroot

The package was created to solve the steady-state and stability analysis examples in the book
of Soetaert and Herman (2009). Please cite this work if you use the package.
The various functions in rootSolve are given in table (1).

1. Finding roots of nonlinear equations in R and rootSolve
The root-finding functions in R are:

• uniroot. Finds one root of one equation.

• polyroot. Finds the complex roots of a polynomial.

1.1. One equation

To find the root of function:
f(x) = cos3(2x)

in the interval [0,8] and plot the curve, we write:

> fun <- function (x) cos(2*x)^3
> curve(fun(x), 0, 8)
> abline(h = 0, lty = 3)
> uni <- uniroot(fun, c(0, 8))$root
> points(uni, 0, pch = 16, cex = 2)

Although the graph (figure 1) clearly demonstrates the existence of many roots in the interval
[0,8] R function uniroot extracts only one.
rootSolve function uniroot.all is a simple extension of uniroot which extracts many (presum-
ably *all*) roots in the interval.
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Figure 2: Roots found with uniroot.all

> curve(fun(x), 0, 8)
> abline(h = 0, lty = 3)
> All <- uniroot.all(fun, c(0, 8))
> points(All, y = rep(0, length(All)), pch = 16, cex = 2)

uniroot.all does that by first subdividing the interval into small sections and, for all sections
where the function value changes sign, invoking uniroot to locate the root.
Note that this is not a full-proof method: in case subdivision is not fine enough some roots
will be missed. Also, in case the curve does not cross the X-axis, but just "touches" it, the
root will not be retrieved; (but neither will it be located by uniroot).

1.2. n equations in n unknowns

Except for polynomial root finding, to date R has no functions that retrieve the roots of
multiple nonlinear equations.
Functionmultiroot in rootSolve implements the Newton-Raphson method (e.g. Press, Teukol-
sky, Vetterling, and Flannery (1992)) to solve this type of problem. As the Newton-Raphson
method locates the root iteratively, the result will depend on the initial guess of the root.
Also, it is not guaranteed that the root will actually be found (i.e. the method may fail).
The example below finds two different roots of a three-valued function:

f1 = x1 + x2 + x2
3 − 12

f2 = x2
1 − x2 + x3 − 2

f3 = 2 · x1 − x2
2 + x3 − 1

> model <- function(x) {
+ F1 <- x[1] + x[2] + x[3]^2 -12
+ F2 <- x[1]^2 - x[2] + x[3] -2
+ F3 <- 2*x[1] - x[2]^2 + x[3] -1
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+ c(F1 = F1, F2 = F2, F3 = F3)
+ }
> # first solution
> (ss <- multiroot(f = model, start = c(1, 1, 1)))

$root
[1] 1 2 3

$f.root
F1 F2 F3

3.087877e-10 4.794444e-09 -8.678146e-09

$iter
[1] 6

$estim.precis
[1] 4.593792e-09

> # second solution; use different start values
> (ss2 <- multiroot(model, c(0, 0, 0)))$root

[1] -0.2337207 1.3531901 3.2985649

> model(ss2$root) # the function value at the root

F1 F2 F3
1.092413e-08 1.920978e-07 -4.850423e-08

As another example, we seek the 5x5 matrix X for which

X · X · X =



1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25


> f2<-function(x) {
+ X <- matrix(nr = 5, x)
+ X %*% X %*% X - matrix(nrow = 5, data = 1:25, byrow = TRUE)
+ }
> print(system.time(
+ x<-multiroot(f2, start = 1:25)$root
+ ))

user system elapsed
0.008 0.000 0.008
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> (X<-matrix(nrow = 5, x))

[,1] [,2] [,3] [,4] [,5]
[1,] -0.67506260 -0.3454778 -0.01800918 0.3123057 0.6404343
[2,] -0.03483809 0.1686488 0.37530821 0.5735846 0.7797107
[3,] 0.60668343 0.6835080 0.76025826 0.8442125 0.9159760
[4,] 1.24815964 1.1997437 1.15042418 1.1004603 1.0600742
[5,] 1.88640623 1.7145706 1.54265669 1.3697198 1.1937326

> X%*%X%*%X

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 11 12 13 14 15
[4,] 16 17 18 19 20
[5,] 21 22 23 24 25

1.3. n equations in n unknowns with known Jacobian

If the Jacobian is known, OR it has a known sparsity structure, then it is much more efficient
to take that into account;
As an example, a set of linear equations, comprising 500 unknowns are solved. Of course, one
would not do that using a nonlinear equation solver, but rather by using solve.
However, the example is included here to show how to make good use of the flexibility at
which the Jacobian can be specified, and to show that the methods are quite fast!
We start by defining the linear system of equations: a (500x500) matrix A and a vector B of
length 500. It is solved with solve, R ’s default solver for systems of linear equations. The
time it takes to do this is printed (in seconds):

> A <- matrix(nrow = 500, ncol = 500, runif(500*500))
> B <- runif(500)
> print(system.time(X1 <- solve(A, B)))

user system elapsed
0.029 0.000 0.030

To use multiroot the nonlinear equation solver, it is noted that the Jacobian is equal to
matrix A. A function is created that returns the Jacobian (or matrix A); the calling sequence
of the Jacobian function is function(x)

> jfun <- function (x) A

The function whose root is to be solved receives the current estimate of x, and returns the
difference A x-B:
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> fun <- function(x) A %*%x - B

Next multiroot is called with jactype = "fullusr" (it is a full Jacobian, and specified by the
user):

> print(system.time(
+ X <- multiroot(start = 1:500, f = fun,
+ jactype = "fullusr", jacfunc = jfun)
+ ))

user system elapsed
0.028 0.000 0.028

Finally, both solutions are the same

> sum( (X1 - X$y)^2)

[1] 0

2. Steady-state analysis
Ordinary differential equations are a special case of nonlinear equations, where x are called
the state variables and the functions f(x) specify the derivatives of x with respect to some
independent variable. This is:

f(x, t) = dx
dt

If "t", the independent variable is "time", then the root of the ODE system
dx
dt

= 0

is often referred to as the "steady-state" condition.
Within R , package deSolve (Soetaert et al. 2010b) is designed to solve so-called initial
value problems (IVP) of ODEs and PDEs - partial differential equations by integration.
deSolve includes integrators that deal efficiently with sparse and banded Jacobians or that
are especially designed to solve initial value problems resulting from 1-Dimensional and 2-
Dimensional partial differential equations. The latter are first written as ODEs using the
method-of-lines approach.
To ensure compatibility, rootSolve offers the same functionalities as deSolve , and requires
the ODE’s to be similarly specified.
The function specifying the ordinary differential equations should thus be defined as:

deriv = function(x,t,parms,...)

where parms are the ODE parameters, x the state variables, t the independent variable and
... are any other arguments passed to the function (optional).
The return value of the function should be a list, whose first element is a vector containing
the derivatives of x with respect to time.
Two different approaches are used to solve for the steady-state condition of ODE’s:
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• by dynamically running to steady-state.

• by solving for the root of the ODE using the Newton-Raphson method.

2.1. Running dynamically to steady-state
Function runsteady finds the steady-state condition by dynamically running (integrating) the
ODE until the derivatives stop changing. This solves a particular case of an IVP, where the
time instance for which the value of the state variable is sought equals infinity.
The implementation is based on deSolve solver function lsode (Hindmarsh (1983)).
Consider the following simple sediment biogeochemical model:
dOM

dt
= Flux− r ·OM · O2

O2 + ks
− r ·OM · (1 − O2

O2 + ks
) · SO4
SO4 + ks2

dO2
dt

= −r ·OM · O2
O2 + ks

− 2rox ·HS · O2
O2 + ks

+D · (BO2 −O2)

dSO4
dt

= −0.5 · r ·OM · (1 − O2
O2 + ks

) · SO4
SO4 + ks2 + rox ·HS · O2

O2 + ks
+D · (BSO4 − SO4)

dHS

dt
= 0.5 · r ·OM · (1 − O2

O2 + ks
) · SO4
SO4 + ks2 − rox ·HS · O2

O2 + ks
+D · (BHS −HS)

In R this model is defined as:

> model <- function(t, y, pars) {
+ with (as.list(c(y, pars)),{
+
+ oxicmin = r*OM*(O2/(O2+ks))
+ anoxicmin = r*OM*(1-O2/(O2+ks))* SO4/(SO4+ks2)
+
+ dOM = Flux - oxicmin - anoxicmin
+ dO2 = -oxicmin -2*rox*HS*(O2/(O2+ks)) + D*(BO2-O2)
+ dSO4 = -0.5*anoxicmin +rox*HS*(O2/(O2+ks)) + D*(BSO4-SO4)
+ dHS = 0.5*anoxicmin -rox*HS*(O2/(O2+ks)) + D*(BHS-HS)
+
+ list(c(dOM, dO2, dSO4, dHS), SumS = SO4+HS)
+ })
+ }

After defining the value of the parameters (pars) and the initial values (y), the model can be
run to steady-state (runsteady). We specify the maximal length of time the simulation can
take (1e5)

> pars <- c(D = 1, Flux = 100, r = 0.1, rox = 1,
+ ks = 1, ks2 = 1, BO2 = 100, BSO4 = 10000, BHS = 0)
> y <- c(OM = 1, O2 = 1, SO4 = 1, HS = 1)
> print(system.time(
+ RS <- runsteady(y = y, fun = model,
+ parms = pars, times = c(0, 1e5))
+ ))
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user system elapsed
0.035 0.000 0.034

> RS

$y
OM O2 SO4 HS

1000.012782 6.825178 9996.587411 3.412589

$SumS
[1] 10000

attr(,"istate")
[1] 2 1 1 0 0 5 100000 0 0

[10] 0 0 210 374 32 2 1 0 74
[19] 24 0 0 1 2
attr(,"rstate")
[1] 34.76327 347.63269 308.10999 0.00000 0.00000
attr(,"precis")
[1] 1.080609e-09
attr(,"steady")
[1] TRUE
attr(,"time")
[1] 308.11
attr(,"steps")
[1] 210

The output shows the steady-state concentrations (ST$y), and the output variable (ST$SumS),
the time and the number of timesteps it took to reach steady-state (attribute "time", "steps").

2.2. Using the Newton-Raphson method

Functions stode, stodes, steady, steady.1D, steady.2D, steady.3D, and steady.band find
the steady-state by the iterative Newton-Raphson method (e.g. Press et al. (1992).
The same model as above can also be solved using stode. This is faster than running dy-
namically to steady-state, but not all models can be solved this way

> stode(y = y, fun = model, parms = pars, pos = TRUE)

$y
OM O2 SO4 HS

1000.012783 6.825178 9996.587411 3.412589

$SumS
[1] 10000

attr(,"precis")
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[1] 2.549712e+03 5.753884e+01 2.039705e+01 8.527476e+00 2.168616e+00
[6] 1.515096e-01 7.266703e-04 1.664189e-08
attr(,"steady")
[1] TRUE

Note that we set pos=TRUE to ensure that only positive values are found. Thus the outcome
will be biologically realistic (negative concentrations do not exist).

2.3. Steady-state of 1-D models

Two special-purpose functions solve for the steady-state of 1-D models.

• Function steady.band efficiently estimates the steady-state condition for 1-D models
that comprise one species only.

• Function steady-1D finds the steady-state for multi-species 1-D problems.

1-D models of 1 species

Consider the following 2nd order differential equation whose steady-state should be estimated:

∂y

∂t
= 0 = ∂2y

∂dx2 + 1
x

∂y

∂x
+ (1 − 1

4 · x2 ) · y −
√

(x) · cos(x)

over the interval [1,6] and with boundary conditions:
y(1) = 1 and y(6) = −0.5
The spatial derivatives are approximated using centred differences 1:

∂2y

∂x2 ≈ yi+1 − 2 · yi + yi−1
∆x2

and
∂y

∂x
≈ yi+1 − yi−1

2 · ∆x
First the model function is defined:

> derivs <- function(t, y, parms, x, dx, N, y1, y6) {
+
+ d2y <- (c(y[-1],y6) -2*y + c(y1,y[-N])) /dx/dx
+ dy <- (c(y[-1],y6) - c(y1,y[-N])) /2/dx
+
+ res <- d2y + dy/x + (1-1/(4*x*x))*y-sqrt(x)*cos(x)
+ return(list(res))
+ }

Then the interval [1,6] is subdivided in 5001 boxes (x) and the steady-state condition esti-
mated, using steady.band; we specify that there is only one species (nspec=1).

1in a later section, an alternative approximation is used
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Figure 3: Solution of the 2nd order differential equation - see text for explanation

> dx <- 0.001
> x <- seq(1, 6, by = dx)
> N <- length(x)
> print(system.time(
+ y <- steady.band(y = rep(1, N), time = 0, func = derivs, x = x,
+ dx = dx, N = N, y1 = 1, y6 = -0.5, nspec = 1)$y
+ ))

user system elapsed
0.016 0.008 0.024

The steady-state of this system of 5001 nonlinear equations is retrieved in about 0.03 seconds
2.
The analytical solution of this equation is known; after plotting the numerical approximation,
it is added to the figure (figure 3):

> plot(x, y, type = "l",
+ main = "5001 nonlinear equations - banded Jacobian")
> curve(0.0588713*cos(x)/sqrt(x)+1/4*sqrt(x)*cos(x)+
+ 0.740071*sin(x)/sqrt(x)+1/4*x^(3/2)*sin(x),add=TRUE,type="p")
> legend("topright", pch = c(NA, 1), lty = c(1, NA),
+ c("numeric", "analytic"))

1-D models of many species

In the following model, dynamics of BOD (biochemical oxygen demand) and oxygen is mod-

2on my computer that dates from 2008
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eled in a river. Both are transported downstream (velocity v)
∂BOD

∂t
= 0 = − · ∂v ·BOD

∂x
− r ·BOD · O2

O2 + ks
∂O2
∂t

= 0 = − · ∂v ·O2
∂x

− r ·BOD · O2
O2 + ks

+ p · (O2sat−O2)

subject to the boundary conditions BOD(x = 0) = BOD0 and O2(x = 0) = O20

First the advective fluxes (transport with velocity v) are calculated, taking into account the
upstream concentrations (FluxBOD, FluxO2); then the rate of change is written as the sum of
-1*Flux gradient and the consumption and production rate:

> O2BOD <- function(t, state, pars) {
+ BOD <- state[1:N]
+ O2 <- state[(N+1):(2*N)]
+
+ FluxBOD <- v*c(BOD_0,BOD) # fluxes due to water transport
+ FluxO2 <- v*c(O2_0,O2)
+
+ BODrate <- r*BOD*O2/(O2+10) # 1-st order consumption, Monod in oxygen
+
+ #rate of change = -flux gradient - consumption + reaeration (O2)
+ dBOD <- -diff(FluxBOD)/dx - BODrate
+ dO2 <- -diff(FluxO2)/dx - BODrate + p*(O2sat-O2)
+
+ return(list(c(dBOD = dBOD, dO2 = dO2), BODrate = BODrate))
+ }

After assigning values to the parameters, and setting up the computational grid (x), steady-
state is estimated with function steady.1D; there are 2 species (BOD, O2) (nspec=2); we
force the result to be positive (pos=TRUE).

> dx <- 10 # grid size, meters
> v <- 1e2 # velocity, m/day
> r <- 0.1 # /day, first-order decay of BOD
> p <- 0.1 # /day, air-sea exchange rate
> O2sat <- 300 # mmol/m3 saturated oxygen conc
> O2_0 <- 50 # mmol/m3 riverine oxygen conc
> BOD_0 <- 1500 # mmol/m3 riverine BOD concentration
> x <- seq(dx/2, 10000, by = dx) # m, distance from river
> N <- length(x)
> state <- c(rep(200, N), rep(200, N)) # initial guess of state variables:
> print(system.time(
+ out <- steady.1D (y = state, func = O2BOD, parms = NULL,
+ nspec = 2, pos = TRUE)
+ ))

user system elapsed
0.039 0.000 0.039
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Figure 4: Steady-state solution of the BOD-O2 model. See text for explanation

Although this model consists of 2000 nonlinear equations, it takes only 0.09 seconds to solve
it 3.
Finally the results are plotted (figure 4), using rootSolves plot functions:

> mf <- par(mfrow = c(2, 2))
> plot(out, grid = x, xlab = "Distance from river", mfrow = NULL,
+ ylab = "mmol/m3", main = c("Oxygen", "BOD"), type = "l")
> plot(out, which = "BODrate", grid = x, mfrow = NULL,
+ xlab = "Distance from river",
+ ylab = "mmol/m3/d", main = "BOD decay rate", type = "l")
> par(mfrow = mf)

Note: 1-D problems can also be run dynamically to steady-state. For some models this is the
only way. See the help file of steady.1D for an example.

3on my computer that dates from 2008
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2.4. Steady-state solution of 2-D PDEs

Function steady.2D efficiently finds the steady-state of 2-dimensional problems.
In the following model

∂C

∂t
= Dx · ∂

2C

∂x2 +Dy · ∂
2C

∂y2 − r · C2 + pxy

a substance C is consumed at a quadratic rate (r ·C2), while dispersing in X- and Y-direction.
At certain positions (x,y) the substance is produced (rate p).
The model is solved on a square (100*100) grid. There are zero-flux boundary conditions at
the 4 boundaries.
The term Dx · ∂2C

∂x2 is in fact shorthand for:

−∂F lux

∂x

where
Flux = −Dx · ∂C

∂x

i.e. it is the negative of the flux gradient, where the flux is due to diffusion.
In the numerical approximation fo the flux, the concentration gradient is approximated as the
subtraction of two matrices, with the columns or rows shifted (e.g. Conc[2:n,]-Conc[1:(n-1),]).
The flux gradient is then also approximated by subtracting entire matrices
(e.g. Flux[2:(n+1),]-Flux[1:(n),]). This is very fast. The zero-flux at the boundaries is
imposed by binding a column or row with 0-s.

> diffusion2D <- function(t, conc, par) {
+ Conc <- matrix(nrow = n, ncol = n, data = conc) # vector to 2-D matrix
+ dConc <- -r*Conc*Conc # consumption
+ BND <- rep(1, n) # boundary concentration
+
+ # constant production in certain cells
+ dConc[ii]<- dConc[ii]+ p
+
+ #diffusion in X-direction; boundaries=imposed concentration
+
+ Flux <- -Dx * rbind(rep(0, n), (Conc[2:n,]-Conc[1:(n-1),]),
+ rep(0, n) )/dx
+ dConc <- dConc - (Flux[2:(n+1),] - Flux[1:n,])/dx
+
+ #diffusion in Y-direction
+ Flux <- -Dy * cbind(rep(0, n), (Conc[,2:n]-Conc[,1:(n-1)]),
+ rep(0, n))/dy
+ dConc <- dConc - (Flux[,2:(n+1)]-Flux[,1:n])/dy
+
+ return(list(as.vector(dConc)))
+ }
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After specifying the values of the parameters, 10 cells on the 2-D grid where there will be
substance produced are randomly selected (ii).

> # parameters
> dy <- dx <- 1 # grid size
> Dy <- Dx <- 1.5 # diffusion coeff, X- and Y-direction
> r <- 0.01 # 2-nd-order consumption rate (/time)
> p <- 20 # 0-th order production rate (CONC/t)
> n <- 100
> # 10 random cells where substance is produced at rate p
> ii <- trunc(cbind(runif(10)*n+1, runif(10)*n+1))

The steady-state is found using function steady.2D. It takes as arguments a.o. the dimen-
sionality of the problem (dimens) and lrw=1000000, the length of the work array needed by
the solver. If this value is set too small, the solver will return with the size needed.
It takes about 0.5 second to solve this 10000 state variable model.

> Conc0 <- matrix(nrow = n, ncol = n, 10.)
> print(system.time(
+ ST3 <- steady.2D(Conc0, func = diffusion2D, parms = NULL,
+ pos = TRUE, dimens = c(n, n), lrw = 1000000,
+ atol = 1e-10, rtol = 1e-10, ctol = 1e-10)
+ ))

user system elapsed
0.206 0.040 0.245

The S3 image method is used to generate the steady-state plot.

> image(ST3, main = "2-D diffusion+production", xlab = "x", ylab = "y",
+ legend = TRUE)

2.5. Steady-state solution of 3-D PDEs

Function steady.3D estimates the steady-state of 3-dimensional problems. We repeat the
example from its help file, which models diffusion in 3-D, and with imposed boundary values.

> diffusion3D <- function(t, Y, par) {
+ yy <- array(dim=c(n,n,n),data=Y) # vector to 3-D array
+ dY <- -r*yy # consumption
+ BND <- rep(1,n) # boundary concentration
+ for (i in 1:n) {
+ y <- yy[i,,]
+
+ #diffusion in X-direction; boundaries=imposed concentration
+ Flux <- -Dy * rbind(y[1,]-BND,(y[2:n,]-y[1:(n-1),]),BND-y[n,])/dy
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Figure 5: Steady-state solution of the nonlinear 2-Dimensional model

+ dY[i,,] <- dY[i,,] - (Flux[2:(n+1),]-Flux[1:n,])/dy
+
+ #diffusion in Y-direction
+ Flux <- -Dz * cbind(y[,1]-BND,(y[,2:n]-y[,1:(n-1)]),BND-y[,n])/dz
+ dY[i,,] <- dY[i,,] - (Flux[,2:(n+1)]-Flux[,1:n])/dz
+ }
+ for (j in 1:n) {
+ y <- yy[,j,]
+
+ #diffusion in X-direction; boundaries=imposed concentration
+ Flux <- -Dx * rbind(y[1,]-BND,(y[2:n,]-y[1:(n-1),]),BND-y[n,])/dx
+ dY[,j,] <- dY[,j,] - (Flux[2:(n+1),]-Flux[1:n,])/dx
+
+ #diffusion in Y-direction
+ Flux <- -Dz * cbind(y[,1]-BND,(y[,2:n]-y[,1:(n-1)]),BND-y[,n])/dz
+ dY[,j,] <- dY[,j,] - (Flux[,2:(n+1)]-Flux[,1:n])/dz
+ }
+ for (k in 1:n) {
+ y <- yy[,,k]
+
+ #diffusion in X-direction; boundaries=imposed concentration
+ Flux <- -Dx * rbind(y[1,]-BND,(y[2:n,]-y[1:(n-1),]),BND-y[n,])/dx
+ dY[,,k] <- dY[,,k] - (Flux[2:(n+1),]-Flux[1:n,])/dx
+
+ #diffusion in Y-direction
+ Flux <- -Dy * cbind(y[,1]-BND,(y[,2:n]-y[,1:(n-1)]),BND-y[,n])/dy
+ dY[,,k] <- dY[,,k] - (Flux[,2:(n+1)]-Flux[,1:n])/dy
+ }
+ return(list(as.vector(dY)))
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+ }
> # parameters
> dy <- dx <- dz <-1 # grid size
> Dy <- Dx <- Dz <-1 # diffusion coeff, X- and Y-direction
> r <- 0.025 # consumption rate
> n <- 10
> y <- array(dim=c(n, n, n), data = 10.)
> print(system.time(
+ ST3 <- steady.3D(y, func =diffusion3D, parms = NULL, pos = TRUE,
+ dimens = c(n, n, n), lrw = 100000,
+ atol = 1e-10, rtol = 1e-10, ctol = 1e-10,
+ verbose = TRUE)
+ ))

[1] "Steady-state settings"
sparseType message

1 3D sparse 3-D jacobian, calculated internally
[1] "estimated number of nonzero elements: 6910"
[1] "estimated number of function calls: 1001"
[1] "number of species: 1"
[1] "dimensions: 10 10 10"
[1] "cyclic boundaries: 0 0 0"
mean residual derivative 2.75179e-16
[1] "precision at each steady state step"
[1] 1.105000e+01 3.917674e-07 2.751792e-16
[1] ""
[1] "--------------------"
[1] " Memory requirements"
[1] "--------------------"

par mess val
1 nnz the number of nonzero elements 6400
2 ngp the number of independent groups of state variables 12
3 nsp the length of the work array actually required. 82366

user system elapsed
0.131 0.000 0.131

The S3 image method is used to generate the steady-state plot. We can loop over either one
of the dimensions. Here we loop over the first dimenstion, selecting a subset of the 10 cells
(dimselect). We add contours and a legend.

> image(ST3, mfrow = c(2, 2), add.contour = TRUE, legend = TRUE,
+ dimselect = list(x = c(1, 4, 8, 10)))

3. Boundary value problems
The previous example from functions steady.1D, steady.2D and steady.3D solved bundary
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Figure 6: Steady-state solution of the 3-Dimensional model

value problems, in a way that the function call is compatible with initial value problem solvers
from package deSolve .
Function multiroot.1D can also be used to solve boundary value problems of ordinary dif-
ferential equations, but has a simpler function interface. It also uses the method-of-lines
approach. Another package, bvpSolve provides two totally different methods to solve bound-
ary values problems (Soetaert, Cash, and Mazzia 2010a).
The following differential equation:

0 = f(x, y, dy
dx
,
d2y

dx2 )

with boundary conditions
yx=a = ya, at the start and yx=b = yb at the end of the integration interval [a,b] is solved as
follows:

1. First the integration interval x is discretized,

dx <- 0.01
x <- seq(a,b,by=dx)

where dx should be small enough, such as to keep the numerical discretisation error
reasonable.

2. Then the first- and second-order derivatives are differenced on this numerical grid.
R’s diff function is very efficient in taking numerical differences, so it is used to ap-
proximate the first-, and second-order derivates as follows.
A first-order derivative y’ can be approximated either as:

• y’=diff(c(ya,y))/dx if only the initial condition ya is prescribed,
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• y’=diff(c(y,yb))/dx if only the final condition, yb is prescribed,
• y’=0.5*(diff(c(ya,y))/dx+diff(c(y,yb))/dx) if initial, ya, and final condi-

tion, yb are prescribed.

The latter (centered differences) is to be preferred.
A second-order derivative y” can be approximated by differencing twice.
y”=diff(diff(c(ya,y,yb))/dx)/dx

3. Finally, function multiroot.1D is used to locate the root.

3.1. test problem 22

As an example, the following boundary value problem will be solved:

ξy′′ + y′ + y2 = 0
yx=0 = 0

yx=1 = 1/2

This is problem number 22 from a set of test boundary value problems which can be found
at: http://www.ma.ic.ac.uk/~jcash/BVP_software/PROBLEMS.PDF.
First the function whose root has to solved is implemented:

> bvp22 <- function (y, xi) {
+ dy2 <- diff(diff(c(ya, y, yb))/dx)/dx
+ dy <- 0.5*(diff(c(ya, y))/dx + diff(c(y, yb))/dx)
+
+ return(xi*dy2+dy+y^2)
+ }

Then the grid [0,1] is discretised (x) and the boundary values (ya,yb) defined

> dx <- 0.001
> x <- seq(0, 1, by = dx)
> N <- length(x)
> ya <- 0
> yb <- 0.5

The model is solved for different values of ξ and the output plotted. With the settings of dx,
the root of 1001 equations needs to be found; the time it takes (in miliseconds) is printed for
the first application.

> print(system.time(
+ Y1<- multiroot.1D(f = bvp22, start = runif(N), nspec = 1, xi = 0.1)
+ )*1000)

user system elapsed
9 0 10

http://www.ma.ic.ac.uk/~jcash/BVP_software/PROBLEMS.PDF
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Figure 7: Solution of the boundary value problem, for three values of ξ

> Y2<- multiroot.1D(f = bvp22, start = runif(N), nspec = 1, xi = 0.05)
> print(system.time(
+ Y3<- multiroot.1D(f = bvp22, start = runif(N), nspec = 1, xi = 0.01)
+ )*1000)

user system elapsed
3 0 3

>

> plot(x, Y3$root, type = "l", col = "green", lwd = 2,
+ main = "bvp test problem 22" , ylab = "y")
> lines(x, Y2$root, col = "red", lwd = 2)
> lines(x, Y1$root, col = "blue", lwd = 2)

4. writing functions in compiled code
Similarly as for the models that are solved with integration routines from package deS-
olve , the models solved by the steady-state routines (stode, stodes, steady, steady.1D,
steady.2D, steady.3D) can be written in compiled code (C or Fortran).
A vignette ("compiledCode") from package deSolve can be consulted for how to do that
(Soetaert, Petzoldt, and Setzer 2008). Here the simple sediment biogeochemical model from
chapter 2.1 is implemented in C and Fortran.

4.1. main function in C-code

For code written in C, the calling sequence for func must be as follows:
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void anoxmod(int *neq, double *t, double *y, double *ydot,
double *yout, int *ip)

double OM, O2, SO4, HS;
double Min, oxicmin, anoxicmin;
if (ip[0] <1) error("nout should be at least 1");
OM = y[0];
O2 = y[1];
SO4 = y[2];
HS = y[3];
Min = r*OM;
oxicmin = Min*(O2/(O2+ks));
anoxicmin = Min*(1-O2/(O2+ks))* SO4/(SO4+ks2);

ydot[0] = Flux - oxicmin - anoxicmin;
ydot[1] = -oxicmin -2*rox*HS*(O2/(O2+ks)) + D*(BO2-O2);
ydot[2] = -0.5*anoxicmin +rox*HS*(O2/(O2+ks)) + D*(BSO4-SO4);
ydot[3] = 0.5*anoxicmin -rox*HS*(O2/(O2+ks)) + D*(BHS-HS);

yout[0] = SO4+HS;

where *neq is the number of equations, *t is the value of the independent variable, y points to
a double precision array of length *neq that contains the current value of the state variables,
and ydot points to an array that will contain the calculated derivatives.
yout points to a double precision vector whose first nout values are other output variables
(different from the state variables y), and the next values are double precision values as passed
by parameter rpar when calling the steady-state solver. The key to the elements of yout is
set in *ip.
*ip points to an integer vector whose length is at least 3; the first element contains the
number of output values (which should be equal to nout), its second element contains the
length of *yout, and the third element contains the length of *ip; next are integer values, as
passed by parameter ipar when calling the steady-state solver.

4.2. main function in FORTRAN-code

For code written in Fortran, the calling sequence for func must be as in the following example:

subroutine model (neq, t, y, ydot, yout, ip)
double precision t, y(4), ydot(4), yout(*)
double precision OM,O2,SO4,HS
double precision min, oxicmin, anoxicmin

integer neq, ip(*)
double precision D, Flux, r, rox, ks, ks2, BO2, BSO4, BHS
common /myparms/D, Flux, r, rox, ks, ks2, BO2, BSO4, BHS
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IF (ip(1) < 1) call rexit("nout should be at least 1")
OM = y(1)
O2 = y(2)
SO4 = y(3)
HS = y(4)
Min = r*OM
oxicmin = Min*(O2/(O2+ks))
anoxicmin = Min*(1-O2/(O2+ks))* SO4/(SO4+ks2)

ydot(1) = Flux - oxicmin - anoxicmin
ydot(2) = -oxicmin -2*rox*HS*(O2/(O2+ks)) + D*(BO2-O2)
ydot(3) = -0.5*anoxicmin +rox*HS*(O2/(O2+ks)) + D*(BSO4-SO4
ydot(4) = 0.5*anoxicmin -rox*HS*(O2/(O2+ks)) + D*(BHS-HS)

yout(1) = SO4+HS
return
end

Note that we start by checking whether enough room is allocated for the output variables,
else an error is passed to R (rexit) and the integration is stopped.
In this example, parameters are kept in a common block (called myparms) in the Fortran code

4.3. initialisation subroutine

In order to put parameters in the common block from the calling R code, an initialisation
subroutine as specified in initfunc should be defined. This function has as its sole argument
a function steadyparms that fills a double array with double precision values. In the example
here, the initialisation subroutine is called myinit:

subroutine myinit(steadyparms)

external steadyparms
double precision parms(9)
common /myparms/parms

call steadyparms(9, parms)

return
end

Here myinit just calls steadyparms with the dimension of the parameter vector, and the
array parms that will contain the parameter values.
The corresponding C-code is:

void initanox (void (* steadyparms)(int *, double *))
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int N = 9;
steadyparms(&N, parms);

4.4. jacobian subroutine

If it is desired to supply a Jacobian to the solver, then the Jacobian must be defined in
compiled code if the ode system is. The C function call for such a function must be as
follows:

void myjac(int *neq, double *t, double *y, int *ml,
int *mu, double *pd, int *nrowpd, double *yout, int *ip)

The corresponding subroutine call in Fortran is:

subroutine myjac (neq, t, y, ml, mu, pd, nrowpd, yout, ip)
integer neq, ml, mu, nrowpd, ip(*)
double precision y(*), pd(nrowpd,*), yout(*)

4.5. Estimating steady-state for models written in compiled code

To run the model using e.g. the Fortran code, the code in anoxmod.f must first be compiled.
This can be done in R itself:
system("R CMD SHLIB anoxmod.f")

which will create file anoxmod.dll
After loading the DLL, the model can be solved:

dyn.load("anoxmod.dll")

ST2 <- stode(y = y, func = "model", parms = pars,
dllname = "anoxmod", initfunc = "myinit", pos = TRUE, nout = 1)

Examples in both C and Fortran are in the dynload subdirectory of the rootSolve package
directory.

5. Gradients, Jacobians and Hessians

5.1. Gradient and Hessian matrices

Function gradient returns a forward difference approximation for the derivative of the func-
tion f(y,...) evaluated at the point specified by x.
Function hessian returns a forward difference approximation of the hessian matrix.
In the example below, the root of the "banana function" is first estimated (using R-function
nlm), after which the gradient and the hessian at this point are taken.
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All this can also be achieved using function nlm.
Note that, as hessian returns a (forward or centered) difference approximation of the gradi-
ent, which itself is also estimated by differencing, it is not very precise.

> # the banana function
> fun <- function(x) 100*(x[2] - x[1]^2)^2 + (1 - x[1])^2
> # the minimum
> mm <-nlm(fun, p=c(0,0))$estimate
> # the Hessian
> (Hes <- hessian(fun,mm))

[,1] [,2]
[1,] 801.9968 -399.9992
[2,] -399.9992 200.0000

> # the gradient
> (grad <- gradient(fun,mm,centered=TRUE))

[,1] [,2]
[1,] -4.73282e-06 3.605687e-07

> # Hessian and gradient can also be estimated by nlm:
> nlm(fun, p=c(0,0), hessian=TRUE)

$minimum
[1] 4.023726e-12

$estimate
[1] 0.999998 0.999996

$gradient
[1] -7.328277e-07 3.605687e-07

$hessian
[,1] [,2]

[1,] 802.2368 -400.0192
[2,] -400.0192 200.0000

$code
[1] 1

$iterations
[1] 26

The inverse of the Hessian gives an estimate of parameter uncertainty

> solve(Hes)
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[,1] [,2]
[1,] 0.4999936 0.9999853
[2,] 0.9999853 2.0049665

5.2. Jacobian matrices

Function jacobian.full and jacobian.band returns a forward difference approximation of
the jacobian (the gradient matrix, where the function f is the derivative) for full and banded
problems.

> mod <- function (t=0,y, parms=NULL,...)
+ {
+ dy1 <- y[1] + 2*y[2]
+ dy2 <- 3*y[1] + 4*y[2] + 5*y[3]
+ dy3 <- 6*y[2] + 7*y[3] + 8*y[4]
+ dy4 <- 9*y[3] +10*y[4]
+ return(as.list(c(dy1, dy2, dy3, dy4)))
+ }
> jacobian.full(y = c(1, 2, 3, 4), func = mod)

[,1] [,2] [,3] [,4]
[1,] 1 2 0 0
[2,] 3 4 5 0
[3,] 0 6 7 8
[4,] 0 0 9 10

> jacobian.band(y = c(1, 2, 3, 4), func = mod)

[,1] [,2] [,3] [,4]
[1,] 0 2 5 8
[2,] 1 4 7 10
[3,] 3 6 9 0
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6. Finally
This vignette was created using Sweave (Leisch 2002).
It takes 2.2 seconds to "Sweave" the file; this is about the time needed to solve all the examples.
The computer on which this is run is an Intel Core (TM)2 Duo CPU T9300 2.5 GHz pentium
PC with 3 GB of RAM
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Table 1: Summary of the functions in package rootSolve ; values in bold are vectors
Function Description

f(x) = 0,

a < x < b
uniroot.all Finds many (all) roots of one (nonlinear) equation in an interval

f(x) = 0 multiroot unconstrained root of one nonlinear equation
f(x) = 0 multiroot Finds the roots of n (nonlinear) equations

multiroot.1D Finds the roots of n (nonlinear) equations generated by discretisation
of ODE, using the method-of-lines approach

dx1..n
dt = 0 stode Iterative steady-state solver for ordinary differential equations (ODE),

assuming a full or banded Jacobian
stodes Iterative steady-state solver for ordinary differential equations (ODE),

assuming an arbitrary sparse Jacobian
runsteady Steady-state solver for ODEs by dynamically running, assumes a full

or banded Jacobian
steady General steady-state solver for ODEs; wrapper around stode, stodes

and runsteady
steady.1D General steady-state solver for ODEs resulting from 1-dimensional

partial differential equations
steady.band General steady-state solver for ODEs with banded Jacobian matrix
steady.2D General steady-state solver for ODEs resulting from 2-dimensional

partial differential equations
steady.3D General steady-state solver for ODEs resulting from 3-dimensional

partial differential equations
df(x)

dx gradient Estimates the gradient matrix of a function with respect to one or
more x-values

∂
∂(x)

∂t
∂x jacobian Estimates the jacobian matrix for a function f(x)

∂2(fx)
∂xi∂xj

hessian Estimates the hessian matrix for a function f(x)
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