
rPlant

Barb Banbury, University of Tennessee, bbanbury@utk.edu
Kurt Michels, University of Arizona, kamichels@math.arizona.edu

August 27, 2013

Contents

1 Introduction 2

2 Getting Started 2
2.1 Validation of users . 3

3 Uploading Files 3
3.1 UploadFile function . 3
3.2 Supported File Types . 4

4 Manipulating directories on iPlant servers 4
4.1 Listing directories . 4
4.2 Making Directories . 5
4.3 Sharing Directories . 5
4.4 Renaming Directories . 6
4.5 Moving Directories . 6
4.6 Deleting Directories . 6

5 Manipulating files on iPlant servers 7
5.1 Sharing Files . 7
5.2 Moving Files . 7
5.3 Renaming Files . 7
5.4 Deleting Files . 8

6 Applications in the rPlant package 8
6.1 Listing Applications . 8
6.2 Individual application information . 10

7 Submitting Jobs in the rPlant package 11
7.1 Submitting Job . 11
7.2 Submitting a job with a shared file . 12

8 Checking Job Status and Retreiving Job output 12
8.1 Checking job status . 13
8.2 Listing job status . 13
8.3 Looking at Job History . 14
8.4 Retrieve job files . 14
8.5 Delete job . 14

1

9 Advanced job submittal 15
9.1 Submitting a job with the wrappers . 15
9.2 Muscle . 16
9.3 Mafft . 17
9.4 ClustalW . 17
9.5 FastTree . 19
9.6 RAxML (Randomized Accelerated Maximum Likelihood) 20
9.7 PHYLIP-Parsimony 3.69 . 20
9.8 Genome Wide Association Study models . 21
9.9 PLINK . 21
9.10 PLINK Conversion . 21
9.11 FaST-LMM (Factored Spectrally Transformed Linear Mixed Models) 22

10 Creating workflows 22
10.1 Workflow One . 22
10.2 Workflow Two . 23
10.3 Workflow Three . 24
10.4 Workflow Four . 25

1 Introduction

The iPlant Collaborative has developed many resources to deal with the emerging compu-
tational challenges facing biology. The project was initially designed to support the plant
sciences, but thanks to a generic approach, can be equally used by other disciplines. Users
have access to many different applications for data analysis, including clustering/network
analyses, QTL mapping, sequence alignments, phylogenetic tree building, and comparative
methods.

The main interface is its user-friendly Discovery Environment (http://www.iplantcollaborative.
org/discover/discovery-environment). The second interface, which is linked to the Dis-
covery Environment, is called the Foundation API. The Foundation API is used for the more
computationally intensive applications. The API is a RESTful application programming in-
terface (API; Fielding 2000) that allows direct interaction with all of iPlant resources. The
only way to access the API is to use ‘curl’ statements (cite), an example of a curl state-
ment will be detailed in one of the sections. The API provides access to authentication,
data manipulation and storage, and job submittal via HTTPS- and command-line functions
(https://foundation.iplantcollaborative.org). The benefit of using the API is having
programmatic access that allows advantages to power users (e.g. submitting jobs via batch
files). The rPlant package provides a direct link between high performance resources lo-
cated at the Texas Advanced Computing Center (http://www.tacc.utexas.edu) that the
API can access and the R environment, by essentially creating wrappers around the curl

statements.

2 Getting Started

This vignette assumes you have the current version of R. First, install and load the package.
A stable release is available through CRAN (http://cran.r-project.org/web/packages/
rPlant/) or a working repository can also be used through R-Forge (https://r-forge.

2

http://www.iplantcollaborative.org/discover/discovery-environment
http://www.iplantcollaborative.org/discover/discovery-environment
https://foundation.iplantcollaborative.org
http://www.tacc.utexas.edu
http://cran.r-project.org/web/packages/rPlant/
http://cran.r-project.org/web/packages/rPlant/
https://r-forge.r-project.org/projects/rplant/

r-project.org/projects/rplant/).

You can register as an iPlant user on their website (http://user.iplantcollaborative.
org/) generating a unique username and password combination.

2.1 Validation of users

Validate(user, pwd, api="iplant", print.curl=FALSE)

This username/password combination will be used in the validate function. The validate

function is required for EVERY rPlant session. It is the first thing that must be executed or
else the rest of the session will not work.

> require(rPlant)

> user.name <- "enter your username"

> user.pwd <- "enter your secret password"

> Validate(user.name, user.pwd)

[1] "Authentication failed"

The function checks if the username and password are valid iPlant credentials. If they aren’t
the above error is displayed. If the function is successful then nothing is printed.

> Validate(user.name, user.pwd)

Note: This package abides by the unix rule, ”silence is golden”. If a function is successful
then no output will be displayed. If an error is attained then the error will be printed.

> Validate(user.name, user.pwd, print.curl=TRUE)

[1] "curl -sku 'henryl' https://foundation.iplantc.org/auth-v1/"

Note: Every rPlant function has the option ’print.curl=TRUE’ or ‘FALSE’. This refers to
cURL a computer software project providing a way to transfer data using various protocols,
for detail on cURL see http://en.wikipedia.org/wiki/CURL. These statements (w/o the
outside quotes) can be copied and pasted into a terminal in linux or unix. And if cURL is
installed on the computer then the statements can be executed. You will see that these
statements do the exact same thing as the rPlant function. This is one of the big advantages
of rPlant, it can be used on any computer (including windows) and there is no need for the
user to install cURL on that computer, because rPlant uses the package RCurl.

3 Uploading Files

3.1 UploadFile function

UploadFile(local.file.name, local.file.path="", filetype=NULL, print.curl=FALSE,

suppress.Warnings=FALSE)

The first step is to upload files onto iPlants. The biggest confusion I believe is that the
Upload file does NOT take a file from the R workspace and upload it onto iPlants servers,
instead it takes a file from your computer and uploads it onto iPlants servers.

> data(DNA.fasta)

> write.fasta(sequences = DNA.fasta, names = names(DNA.fasta), file.out = "DNA.fasta")

> UploadFile(local.file.name="DNA.fasta", filetype="FASTA-0")

3

https://r-forge.r-project.org/projects/rplant/
http://user.iplantcollaborative.org/
http://user.iplantcollaborative.org/
http://en.wikipedia.org/wiki/CURL

An error that can be recorded is if the file “DNA.fasta” was already on the iPlant server. If
it was the error would be returned and the file not uploaded. For the fasta file the file type
is “FASTA-0”.

3.2 Supported File Types

SupportFile(print.curl=FALSE)

There are 33 other file types supported by iPlant, use the SupportFile function to see all of
the available file types, i.e. PHYLIP file type is “PHYLIP-0” and ClustalW is “ClustalW-1.8”.

> SupportFile()

[1] "2bit-0" "ASN-0" "BAM-0.1.2" "Barcode-0"

[5] "BED-0" "BlastN-2.0" "Bowtie-0" "BZIP2-0"

[9] "CEL-3" "ClustalW-1.8" "CSV-0" "DOT-0"

[13] "EMBL-0" "EXPR-0" "FAI-0" "FASTA-0"

[17] "FASTQ-Illumina-0" "FASTQ-Int-0" "FASTQ-Solexa-0" "FASTQ-0"

[21] "Genbank-0" "GFF-2.0" "GFF-3.0" "GFF-3.0"

[25] "GraphML-0" "GTF-2.2" "HTML-4" "HTML-5"

[29] "Newick-0" "NEXUS-0" "PAIR-0" "PDB-3.2"

[33] "Phylip-0" "PhyloXML-1.10" "Pileup-0" "SAI-0.1.2"

[37] "SAM-0.1.2" "SBML-1.2" "SBML-2.4.1" "SBML-3.1"

[41] "Soap-PE-1" "Soap-SE-1" "Stockholm-1.0" "TAB-0"

[45] "TAR-0" "Text-0" "VCF-3.3" "VCF-4.0"

[49] "WIG-0"

4 Manipulating directories on iPlant servers

Now that the file “DNA.fasta” has been uploaded onto the iPlant servers we can look at
the file (or at least see which directory the file is in) by using the ListDir function. There
are a few other directory manipulation functions, they are: MakeDir, ShareDir, RenameDir,
MoveDir and DeleteDir.

4.1 Listing directories

ListDir(dir.name, dir.path="", print.curl=FALSE, shared.username=NULL,

suppress.Warnings=FALSE)

Looking in the home directory you can see the “DNA.fasta” file.

> ListDir(dir.name="", suppress.Warnings=TRUE)

name type

[1,] ".." "dir"

[2,] "DNA.fasta" "file"

Note: Some functions contain an option, “suppress.Warnings”. If you are absolutely sure
that the commands you are entering are correct then to speed up the process have sup-

press.Warnings=TRUE. But be careful, if used inappropriately then files could get overwrit-
ten or the files might not even exist and you will get no warning about it.

4

4.2 Making Directories

MakeDir(dir.name, dir.path="", print.curl=FALSE, suppress.Warnings=FALSE)

The following function is very self explanatory, it will make a directory ‘hello’ in the home
directory.

> MakeDir(dir.name="hello")

Again making the directoy ‘all’ in the ‘hello directory.

> MakeDir(dir.name="all", dir.path="hello")

I’m making another directory ‘robots’ in the ‘all directory. I’m showing this so you can
see how the dir.path needs to be constructed, and how the dir.name and dir.path are
related. All of the functions have this same format.

> MakeDir(dir.name="robots", dir.path="hello/all")

We can look inside the “hello/all/robots” directory and see that there is nothing in there.

> ListDir(dir.name="robots", dir.path="hello/all")

name type

[1,] ".." "dir"

4.3 Sharing Directories

ShareDir(dir.name, dir.path="", shared.username, read=TRUE, execute=TRUE,

print.curl=FALSE, suppress.Warnings=FALSE)

A really nice feature of iPlant is the file sharing feature. As was said in the introduction one
of iPlant’s goals was to work with very large data sets. And when data sets are too large to
send via e.mail then a sharing feature is absolutely necessary. There are in fact two Share

functions, on for sharing a single file and the other (this one) for sharing an entire directory.

In this sample we share the all directory. Notice that all subdirectories of the directory all

will be shared.

> ShareDir(dir.name="all", dir.path="hello", shared.username="phyllisl")

Now, in the above example I share something with ‘phyllisl’. I’m going to make a switch
now I’m going to look at a folder that phyllisl had shared with me.

> ListDir(dir.name="data", dir.path="", shared.username="phyllisl")

name type

[1,] ".." "dir"

[2,] "muscle3.fasta" "file"

There are other functions where the shared.username is used. It is with the SubmitJob

function and the wrappers.

5

4.4 Renaming Directories

RenameDir(dir.name, new.dir.name, dir.path="", print.curl=FALSE,

suppress.Warnings=FALSE)

This function is self explanatory, it renames a directory.

> RenameDir("robots", "tools", "hello/all")

That command can be verified.

> ListDir("all", "hello")

name type

[1,] ".." "dir"

[2,] "tools" "dir"

And you can see that it has been changed.

Note: When the directory is renamed it is no longer shared.

4.5 Moving Directories

MoveDir(dir.name, dir.path="", end.path="", print.curl=FALSE,

suppress.Warnings=FALSE)

This function is self explanatory, it moves a directory.

> MoveDir("tools", "hello/all", end.path="")

The move took the directory tools from hello/all to the home directory. Verified below.

> ListDir("")

name type

[1,] ".." "dir"

[2,] "hello" "dir"

[3,] "tools" "dir"

[4,] "DNA.fasta" "file"

And you can see that it has been changed.

Note: When the directory is moved it is no longer shared.

4.6 Deleting Directories

DeleteDir(dir.name, dir.path="", print.curl=FALSE, suppress.Warnings=FALSE)

This function is self explanatory, it deletes a directory and all of the subdirectories.

> DeleteDir("tools")

Verified below.

> ListDir("")

name type

[1,] ".." "dir"

[2,] "hello" "dir"

[3,] "DNA.fasta" "file"

6

The directory tools is no longer in the home directory.

Note: Clearly when the directory is deleted it is no longer shared.

5 Manipulating files on iPlant servers

The file manipulation tools available in this package are very similar to the directory manip-
ulation tools. The file manipulation functions are: ShareFile, RenameFile, MoveFile and
DeleteFile.

5.1 Sharing Files

ShareFile(file.name, file.path="", shared.username, read=TRUE, execute=TRUE,

print.curl=FALSE, suppress.Warnings=FALSE)

As described in the ShareDir function a really nice feature of iPlant is the file sharing fea-
ture. This is the “other” file-sharing funtion, and it just shares one file at a time.

Now I’m going to share the file “DNA.fasta” with “phyllisl”

> ShareFile(file.name="DNA.fasta", shared.username="phyllisl")

5.2 Moving Files

MoveFile(file.name, file.path="", end.path="", print.curl=FALSE,

suppress.Warnings=FALSE)

This function is self explanatory, it moves the file.

> MoveFile("DNA.fasta", end.path="hello/all")

The move took the file “DNA.fasta” from the home directory into the hello/all directory.
Verified below.

> ListDir("all", "hello")

name type

[1,] ".." "dir"

[2,] "DNA.fasta" "file"

And you can see that it has been changed.

Note: When the file is moved it is no longer shared.

5.3 Renaming Files

RenameFile(file.name, new.file.name, file.path="", print.curl=FALSE,

suppress.Warnings=FALSE)

This function is self explanatory, it renames a file.

> RenameFile("DNA.fasta", "lp.fasta", "hello/all")

That command can be verified.

7

> ListDir("all", "hello")

name type

[1,] ".." "dir"

[2,] "lp.fasta" "file"

And you can see that it has been changed.

Note: When the file is renamed it is no longer shared.

5.4 Deleting Files

DeleteFile(file.name, file.path="", print.curl=FALSE, suppress.Warnings=FALSE)

This function is self explanatory, it deletes a file in the specified directory.

> DeleteFile("lp.fasta", "hello/all")

Verified below.

> ListDir("all", "hello")

name type

[1,] ".." "dir"

The file “lp.fasta” is no longer in the hello/all directory.

Note: Clearly when the file is deleted it is no longer shared.

6 Applications in the rPlant package

The real power in the rPlant package is to have dozens of phylogenetic tools/applications at
your finger tips. rPlant can be used to interact with any of the applications available via the
API.

6.1 Listing Applications

ListApps(description=FALSE, print.curl=FALSE)

This aptly named function returns a sorted list of the newest versions of the public appli-
cations that are available via the Foundation API. These applications are ones that can be
used in the SubmitJob function.

> ListApps(description=TRUE)

[1] "abyss-lonestar-1.3.3u1 - ABySS is a de novo, parallel, paired-end sequence assembler"

[2] "abyss-lonestar-1.3.4u1 - ABySS is a de novo, parallel, paired-end sequence assembler"

[3] "AllpathsLG_lonestar-44837u1 - AllpathsLG, genome assembler"

[4] "autodock_vina-1.00u1 - AutoDock Vina is a new open-source program for drug discovery, molecular docking and virtual screening, offering multi-core capability, high performance and enhanced accuracy and ease of use."

[5] "bismark-0.7.4u1 - Bismark is a program to map bisulfite treated sequencing reads to a genome of interest and perform methylation calls in a single step"

[6] "bismark_genome_preparation-0.7.4u1 - genome preparation for bismark"

[7] "bismark_methylation_extractor-0.7.4u1 - Extracting methylation in 3 contexts from bismark result"

[8] "blastx-stampede-ncbi-db-2.2.26u2 - Intended for metagenome analysis or post-assembly contig annotation. Uses iPlant-maintained NCBI database mirror."

[9] "bwa-lonestar-0.5.9u3 - bwa 0.5.9 is a next gen sequence aligner"

[10] "ClustalW2-2.1u1 - Multiple alignment of nucleic acid and protein sequences"

[11] "clustalw2Dispatcher-1.0.13100u1 - Multiple alignment of nucleic acid and protein sequences"

8

[12] "clustalw2-lonestar-2.1u2 - Multiple alignment of nucleic acid and protein sequences"

[13] "dnalc-cuffdiff-lonestar-2.1.1u3 - Find significant changes in transcript expression, splicing, and promoter use."

[14] "dnalc-cuffdiff-stampede-2.1.1u3 - Find significant changes in transcript expression, splicing, and promoter use."

[15] "dnalc-cufflinks-lonestar-2.1.1u2 - Transcript assembly and basic quantitation for RNA-Seq"

[16] "dnalc-cufflinks-stampede-2.1.1u2 - Transcript assembly and basic quantitation for RNA-Seq"

[17] "dnalc-cuffmerge-lonestar-2.1.1u1 - Transcript assembly and merge for RNA-Seq data"

[18] "dnalc-cuffmerge-stampede-2.1.1u1 - Transcript assembly and merge for RNA-Seq data"

[19] "dnalc-fastqc-lonestar-0.10.1u1 - "

[20] "dnalc-fastqc-stampede-0.10.1u1 - "

[21] "dnalc-fastx-lonestar-0.0.13.2u1 - FASTQ/A short-reads pre-processing tools"

[22] "dnalc-fastx-stampede-0.0.13.2u2 - FASTQ/A short-reads pre-processing tools"

[23] "dnalc-fxtrim-lonestar-0.0.13.2u1 - FASTQ/A short-reads pre-processing tools"

[24] "dnalc-fxtrim-stampede-0.0.13.2u1 - FASTQ/A short-reads pre-processing tools"

[25] "dnalc-tophat-lonestar-2.0.8u1 - A spliced read mapper for RNA-Seq"

[26] "dnalc-tophat-stampede-2.0.8u2 - A spliced read mapper for RNA-Seq"

[27] "FaST-LMM-1.09u1 - FaST-LMM (Factored Spectrally Transformed Linear Mixed Models) is a program for performing genome-wide association studies (GWAS) on large data sets"

[28] "fasttreeDispatcher-1.0.0u1 - FastTree infers approximately-maximum-likelihood phylogenetic trees from alignments of nucleotide or protein sequences."

[29] "forward-regression-0.0.1u1 - FR: Partitioned Linear Model based Forward Regression"

[30] "gapcloser-1.12u1 - Extra module with Soapdenovo2"

[31] "gatk-1000bulls-geno-lonestar-1.00u1 - "

[32] "GeneSeqer-5.0u1 - GeneSeqer, a parallel (MPI), gapped mapper for ESTs"

[33] "GMAP_stampede-121212u1 - GMAP, a multithreaded, gapped mapper for ESTs"

[34] "GSNAP_lonestar-121212u1 - GSNAP, a multithreaded, gapped mapper for ESTs"

[35] "GSNAP_stampede-121212u2 - GSNAP, a multithreaded, gapped mapper for ESTs"

[36] "head-stampede-5.97u2 - This is an application you can use to inspect the beginning of a file."

[37] "head-trestles-5.97u1 - This is an application you can use to inspect the beginning of a file."

[38] "mafftDispatcher-1.0.13100u1 - MAFFT is a multiple sequence alignment program for unix-like operating systems. It offers a range of multiple alignment methods, L-INS-i (accurate; for alignment of <?200 sequences), FFT-NS-2 (fast; for alignment of <?10,000 sequences), etc."

[39] "mafft-lonestar-6.864u1 - MAFFT is a multiple sequence alignment program for unix-like operating systems. It offers a range of multiple alignment methods, L-INS-i (accurate; for alignment of <?200 sequences), FFT-NS-2 (fast; for alignment of <?10,000 sequences), etc."

[40] "metagenemark-1.00u3 - An algorithm for accurate ab initio gene prediction in DNA sequences derived from shotgun sequencing of microbial communities."

[41] "metaphlan-lonestar-1.6.0u4 - MetaPhlAn is a computational tool for profiling the composition of microbial communities from metagenomic shotgun sequencing data. MetaPhlAn relies on unique clade-specific marker genes identified from 3,000 reference genomes."

[42] "Muscle-3.8.31u1 - MUSCLE is a program for creating multiple alignments of amino acid or nucleotide sequences."

[43] "Muscle-3.8.32u4 - MUSCLE is a program for creating multiple alignments of amino acid or nucleotide sequences."

[44] "muscle-lonestar-3.8.31u2 - MUSCLE is a program for creating multiple alignments of amino acid or nucleotide sequences."

[45] "newbler-2.6.0u1 - Genome assembler for 454 sequencing reads"

[46] "oases-0.2.08u1 - Transcript assembler for short sequencing reads, works with Velvet."

[47] "phylip-dna-parsimony-lonestar-3.69u2 - Estimates phylogenies by the parsimony method using nucleic acid sequences"

[48] "phylip-protein-parsimony-lonestar-3.69u2 - Estimates phylogenies by the parsimony method using amino acid sequences"

[49] "plink-1.07u1 - Open-source whole genome association analysis toolset designed to perform a range of basic large-scale analyses in acomputationally effiecient manner."

[50] "quicktree-dm-lonestar-1.1u2 - Reconstruction of phylogenies for very large protein families that would be infeasible using other popular methods"

[51] "quicktree-tree-lonestar-1.1u2 - Reconstruction of phylogenies for very large protein families that would be infeasible using other popular methods"

[52] "quline-lonestar-3-0.11u1 - QU-GENE does simulations"

[53] "raxml-lonestar-7.2.8u1 - RAxML is a program for sequential and parallel Maximum Likelihood based inference of large phylogenetic trees"

[54] "ray-2.2.0u1 - Genome assembler for short sequencing reads."

[55] "scarf-1.00u1 - A next-gen sequence assembly tool for evolutionary genomics. Designed especially for assembling 454 EST sequences against high quality reference sequences from related species."

[56] "soapdenovo-1.05u1 - Genome assembler for Illumina sequencing reads"

[57] "soapdenovo-2.04u1 - Genome assembler for Illumina sequencing reads"

[58] "STRUCTURE-2.3.4u1 - population structure"

[59] "TASSEL4-GLM-0.0.1u1 - General Linear Model"

[60] "TASSEL4-MLM-0.0.1u1 - Mixed Linear Model"

[61] "trinity_lonestar4-20121005u1 - Trinity represents a novel method for the efficient and robust de novo reconstruction of transcriptomes from RNA-Seq data"

[62] "trinity_r2012-03-17_lonestar4-1.00u1 - Trinity represents a novel method for the efficient and robust de novo reconstruction of transcriptomes from RNA-Seq data"

[63] "velvetg-1.2.07u2 - Genome assembler for short sequencing reads, second stage."

[64] "velveth-1.2.07u1 - Genome assembler for short sequencing reads, first stage."

[65] "wc-1.00u1 - Count words in a file"

Note: As said in the prior paragraph these applications listed are PUBLIC applications.
Applications in the Foundation API are split into two categories, public and private. Private
applications are ones that are developed and tested and changed. Only the user who created
the private application can use it. The other category is public applications. After a private

9

application has gone through extensive testing, then the application can be published and it
becomes a public application which is available to all iPlant users. In the Foundation API
a public application is labeled by adding the suffix “u1” to it. The ‘1’ is referred to as the
version number, so if a public application is fixed and republished the suffix becomes “u2”.

6.2 Individual application information

GetAppInfo(application, return.json=FALSE, print.curl=FALSE)

The ListApps function only lists the applications and a short description. To get more
detailed information for each application use the GetAppInfo function.

> GetAppInfo("velveth-1.2.07u2")

$Description

[1] "Genome assembler for short sequencing reads, first stage."

$Application

[1] "velveth-1.2.07u2" "Public App" "Newest Version"

$Information

kind id fileType/value

[1,] "input" "reads5" "fasta-0"

[2,] "input" "reads6" "fasta-0"

[3,] "input" "reads2" "fasta-0"

[4,] "input" "reads4" "fasta-0"

[5,] "input" "reads1" "fasta-0"

[6,] "input" "reads3" "fasta-0"

[7,] "parameters" "strandSpecific" "string"

[8,] "parameters" "Output" "string"

[9,] "parameters" "kmer" "string"

[10,] "parameters" "format5" "string"

[11,] "parameters" "format2" "string"

[12,] "parameters" "format1" "string"

[13,] "parameters" "format3" "string"

[14,] "parameters" "format4" "string"

details

[1,] "Sequence file in fastq, fasta, or sam format"

[2,] "Reference sequence file in fasta format"

[3,] "Sequence file in fastq, fasta, or sam format"

[4,] "Sequence file in fastq, fasta, or sam format"

[5,] "Sequence file in fastq, fasta, or sam format"

[6,] "Sequence file in fastq, fasta, or sam format"

[7,] "strand specific"

[8,] "Name for output directory"

[9,] "kmer size"

[10,] "sequence file format, library 5"

[11,] "sequence file format, library 2"

[12,] "sequence file format, library 1"

[13,] "sequence file format, library 3"

[14,] "sequence file format, library 4"

The GetAppInfo function gives critical information on the application that is needed in
the SubmitJob function. A list of information is outputted. The first element gives a short
description of the application. The second element in the list gives basic information on
the application including is it a public application and if it is the newest version. Both are
important information. If the application is a private application it can only be run by the

10

person who submitted the application to the Foundation API, and clearly you want to run
the newest version of the public application.

The third element in the list the matrix outputted gives four columns of information. The
first column, labeled ’kind, tells the ”input”, sometimes the ”output” and ”parameters”
from the application. The second column, labeled id, give the name of the ”input”, etc. For
example, GetAppInfo("velveth-1.2.07u2")[[2]], the ’kind’ column states there are six
inputs for this app, and the ’id’ column the names of those inputs are ”reads5”,”reads3”,
etc. There are also eight parameters for the app, the paramters are format2, etc. The third
column in the matrix is ’fileType/value. For the input this tells the file type which is
important because if the wrong fileType is inputted into the function, then the function
will not work. For the parameters the third column contains the type of input necessary for
the parameters, common ones are string, boolean, etc. The last column gives brief details
on each input.

7 Submitting Jobs in the rPlant package

7.1 Submitting Job

SubmitJob(application, file.path="", file.list=NULL, input.list, args.list=NULL,

job.name, nprocs=1, private.APP=FALSE, suppress.Warnings=FALSE, shared.username=NULL,

print.curl=FALSE)

An important benefit of using rPlant is the ability to create batch-scripted files that auto-
mate job submittal and retrieval. For example, a user could submit parallel alignment jobs
of different gene regions or multiple jobs with the same data and different parameter values.
The results could then be automatically downloaded upon completion.

The following job submittal is a standard job submittal and there are a few things to take
note of. Sidenote: I am using this example to highlight some of the options available in this
function, it might not be a true working example.

> myJobM <- SubmitJob(application="Muscle-3.8.32u4", file.list=list("DNA.fasta"),

+ input.list=list("stdin"), args.list=list(c("arguments",

+ "-phyiout -center -cluster1 upgma")), job.name="Muscle")

Job submitted. You can check your job using CheckJobStatus(25916)

Note 1: input.list: From the GetAppInfo("Muscle-3.8.32u4") function, from the second
list (GetAppInfo("Muscle-3.8.32u4")[[2]], the ‘kind’ column states there is one input
for this app, and the ‘id’ column names that input as ‘stdin’. This input type changes from
application to application.

Note 2: file.list: Very related to the input.list, the file.list is the same length as the
input.list. Also from the second list on the GetAppInfo function (GetAppInfo("Muscle-
3.8.32u4")[[2]], the ‘fileType/value’ column says “FASTA-0”. This indicates that the
file in file.list must have the FASTA file type. If it the file types don’t match then the
application will fail.

Note 3: args.list: The args.list is where extra flags that can change default options can
be entered. Again using the second list on the GetAppInfo function (GetAppInfo("Muscle-

11

3.8.32u4")[[2]], the ‘kind’ column states there is one parameters for this app, the ‘id’
column tells me the name of that parameter is ‘arguments’, and the ‘fileType/value’ col-
umn tells me it is a string. This is where the fourth column (‘details’) comes in handy; it
tells me that the parameter input is ‘program arguments and options’. So what that tells
me is that this string acts like a command line argument, any flags that you want changed,
add them to this parameter. Now, the way that this information is used is in the following
way:

args.list=list(c(arguments, "-phyiout -center -cluster1 upgma"))

The args.list is a list that is as long as the number of parameters (so length 1 in this
example), so that means there as many vectors (c()) as there are parameters. All vectors
c(arguments, "-center -cluster1 upgma") are of the same length, two. In position one
is the name of the parameter, arguments, and in position two is the value of that parameter,
“-phyiout -center -cluster1 upgma”, a string of command line arguments in this exam-
ple.

Note 4: myJobM: It can be seen a list of length two is outputted to myJobM. In myJobM[[1]]

is the job number and in myJobM[[2]] is the job name, both are very important information.

Note 5: If the SubmitJob is succesful, then the function automatically creates the folder
“analyses”. Now if the job finishes, then a folder is created in the analyses folder, it is
named after the job name. So, as in Note 4, that names is stored in myJobM[[2]].

7.2 Submitting a job with a shared file

Remember the file that had been shared with my by phyllisl? I am able to submit a job
using that file.

> myJobS <- SubmitJob(application="Muscle-3.8.32u4", file.list=list("muscle3.fasta"),

+ file.path="data", shared.username="phyllisl",

+ args.list=list(c("arguments", "-fastaout")),

+ input.list=list("stdin"), job.name="MuscleShare")

Job submitted. You can check your job using CheckJobStatus(25917)

8 Checking Job Status and Retreiving Job output

Once the job is submitted, you noticed how I stored something in myJobS.

> myJobS

[[1]]

[1] 25917

[[2]]

[1] "MuscleShare_2013-08-26_18-12-25.454"

It can be seen that there are two things outputted to myJobS, the job number and the job
name, both are very important information. Using the job number a variety of options are
available: CheckJobStatus, ListJobOutput, RetrieveJob and DeleteJob.

12

8.1 Checking job status

CheckJobStatus(job.id, print.curl=FALSE)

This is a very self-explanatory function, it checks the job status on the iPlant servers.

> CheckJobStatus(myJobS[[1]])

[1] "PENDING"

Table 1: Possible Outputs for CheckJobStatus

Stages

PENDING

STAGING_INPUTS

CLEANING_UP

ARCHIVING

STAGING_JOB

FINISHED

KILLED

FAILED

STOPPED

RUNNING

PAUSED

QUEUED

SUBMITTING

STAGED

PROCESSING_INPUTS

ARCHIVING_FINISHED

ARCHIVING_FAILED

8.2 Listing job status

ListJobOutput(job.id, print.curl=FALSE, print.total=TRUE)

Again this is a very self-explanatory function, once the job is finished then it lists the output
files from the job.

> print(ListJobOutput(myJobS[[1]]))

[1] "Job is PENDING"

Notice that an error was shown, obviously the job output can’t be found until the job is
finished.

Now . . . waiting

> ListJobOutput(myJobS[[1]])

[1] "There are 4 output files for job '25917'"

[1] "fasta.aln"

[2] "muscle3.fasta"

[3] "muscleshare_2013-08-26_18-12-25454-25917.err"

[4] "muscleshare_2013-08-26_18-12-25454-25917.out"

These are all of the output files that are created for the MUSCLE job.

13

8.3 Looking at Job History

GetJobHistory(return.json=FALSE, print.curl=FALSE)

Again this is a very self-explanatory function, but for this function no job id is required. The
reason is because this function displays the ENTIRE job history, not just one.

> GetJobHistory()

job.id job.name application

job "25917" "MuscleShare_2013-08-26_18-12-25.454" "Muscle-3.8.32u4"

job "25916" "Muscle_2013-08-26_18-12-18.488" "Muscle-3.8.32u4"

job "25914" "PCout_2013-08-26_18-00-57.605" "plink-1.07u1"

job "25913" "PCout_2013-08-26_17-54-31.236" "plink-1.07u1"

job "25912" "PLINK_2013-08-26_17-51-48.019" "plink-1.07u1"

job "25910" "geno_test_2013-08-26_17-43-01.043" "FaST-LMM-1.09u1"

job "25911" "FaST-LMM_2013-08-26_17-43-38.901" "FaST-LMM-1.09u1"

status

job "ARCHIVING_FINISHED"

job "ARCHIVING_FINISHED"

job "ARCHIVING_FINISHED"

job "ARCHIVING_FINISHED"

job "ARCHIVING_FINISHED"

job "ARCHIVING_FINISHED"

job "ARCHIVING_FINISHED"

8.4 Retrieve job files

RetrieveJob(job.id, file.vec, print.curl=FALSE, verbose=FALSE)

This is another really nice thing about the rPlant package. The ability to download the files
directly from the iPlant servers to your computer. The following downloads all of the output
files.

> RetrieveJob(myJobS[[1]], file.vec=ListJobOutput(myJobS[[1]], print.total=FALSE))

The files have been downloaded into the folder MuscleShare_2013-08-26_18-12-25.454

(which is the job name), in the directory /home/michels/Desktop/rPlant_vignette. If
you want to download just one or two of the files, do the following:

> RetrieveJob(myJobS[[1]], file.vec=c("fasta.aln"))

8.5 Delete job

DeleteJob(job.id, print.curl=FALSE, ALL=FALSE)

After the job has been submitted and the result files downloaded and you have no need for
the job anymore one can use the DeleteJob function to clearly, delete the job. The nice
thing about this function is that not only will it delete the job number from the job history
but it will delete the job folder (in the analyses folder, see Note 5 under SubmitJob) as
well.

> DeleteJob(myJobS[[1]])

Proof that the job is deleted

> GetJobHistory()

14

job.id job.name application

job "25916" "Muscle_2013-08-26_18-12-18.488" "Muscle-3.8.32u4"

job "25914" "PCout_2013-08-26_18-00-57.605" "plink-1.07u1"

job "25913" "PCout_2013-08-26_17-54-31.236" "plink-1.07u1"

job "25912" "PLINK_2013-08-26_17-51-48.019" "plink-1.07u1"

job "25910" "geno_test_2013-08-26_17-43-01.043" "FaST-LMM-1.09u1"

job "25911" "FaST-LMM_2013-08-26_17-43-38.901" "FaST-LMM-1.09u1"

status

job "ARCHIVING_FINISHED"

job "ARCHIVING_FINISHED"

job "ARCHIVING_FINISHED"

job "ARCHIVING_FINISHED"

job "ARCHIVING_FINISHED"

job "ARCHIVING_FINISHED"

You can see that the job is gone. Now another nice thing about this function is that if there
are a lot of jobs in your job history because you haven’t done a good job of keeping it clean,
then execute the following:

> DeleteJob(ALL=TRUE)

Proof that the jobs and the corresponding folders are gone:

> GetJobHistory()

[1] "No jobs in history"

and . . .

> ListDir("analyses")

name type

[1,] ".." "dir"

9 Advanced job submittal

9.1 Submitting a job with the wrappers

Currently, we have ten dedicated application wrappers for the 33+ programs available. Of
the programs that have wrappers there is a clear bias towards phylogenetic applications,
because the authors are evolutionary biologists. Writing wrapper functions is not program-
matically difficult, but it does require familiarity with the individual programs and their
associated data sets. We would like to encourage any users who are using programs without
wrappers to submit patches adding wrapper functions or request to be a developer.

Among the wrappers there are three which do alignments: Muscle, Mafft and ClustalW.
The alignments will do both protein and nucleotide. Also make sure that the taxon names
in the sequence files adher to these rules: “illegal characters in taxon-names are: tabulators,
carriage returns, spaces, ”:”, ”,”, ”)”, ”(”, ”;”, ”]”, ”[””.

> data(PROTEIN.fasta)

> write.fasta(sequences = PROTEIN.fasta, names = names(PROTEIN.fasta), file.out = "PROTEIN.fasta")

> UploadFile(local.file.name="PROTEIN.fasta", filetype="FASTA-0")

15

9.2 Muscle

Muscle(file.name, file.path="", job.name=NULL, args=NULL, version="Muscle-3.8.32u4",

print.curl=FALSE, aln.filetype="PHYLIP_INT", shared.username=NULL,

suppress.Warnings=FALSE)

MUSCLE is a program for creating multiple alignments of amino acid or nucleotide sequences.
A range of options is provided that give you the choice of optimizing accuracy, speed, or some
compromise between the two. The manual is also available here: http://www.drive5.com/
muscle/muscle_userguide3.8.html

> myJobMuDP <- Muscle("DNA.fasta", aln.filetype="PHYLIP_INT", job.name="muscleDNAphyINT")

Job submitted. You can check your job using CheckJobStatus(25918)

Result file: phylip_interleaved.aln

> myJobMuDF <- Muscle("DNA.fasta", aln.filetype="FASTA", job.name="muscleDNAfasta")

Job submitted. You can check your job using CheckJobStatus(25919)

Result file: fasta.aln

> myJobMuDPP <- Muscle("DNA.fasta", aln.filetype="PHYLIP_PARS", job.name="muscleDNAphyPARS")

Job submitted. You can check your job using CheckJobStatus(25920)

Result file: phylip_pars.aln

> myJobMuDPS <- Muscle("DNA.fasta", aln.filetype="PHYLIP_SEQ", job.name="muscleDNAphySEQ")

Job submitted. You can check your job using CheckJobStatus(25921)

Result file: phylip_sequential.aln

> myJobMuDC <- Muscle("DNA.fasta", aln.filetype="CLUSTALW", job.name="muscleDNAclustalw")

Job submitted. You can check your job using CheckJobStatus(25922)

Result file: clustalw.aln

> myJobMuDM <- Muscle("DNA.fasta", aln.filetype="MSF", job.name="muscleDNAmsf")

Job submitted. You can check your job using CheckJobStatus(25923)

Result file: msf.aln

> myJobMuPP <- Muscle("PROTEIN.fasta", aln.filetype="PHYLIP_INT", job.name="musclePROTEINphyINT")

Job submitted. You can check your job using CheckJobStatus(25924)

Result file: phylip_interleaved.aln

> myJobMuPF <- Muscle("PROTEIN.fasta", aln.filetype="FASTA", job.name="musclePROTEINfasta")

Job submitted. You can check your job using CheckJobStatus(25925)

Result file: fasta.aln

> myJobMuPPP <- Muscle("PROTEIN.fasta", aln.filetype="PHYLIP_PARS", job.name="musclePROTEINphyPARS")

Job submitted. You can check your job using CheckJobStatus(25926)

Result file: phylip_pars.aln

> myJobMuPPS <- Muscle("PROTEIN.fasta", aln.filetype="PHYLIP_SEQ", job.name="musclePROTEINphySEQ")

Job submitted. You can check your job using CheckJobStatus(25927)

Result file: phylip_sequential.aln

> myJobMuPC <- Muscle("PROTEIN.fasta", aln.filetype="CLUSTALW", job.name="musclePROTEINclustalw")

16

http://www.drive5.com/muscle/muscle_userguide3.8.html
http://www.drive5.com/muscle/muscle_userguide3.8.html

Job submitted. You can check your job using CheckJobStatus(25928)

Result file: clustalw.aln

> myJobMuPM <- Muscle("PROTEIN.fasta", aln.filetype="MSF", job.name="muscleDNAmsf")

Job submitted. You can check your job using CheckJobStatus(25929)

Result file: msf.aln

MUSCLE outputs six alignments: fasta.aln (http://en.wikipedia.org/wiki/FASTA_format),
phylip_sequential.aln, phylip_interleaved.aln, phylip_pars.aln (http://www.bioperl.
org/wiki/PHYLIP_multiple_alignment_format), clustalw.aln (http://meme.nbcr.net/
meme/doc/clustalw-format.html) and msf.aln (http://en.wikipedia.org/wiki/MSF).

9.3 Mafft

Mafft(file.name, file.path="", type="DNA", print.curl=FALSE, version="mafftDispatcher-

1.0.13100u1", args=NULL, job.name=NULL, aln.filetype="FASTA", shared.username=NULL,

suppress.Warnings=FALSE)

MAFFT is a multiple sequence alignment program for unix-like operating systems. It of-
fers a range of multiple alignment methods, L-INS-i (accurate; for alignment of about 200
sequences), FFT-NS-2 (fast; for alignment of about 10,000 sequences), etc. See http:

//mafft.cbrc.jp/alignment/software/. The manual is also available here: http://

mafft.cbrc.jp/alignment/software/manual/manual.html.

> myJobMaDF <- Mafft("DNA.fasta", job.name="mafftDNAfasta")

Job submitted. You can check your job using CheckJobStatus(25930)

Result file: mafft.fa

> myJobMaDC <- Mafft("DNA.fasta", aln.filetype="CLUSTALW", job.name="mafftDNAclustalw")

Job submitted. You can check your job using CheckJobStatus(25931)

Result file: mafft.fa

> myJobMaPF <- Mafft("PROTEIN.fasta", type="PROTEIN", job.name="mafftPROTEINfasta")

Job submitted. You can check your job using CheckJobStatus(25932)

Result file: mafft.fa

> myJobMaPC <- Mafft("PROTEIN.fasta", type="PROTEIN", aln.filetype="CLUSTALW",

+ job.name="mafftPROTEINclustalw")

Job submitted. You can check your job using CheckJobStatus(25933)

Result file: mafft.fa

MAFFT outputs two alignments (both named: mafft.fa): FASTA (http://en.wikipedia.
org/wiki/FASTA_format) and CLUSTALW (http://meme.nbcr.net/meme/doc/clustalw-format.
html).

9.4 ClustalW

ClustalW(file.name, file.path="", type="DNA", job.name=NULL, version="ClustalW2-

2.1u1", print.curl=FALSE, args=NULL, aln.filetype="PHYLIP", shared.username=NULL,

suppress.Warnings=FALSE)

17

http://en.wikipedia.org/wiki/FASTA_format
http://www.bioperl.org/wiki/PHYLIP_multiple_alignment_format
http://www.bioperl.org/wiki/PHYLIP_multiple_alignment_format
http://meme.nbcr.net/meme/doc/clustalw-format.html
http://meme.nbcr.net/meme/doc/clustalw-format.html
http://en.wikipedia.org/wiki/MSF
http://mafft.cbrc.jp/alignment/software/
http://mafft.cbrc.jp/alignment/software/
http://mafft.cbrc.jp/alignment/software/manual/manual.html
http://mafft.cbrc.jp/alignment/software/manual/manual.html
http://en.wikipedia.org/wiki/FASTA_format
http://en.wikipedia.org/wiki/FASTA_format
http://meme.nbcr.net/meme/doc/clustalw-format.html
http://meme.nbcr.net/meme/doc/clustalw-format.html

An approach for performing multiple alignments of large numbers of amino acid or nucleotide
sequences is described. The method is based on first deriving a phylogenetic tree from a
matrix of all pairwise sequence similarity scores, obtained using a fast pairwise alignment
algorithm. See details on http://www.clustal.org/clustal2/.

> myJobCWDP <- ClustalW("DNA.fasta", job.name="clustalwDNAphylip")

Job submitted. You can check your job using CheckJobStatus(25934)

Result file: clustalw2.fa

> myJobCWDC <- ClustalW("DNA.fasta", aln.filetype="CLUSTALW", job.name="clustalwDNAclustalw")

Job submitted. You can check your job using CheckJobStatus(25935)

Result file: clustalw2.fa

> myJobCWDN <- ClustalW("DNA.fasta", aln.filetype="NEXUS", job.name="clustalwDNAnexus")

Job submitted. You can check your job using CheckJobStatus(25936)

Result file: clustalw2.fa

> myJobCWDGCG <- ClustalW("DNA.fasta", aln.filetype="GCG", job.name="clustalwDNAgcg")

Job submitted. You can check your job using CheckJobStatus(25937)

Result file: clustalw2.fa

> myJobCWDGDE <- ClustalW("DNA.fasta", aln.filetype="GDE", job.name="clustalwDNAgde")

Job submitted. You can check your job using CheckJobStatus(25938)

Result file: clustalw2.fa

> myJobCWDPIR <- ClustalW("DNA.fasta", aln.filetype="PIR", job.name="clustalwDNApir")

Job submitted. You can check your job using CheckJobStatus(25939)

Result file: clustalw2.fa

> myJobCWPP <- ClustalW("PROTEIN.fasta", type="PROTEIN", job.name="clustalwPROTEINphylip")

Job submitted. You can check your job using CheckJobStatus(25940)

Result file: clustalw2.fa

> myJobCWPC <- ClustalW("PROTEIN.fasta", type="PROTEIN", aln.filetype="CLUSTALW",

+ job.name="clustalwPROTEINclustalw")

Job submitted. You can check your job using CheckJobStatus(25941)

Result file: clustalw2.fa

> myJobCWPN <- ClustalW("PROTEIN.fasta", type="PROTEIN", aln.filetype="NEXUS",

+ job.name="clustalwPROTEINnexus")

Job submitted. You can check your job using CheckJobStatus(25942)

Result file: clustalw2.fa

> myJobCWPGCG <- ClustalW("PROTEIN.fasta", type="PROTEIN", aln.filetype="GCG",

+ job.name="clustalwPROTEINgcg")

Job submitted. You can check your job using CheckJobStatus(25943)

Result file: clustalw2.fa

> myJobCWPGDE <- ClustalW("PROTEIN.fasta", type="PROTEIN", aln.filetype="GDE",

+ job.name="clustalwPROTEINgde")

Job submitted. You can check your job using CheckJobStatus(25944)

Result file: clustalw2.fa

> myJobCWPPIR <- ClustalW("PROTEIN.fasta", type="PROTEIN", aln.filetype="PIR",

+ job.name="clustalwPROTEINpir")

18

http://www.clustal.org/clustal2/

Job submitted. You can check your job using CheckJobStatus(25945)

Result file: clustalw2.fa

ClustalW outputs six alignments (all named: clustalw.fa): CLUSTALW http://meme.nbcr.
net/meme/doc/clustalw-format.html, PHYLIP_INT http://www.bioperl.org/wiki/PHYLIP_
multiple_alignment_format, NEXUS http://en.wikipedia.org/wiki/Nexus_file, GCG

http://www.genomatix.de/online_help/help/sequence_formats.html#GCG, GDE http:

//www.cse.unsw.edu.au/~binftools/birch/GDE/overview/GDE.file_formats.html, and
PIR http://www.bioinformatics.nl/tools/crab_pir.html.

9.5 FastTree

Fasttree <- function(file.name, file.path="", job.name=NULL, args=NULL, type="DNA",

model=NULL, gamma=FALSE, stat=FALSE, print.curl=FALSE, version="fasttreeDispatcher-

1.0.0u1", shared.username=NULL, suppress.Warnings=FALSE)

FastTree infers approximately-maximum-likelihood phylogenetic trees from alignments of
nucleotide or protein sequences. See http://meta.microbesonline.org/fasttree/

> myJobFaDMuP <- Fasttree("phylip_interleaved.aln", file.path=paste("analyses/",myJobMuDP[[2]],

+ sep=""), job.name="fasttreeMUSCLEdnaPHY")

Job submitted. You can check your job using CheckJobStatus(25946)

> myJobFaDCWP <- Fasttree("clustalw2.fa", file.path=paste("analyses/",myJobCWDP[[2]], sep=""),

+ job.name="fasttreeCLUSTALWdnaPHY")

Job submitted. You can check your job using CheckJobStatus(25947)

> myJobFaDMuF <- Fasttree("fasta.aln", file.path=paste("analyses/",myJobMuDF[[2]], sep=""),

+ job.name="fasttreeMUSCLEdnaFASTA")

Job submitted. You can check your job using CheckJobStatus(25948)

> myJobFaDCWF <- Fasttree("mafft.fa", file.path=paste("analyses/",myJobMaDF[[2]], sep=""),

+ job.name="fasttreeMAFFTdnaFASTA")

Job submitted. You can check your job using CheckJobStatus(25949)

> myJobFaPMuP <- Fasttree("phylip_interleaved.aln", file.path=paste("analyses/",myJobMuPP[[2]],

+ sep=""), type="PROTEIN",

+ job.name="fasttreeMUSCLEproteinPHY")

Job submitted. You can check your job using CheckJobStatus(25950)

> myJobFaPCWP <- Fasttree("clustalw2.fa", type="PROTEIN", file.path=paste("analyses/",myJobCWPP[[2]],

+ sep=""), job.name="fasttreeCLUSTALWproteinPHY")

Job submitted. You can check your job using CheckJobStatus(25951)

> myJobFaPMuF <- Fasttree("fasta.aln", file.path=paste("analyses/",myJobMuPF[[2]], sep=""),

+ type="PROTEIN", job.name="fasttreeMUSCLEproteinFASTA")

Job submitted. You can check your job using CheckJobStatus(25952)

> myJobFaPCWF <- Fasttree("mafft.fa", file.path=paste("analyses/",myJobMaPF[[2]], sep=""),

+ type="PROTEIN", job.name="fasttreeMAFFTproteinFASTA")

Job submitted. You can check your job using CheckJobStatus(25953)

19

http://meme.nbcr.net/meme/doc/clustalw-format.html
http://meme.nbcr.net/meme/doc/clustalw-format.html
http://www.bioperl.org/wiki/PHYLIP_multiple_alignment_format
http://www.bioperl.org/wiki/PHYLIP_multiple_alignment_format
http://en.wikipedia.org/wiki/Nexus_file
http://www.genomatix.de/online_help/help/sequence_formats.html#GCG
http://www.cse.unsw.edu.au/~binftools/birch/GDE/overview/GDE.file_formats.html
http://www.cse.unsw.edu.au/~binftools/birch/GDE/overview/GDE.file_formats.html
http://www.bioinformatics.nl/tools/crab_pir.html
http://meta.microbesonline.org/fasttree/

Fasttree outputs trees in Newick format http://en.wikipedia.org/wiki/Newick_format.
The placement of the root is not biologically meaningful. The local support values are given
as names for the internal nodes, and range from 0 to 1, not from 0 to 100 or 0 to 1,000. If all
sequences are unique, then the tree will be fully resolved (the root will have three children
and other internal nodes will have two children). If there are multiple sequences that are
identical to each other, then there will be a multifurcation. Also, there are no support values
for the parent nodes of redundant sequences.

9.6 RAxML (Randomized Accelerated Maximum Likelihood)

RAxML(file.name, file.path="", job.name=NULL, type="DNA", model=NULL, bootstrap=NULL,

algorithm="d", multipleModelFileName=NULL, args=NULL, numcat=25, nprocs=12,

version="raxml-lonestar-7.2.8u1", print.curl=FALSE, shared.username=NULL,

substitution_matrix=NULL, empirical.frequencies=FALSE, suppress.Warnings=FALSE)

RAxML is a program for sequential and parallel Maximum Likelihood based inference of large
phylogenetic tress. It has originall been derived from from fastDNAml which in turn was
derived from Joe Felsentein’s dnaml which is part of the PHYLIP package. See http:

//sco.h-its.org/exelixis/oldPage/RAxML-Manual.7.0.4.pdf for details.

> myJobRDMuP <- RAxML("phylip_interleaved.aln", file.path=paste("analyses/",myJobMuDP[[2]],

+ sep=""), job.name="raxmlMUSCLEdnaPHY")

Job submitted. You can check your job using CheckJobStatus(25954)

> myJobRDCWP <- RAxML("clustalw2.fa", file.path=paste("analyses/",myJobCWDP[[2]], sep=""),

+ job.name="raxmlCLUSTALWdnaPHY")

Job submitted. You can check your job using CheckJobStatus(25955)

> myJobRPMuP <- RAxML("phylip_interleaved.aln", file.path=paste("analyses/",myJobMuPP[[2]],

+ sep=""), type="PROTEIN", job.name="raxmlMUSCLEproteinPHY")

Job submitted. You can check your job using CheckJobStatus(25956)

> myJobRPCWP <- RAxML("clustalw2.fa", file.path=paste("analyses/",myJobCWPP[[2]], sep=""),

+ type="PROTEIN", job.name="raxmlCLUSTALWproteinPHY")

Job submitted. You can check your job using CheckJobStatus(25957)

For this application there are numerous output files. See pg 16-17 of the manual for complete
details. RAxML outputs trees in Newick format http://en.wikipedia.org/wiki/Newick_
format.

9.7 PHYLIP-Parsimony 3.69

PHYLIP_Pars(file.name, file.path="", job.name=NULL, type="DNA", print.curl=FALSE,

shared.username=NULL, suppress.Warnings=FALSE)

PHYLIP is a free package of programs for inferring phylogenies. It is distributed as source code,
documentation files, and a number of different types of executables. The web page: http:

//evolution.genetics.washington.edu/phylip/doc/main.html, by Joe Felsenstein of
the Department of Genome Sciences and the Department of Biology at the University of

20

http://en.wikipedia.org/wiki/Newick_format
http://sco.h-its.org/exelixis/oldPage/RAxML-Manual.7.0.4.pdf
http://sco.h-its.org/exelixis/oldPage/RAxML-Manual.7.0.4.pdf
http://en.wikipedia.org/wiki/Newick_format
http://en.wikipedia.org/wiki/Newick_format
http://evolution.genetics.washington.edu/phylip/doc/main.html
http://evolution.genetics.washington.edu/phylip/doc/main.html

Washington, contain information on PHYLIP. PHYLIP (the PHYLogeny Inference Pack-
age) is a package of programs for inferring phylogenies (evolutionary trees). Methods that
are available in the package include parsimony, distance matrix, and likelihood methods,
including bootstrapping and consensus trees.

> myJobPDMuPP <- PHYLIP_Pars("phylip_pars.aln", file.path=paste("analyses/",myJobMuDPP[[2]],

+ sep=""), job.name="phylipMUSCLEdnaPHYpars")

Job submitted. You can check your job using CheckJobStatus(25958)

> myJobPPMuPP <- PHYLIP_Pars("phylip_pars.aln", file.path=paste("analyses/",myJobMuPPP[[2]],

+ sep=""), type="PROTEIN", job.name="phylipMUSCLEproteinPHYpars")

Job submitted. You can check your job using CheckJobStatus(25959)

PHYLIP Parsimony outputs trees in Newick format http://en.wikipedia.org/wiki/Newick_
format.

9.8 Genome Wide Association Study models

> UploadFile("simulation1.map")

> UploadFile("simulation1.ped")

> UploadFile("geno_test.tfam")

> UploadFile("geno_test.tped")

9.9 PLINK

PLINK(file.list="", file.path="", job.name=NULL, association.method="-assoc",

no.sex=TRUE, args=NULL, print.curl=FALSE, multi.adjust=TRUE, version="plink-1.07u1",

shared.username=NULL, suppress.Warnings=FALSE)

PLINK is an open-source whole genome association analysis toolset, designed to perform
a range of basic, large-scale analyses in a computationally efficient manner, check http:

//pngu.mgh.harvard.edu/~purcell/plink/ for details.

> myJobPLINKT <- PLINK(file.list=list("geno_test.tfam","geno_test.tped"), job.name="PLINKT")

Job submitted. You can check your job using CheckJobStatus(25960)

> myJobPLINKR <- PLINK(file.list=list("simulation1.map","simulation1.ped"), job.name="PLINKR")

Job submitted. You can check your job using CheckJobStatus(25961)

There are many output files possible, http://pngu.mgh.harvard.edu/~purcell/plink/

reference.shtml#output

9.10 PLINK Conversion

PLINKConversion(file.list="", file.path="", output.type="-recode", job.name=NULL,

shared.username=NULL, print.curl=FALSE, version="plink-1.07u1", suppress.Warnings=FALSE)

This function converts the standard PLINK file formats (Regular (ped/map), Transposed
(tped/tfam), and Binary (bed/bim/fam)) to various other PLINK file formats.

> myJobPLINKCT <- PLINKConversion(file.list=list("geno_test.tfam","geno_test.tped"), job.name="PCT",

> out.basename="plinkout")

21

http://en.wikipedia.org/wiki/Newick_format
http://en.wikipedia.org/wiki/Newick_format
http://pngu.mgh.harvard.edu/~purcell/plink/
http://pngu.mgh.harvard.edu/~purcell/plink/
http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml#output
http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml#output

Job submitted. You can check your job using CheckJobStatus(25962)

> myJobPLINKCR <- PLINKConversion(file.list=list("simulation1.map","simulation1.ped"),

+ output.type="--recode --transpose", job.name="PCR")

Job submitted. You can check your job using CheckJobStatus(25963)

There are many output files possible, http://pngu.mgh.harvard.edu/~purcell/plink/

reference.shtml#output

9.11 FaST-LMM (Factored Spectrally Transformed Linear Mixed
Models)

FaST_LMM(input.file.list="", ALL.file.path="", print.curl=FALSE, sim.file.list=NULL,

pheno.file.name=NULL, mpheno=1, args=NULL, covar.file.name=NULL, job.name=NULL,

version="FaST-LMM-1.09u1", shared.username=NULL, suppress.Warnings=FALSE)

FaST-LMM (Factored Spectrally Transformed Linear Mixed Models) is a program for
performing genome-wide association studies (GWAS) on large data sets. FaST-LMM is de-
scribed more fully at http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.

html, and also at http://fastlmm.codeplex.com/

> myJobFaST_LMMT <- FaST_LMM(input.file.list=list("geno_test.tfam","geno_test.tped"),

> job.name="FaST_LMMT")

Job submitted. You can check your job using CheckJobStatus(25964)

> myJobFaST_LMMR <- FaST_LMM(input.file.list=list("simulation1.map","simulation1.ped"),

> job.name="FaST_LMMR")

Job submitted. You can check your job using CheckJobStatus(25965)

Not all information on the FaST-LMM model is here, see the FaST-LMM website http:

//fastlmm.codeplex.com/, or the FaST-LMM manual for more information.

10 Creating workflows

Finally, each of these steps can be combined to generate multi-step analyses. This has the
benefit of reducing errors that can occur when manually running each application and, more
importantly, ensures that results are reproducible. In the following example, a user starts
with unaligned sequences on her or his local computer and ends with aligned sequences and
a phylogenetic tree with all applications running on the iPlant servers.

10.1 Workflow One

This first workflow takes an amino acid fasta file, uses MUSCLE to get a PHYLIP_PARS alignment
type. A couple things about this alignment; it is only available from MUSCLE and this
alignment is very specific to the PHYLIP 3.69 model. The PHYLIP model then produces
a tree. Note: this is the only way to do this workflow.

> myJobW1MP <- Muscle("PROTEIN.fasta", aln.filetype="PHYLIP_PARS", job.name="muscleWORKFLOW1protein")

Job submitted. You can check your job using CheckJobStatus(25966)

Result file: phylip_pars.aln

22

http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml#output
http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml#output
http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.html
http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.html
http://fastlmm.codeplex.com/
http://fastlmm.codeplex.com/
http://fastlmm.codeplex.com/

> Wait(myJobW1MP[[1]], minWait, maxWait)

> myJobW1PPP <- PHYLIP_Pars("phylip_pars.aln", file.path=paste("analyses/",myJobW1MP[[2]],

> sep=""), type="PROTEIN", job.name="phylipWORKFLOW1protein")

Job submitted. You can check your job using CheckJobStatus(25967)

> Wait(myJobW1PPP[[1]], minWait, maxWait)

> RetrieveJob(myJobW1PPP[[1]], c("outtree.nwk"))

> read.tree(paste(getwd(), myJobW1PPP[[2]], "outtree.nwk", sep="/")) -> Tree

Heliconia

Uvaria ano

Sloanea la

Colysis lo

Leiocolea

Asplenium

Aristoloch

Greenwayod

Corsinia c

10.2 Workflow Two

The second workflow takes the same amino acid fasta file and this time it uses Mafft to get
a FASTA alignment type. MUSCLE also can output a fasta alignment. The FastTree model is
then used to make the tree.

> myJobW2CWD <- Mafft("PROTEIN.fasta", type="PROTEIN", job.name="mafftPROTEINfasta")

Job submitted. You can check your job using CheckJobStatus(25968)

Result file: mafft.fa

> Wait(myJobW2CWD[[1]], minWait, maxWait)

> myJobW2FaD <- Fasttree("mafft.fa", type="PROTEIN", file.path=paste("analyses/",myJobW2CWD[[2]],

+ sep=""), job.name="fasttreeCLUSTALWfasta")

Job submitted. You can check your job using CheckJobStatus(25969)

> Wait(myJobW2FaD[[1]], minWait, maxWait)

> RetrieveJob(myJobW2FaD[[1]], c("fasttree.nwk"))

> read.tree(paste(getwd(), myJobW2FaD[[2]], "fasttree.nwk", sep="/")) -> Tree

23

Colysis longipes

Sloanea latifolia

Leiocolea heterocolpos

Asplenium shuttleworthianum

Aristolochia maxima

Corsinia coriandra

Greenwayodendron suaveolens

Uvaria anonoides

Heliconia irrasa

10.3 Workflow Three

The third workflow is again dealing with FastTree. FastTree can take either a FASTA
alignment or a phylip interleaved alignment as inputs. Now ClustalW takes a nucleotide fasta
file to get a PHYLIP INTERLEAVED alignment type. MUSCLE also can output that alignment.
The FastTree model is then used to make the tree.

> myJobW3MuP <- ClustalW("DNA.fasta", job.name="clustalwDNAfasta")

Job submitted. You can check your job using CheckJobStatus(25970)

Result file: clustalw2.fa

> Wait(myJobW3MuP[[1]], minWait, maxWait)

> myJobW3FaP <- Fasttree("clustalw2.fa", file.path=paste("analyses/",myJobW3MuP[[2]], sep=""),

+ job.name="fasttreeMUSCLEdna")

Job submitted. You can check your job using CheckJobStatus(25971)

> Wait(myJobW3FaP[[1]], minWait, maxWait)

> RetrieveJob(myJobW3FaP[[1]], c("fasttree.nwk"))

> read.tree(paste(getwd(), myJobW3FaP[[2]], "fasttree.nwk", sep="/")) -> Tree

24

Aristoloch

Sloanea la

Greenwayod

Uvaria ano

Asplenium

Colysis lo

Gollania s

Corsinia c

Leiocolea

Heliconia

10.4 Workflow Four

The fourth workflow is using RAxML. MUSCLE takes a nucleotide fasta file to get a PHYLIP

INTERLEAVED alignment type. ClustalW also can output that alignment. The RAxML model
is then used to make the tree.

> myJobW4MuP <- Muscle("DNA.fasta", aln.filetype="PHYLIP_INT", job.name="muscleWORKFLOW4dna")

Job submitted. You can check your job using CheckJobStatus(25972)

Result file: phylip_interleaved.aln

> Wait(myJobW4MuP[[1]], minWait, maxWait)

> myJobW4RP <- RAxML("phylip_interleaved.aln", file.path=paste("analyses/",myJobW4MuP[[2]], sep=""),

+ job.name="raxmlWORKFLOW4dna")

Job submitted. You can check your job using CheckJobStatus(25973)

> Wait(myJobW4RP[[1]], minWait, maxWait)

> RetrieveJob(myJobW4RP[[1]], c("RAxML_bestTree.nwk"))

> read.tree(paste(getwd(), myJobW4RP[[2]], "RAxML_bestTree.nwk", sep="/")) -> Tree

25

Colysis longipes

Heliconia irrasa

Aristolochia maxima

Sloanea latifolia

Greenwayodendron suaveolens

Uvaria anonoides

Gollania splenden

Corsinia coriandra

Leiocolea heterocolpos

Asplenium shuttleworthianum

26

	Introduction
	Getting Started
	Validation of users

	Uploading Files
	UploadFile function
	Supported File Types

	Manipulating directories on iPlant servers
	Listing directories
	Making Directories
	Sharing Directories
	Renaming Directories
	Moving Directories
	Deleting Directories

	Manipulating files on iPlant servers
	Sharing Files
	Moving Files
	Renaming Files
	Deleting Files

	Applications in the rPlant package
	Listing Applications
	Individual application information

	Submitting Jobs in the rPlant package
	Submitting Job
	Submitting a job with a shared file

	Checking Job Status and Retreiving Job output
	Checking job status
	Listing job status
	Looking at Job History
	Retrieve job files
	Delete job

	Advanced job submittal
	Submitting a job with the wrappers
	Muscle
	Mafft
	ClustalW
	FastTree
	RAxML (Randomized Accelerated Maximum Likelihood)
	PHYLIP-Parsimony 3.69
	Genome Wide Association Study models
	PLINK
	PLINK Conversion
	FaST-LMM (Factored Spectrally Transformed Linear Mixed Models)

	Creating workflows
	Workflow One
	Workflow Two
	Workflow Three
	Workflow Four

