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Abstract

The package qmrobust presently is a companion to the chapter“Statistical Procedures for Performance-
based Specification and Testing” of ...

It currently contains 3 datasets and a function for analyzing interlaboratory studies. We plan to
implement some more classical and robust methods for quantile estimation and interlaboratory studies.

1 Introduction

Classical methods for quality management include, besides elementary one- and two-sample tests, control
charts and the analysis of interlaboratory studies. They are available through existing packages in R.

This vignette is a companion of the chapter “Statistical Procedures for Performance-based Specification
and Testing” of ... which presents procedures for quality management in the concrete producing industry.
The package qmrobust presently consists of the data sets used in that text and shows how the methods
are obtained in R.

> require(qmrobust, lib="../../pkg.Rcheck")

2 Datasets

a Datasets d.tunnel1 and d.tunnel2. Concrete properties (compressive strength, permeability and
porosity) in selected structural components of a new opencast tunnel have been measured and the spatial
variability determined Leemann, Hoffmann, Malioka and Faber, 2006. 400 cores were taken from two
deck and two wall elements, and different characteristics were measured.

> data(d.tunnel1)

> showd(d.tunnel1)

dim: 240 9

section diameter n position layer strength density perm.O2 cond.CL

1 w.1 68 65 A layer.1 102.2 2428 9.12e-11 1.14

2 w.1 68 65 A layer.2 90.0 2380 8.91e-11 0.98

3 w.1 68 65 A layer.3 92.0 2380 1.17e-10 1.14

...

62 w.2 68 65 A layer.2 107.3 2435 6.35e-11 0.81

122 d.1 68 65 A layer.2 67.3 2350 6.37e-11 1.13

181 d.2 68 65 A layer.1 104.5 2367 4.68e-11 1.00

240 d.2 68 86 V layer.3 115.5 2371 1.74e-11 0.85
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> ## ?d.tunnel1 ## help information, not shown here

> dd <- d.tunnel1[d.tunnel1$layer=="layer.3",]

> plot(strength~section, data=dd, notch=T, ylab="compressive strength [MPa]")
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b Dataset d.perm. The results of a round robin of the air permeability test (SIA Standard 262/1, Annex
E) are reported in Jacobs, Leemann, Denarié and Teruzzi, 2009. On two selected elements of a bridge a
regular grid of 75 identically sized square areas was delineated. The 75 areas were randomly assigned to
5 participating teams, so each team had to measure permeability in 15 areas each for both elements.

> data(d.perm)

> showd(d.perm)

dim: 150 5

team section rep permeability perm.log

1 S w.1 0 1.02e-17 -17.0

2 S w.1 1 1.79e-17 -16.7

3 S w.1 2 1.76e-17 -16.8

...

40 H w.1 9 8.20e-18 -17.1

76 L w.2 0 1.07e-17 -17.0

113 E w.2 7 1.03e-17 -17.0

150 T w.2 14 1.85e-17 -16.7
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c Dataset d.coverdepth. A third example is taken from Monteiro, Gonçalves and Gulikers, 2014, Fig. 9.4
and features a 5 × 40 grid of cover depth readings obtained in the top reinforcement layer of the deck
slab of a freeway viaduct.

> data(d.coverdepth)

> dd <- d.coverdepth[d.coverdepth$section<=2,]

> symbols(dd$column,dd$row, circles=dd$depth, inches=0.7*par("cin")[1],

+ xlab="",ylab="")
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3 Specification testing

a Inference on a location parameter. We assume here that the targetted property of the material,
e.g., compressive strength, has a known distribution, usually the normal distribution. Furthermore, the
specification is given as a targeted expected value. Thus, we require inference tools for this parameter.

b Classical one-sample t-test and confidence interval. The most convenient way to check if a given
specification is fulfilled is provided by a confidence interval for the parameter. It is obtained from the
function t.test.

> ( dd <- d.tunnel1[d.tunnel1$section=="w.1","strength"] )

[1] 102.2 90.0 92.0 101.7 102.7 122.7 109.1 90.3 85.9 121.0 113.5 86.8

[13] 100.5 90.1 101.0 86.4 81.2 115.6 115.4 92.3 94.9 86.3 94.7 104.3

[25] 100.0 103.4 96.9 89.6 86.6 NA 100.2 95.4 89.3 128.1 110.5 108.6

[37] 82.3 95.9 81.6 93.7 98.8 94.8 95.1 103.9 85.6 86.8 116.9 NA

[49] 108.1 94.7 NA 110.8 117.5 131.3 103.8 107.6 106.9 95.3 103.8 136.9

> t.test(dd)

One Sample t-test

data: dd

t = 59.5, df = 56, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:
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97.3 104.1

sample estimates:

mean of x

101

The estimated strength is 101 and the confidence interval, [97.3, 104.1]. If the specification were 100, it
is perfectly fulfilled.

c Nonparametric test. The assumption of a normal distribution is not needed in this simple problem,
and should be avoided. The corresponding nonparametric test, the signed rank test of Wilcoxon, provides
inference on the center of symmetry of the distribution.

> dd <- d.tunnel1[d.tunnel1$section=="w.1","strength"]

> wilcox.test(dd, conf.int=T)

Wilcoxon signed rank test with continuity correction

data: dd

V = 1653, p-value = 5.28e-11

alternative hypothesis: true location is not equal to 0

95 percent confidence interval:

96.5 103.5

sample estimates:

(pseudo)median

99.6

The center of symmetry is estimated as 99.6, with a confidence interval from 96.5 to 103.45.

d Outlier rejection. The most popular tests for outliers is Grubbs’ tests. They are all based on the
sorted, standardized observations X[i] , Ri = (X[i]−X)/S , where S is the estimated standard deviation.

The first test is intended to detect single outliers at either the low or the high end of the sample. It is
based on the test statistic T1 = max〈−R1, Rn 〉 . The second test is designed to detect the case of two
outliers on the same side. The test statistic is T2 = max

〈
R2

1 +R2
2, R

2
n−1 +R2

n

〉
. The third test should

pinpoint two outliers, one at each end, by calculating T3 = Rn − R1 . The distribution of these test
statistics has been derived in the literature.

The package outliers contains a function grubbs.test which performs three types of this test. A
peculiar feature of the function is its default value FALSE for the argument two.sided. Because the side
on which the outliers can occur is rarely known a priori, the argument should be set TRUE, except for
type=11, for which this setting produces nonsense.

> require(outliers)

> dd <- d.tunnel1[d.tunnel1$section=="w.1","strength"][1:10]

> grubbs.test(dd, type=10, two.sided=TRUE) ## one outlier on either side?

Grubbs test for one outlier

data: dd

G = 1.633, U = 0.671, p-value = 0.8288

alternative hypothesis: highest value 122.7 is an outlier

> grubbs.test(c(dd,60), type=10, two.sided=TRUE)
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Grubbs test for one outlier

data: c(dd, 60)

G = 2.168, U = 0.483, p-value = 0.1388

alternative hypothesis: lowest value 60 is an outlier

> grubbs.test(c(dd,60), type=11)

Grubbs test for two opposite outliers

data: c(dd, 60)

G = 3.581, U = 0.324, p-value = 0.1683

alternative hypothesis: 60 and 122.7 are outliers

> grubbs.test(dd, type=20, two.sided=TRUE)

Grubbs test for two outliers

data: dd

U = 0.317, p-value = 0.2758

alternative hypothesis: highest values 121 , 122.7 are outliers

> grubbs.test(c(dd[1:10],60), type=20, two.sided=TRUE)

Grubbs test for two outliers

data: c(dd[1:10], 60)

U = 0.392, p-value = 0.3918

alternative hypothesis: lowest values 60 , 85.9 are outliers

4 Conformity testing.

a Quantile estimation. Quality measures have a natural variability across the object (brigde, tunnel,
...) to be assessed. Therefore, it will not be sufficient to specify a requirement in terms of the expected
value. Rather, a “reasonable minimum” should be prescribed, in the form: “The quality criterion X shall
be larger than c with a probability 1− γ , i.e., P (X < c) < γ . Equivalently, the γ quantile qγ should be
≥ c .

Since the decision whether confirmity is warranted or not must be based on a sample, the random nature
of the estimators of P (X < c) or qγ should be taken into account as discussed below.
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b Nonparametric inference. The most direct way to assess P (X < c) is based on the number K of
observations for which Xi < c . It has a binomial distribution, K ∼ B〈n, p〉 . Conformity testing either
means testing p ≥ γ against p < γ or determining a one-sided confidence interval for p and checking if
the upper bound is ≤ γ . We do both for the cover depth data and a threshold of c = 45mm, which is
required to be failed with less than γ = 10% probability.

> ##- hist(d.coverdepth$depth) # recommended, but not done here.

> threshold <- 45

> gamma <- 0.1

> x <- sum(d.coverdepth$depth < threshold)

> binom.test( x, nrow(d.coverdepth), p=gamma, alternative="less")

Exact binomial test

data: x and nrow(d.coverdepth)

number of successes = 5, number of trials = 200, p-value = 3.871e-05

alternative hypothesis: true probability of success is less than 0.1

95 percent confidence interval:

0.0000 0.0518

sample estimates:

probability of success

0.025

Thus, with n = 200 observations, the conformity test for c = 40mm was successful, since the p-value
is 3.87e − 05 < γ , or since the upper bound of the confidence interval, 0.0518, is < γ . The estimated
probability of a lower cover depth was p̂ = 0.025.

Such a large sample may be realistic for easy, non-destructive measurements. For other situations, an
alternative assessment of conformity is needed.

c Quantile estimation for normal data with known scale. If the normal distribution N
〈
µ, σ2

〉
is

assumed for the data, then the quantile equals qγ = µ + q
(0,1)
γ σ , where q

(0,1)
γ is the γ quantile of the

standard normal distribution. If the precision of the measurements, expressed by σ , is known – possibly

from many similar studies –, then this leads to the estimated quantile q̂γ = x + q
(0,1)
γ σ . For the data

used before and σ = 15MPa,

> dd <- d.tunnel1[d.tunnel1$section=="w.1","strength"]

> gamma <- 0.02

> sigma <- 15

> mean(dd, na.rm=TRUE) + qnorm(gamma)*sigma

[1] 69.9

For drawing inference, the easiest way is to check if the expected value µ is larger than c + q
(0,1)
γ σ as

discussed above.
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d Normal data with unknown scale. ???

5 Interlaboratory studies

a Standard procedure. The classical analysis of interlaboratory studies is based on a one-way analysis
of variance. Outlier tests are usually applied to eliminate extreme observations within a lab or the entire
set from a lab which deviates extremely from the other labs.

The package provides the function interlabstats, which does not (yet) implement any outlier testing
or rejection. It comes with print and plot methods.

For obtaining an instructive example, the data for team E in d.perm have been changed, because other-
wise, the between groups variance is estimated as zero, which is an atypical case.

> dd <- d.perm[d.perm$section=="w.1",]

> dd[dd$team=="E","perm.log"] <- dd[dd$team=="E","perm.log"]+0.5

> ( r.cl <- interlabstats(perm.log~team, data=dd) )

interlabstats.formula(formula = perm.log ~ team, data = dd)

method = classical

overall mean = -16.7 ; sigma = 0.586 ; sd.between = 0.207

repeatability = 1.66 ; reproducibility = 1.76

groups:

n mean sd

E 15 -16.3 0.669

H 14 -16.8 0.575

L 15 -16.7 0.564

S 15 -16.7 0.549

T 15 -17.0 0.567

> plot(r.cl)
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b Mixed model analysis. A more modern way of analyzing interlaboratory studies relies on maximum
likelihood estimation of the parameters of the model. This is achieved by the R-function lmer of the
package lme4. The results can be fed into interlabstats to get the desired quantities.

> require(lme4)

> r.lme <- lmer(perm.log~(1|team), data=dd, na.action=na.omit)

> summary(r.lme)

Linear mixed model fit by REML ['lmerMod']
Formula: perm.log ~ (1 | team)

Data: dd

REML criterion at convergence: 65.6

Scaled residuals:

Min 1Q Median 3Q Max

-2.251 -0.768 -0.134 0.527 2.874

Random effects:

Groups Name Variance Std.Dev.

team (Intercept) 0.0571 0.239

Residual 0.1211 0.348

Number of obs: 74, groups: team, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) -16.699 0.114 -146
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> ## ---------------------

> interlabstats(r.lme)

lmer(formula = perm.log ~ (1 | team), data = dd, na.action = na.omit)

method = lmerMod

overall mean = -16.7 ; sigma = 0.348 ; sd.between = 0.0571

repeatability = 0.984 ; reproducibility = 0.997

c Robust mixed model analysis. The classical norms based on the rejection of outlying observations
and labs lead to biased results. (Corrections would in principle be possible but are not worked out
according to the knowledge of the authors.) An alternative is to use robust estimators, which avoid the
rejection of data, but deal with outliers by downweighting their influence on the results adequately. A
robust version of the maximum likelihood method is obtained from the package robustlmm, function
rlmer.

> require(robustlmm)

> r.lmmrob <- rlmer(perm.log~(1|team), data=dd)

> save(r.lmmrob,file="r.lmmrob.rda")

> #load("r.lmmrob")

> ## summary(r.lmmrob)

> interlabstats(r.lmmrob)

rlmer(formula = perm.log ~ (1 | team), data = dd)

method = rlmerMod

overall mean = -16.7 ; sigma = 0.334 ; sd.between = 0.0486

repeatability = 0.946 ; reproducibility = 0.956

In our example, the robust and nonrobust mixed model estimators are quite similar but different from
the classical one:

6 Regression

a Fitting the model. Linear regression models are fitted by the R function lm.

> r.lm <- lm(log10(strength) ~ log10(density), data=d.tunnel1)

> options(show.signif.stars=FALSE)

> summary(r.lm) ## results of the fitting

Call:

lm(formula = log10(strength) ~ log10(density), data = d.tunnel1)

Residuals:

Min 1Q Median 3Q Max

-0.12812 -0.03123 -0.00701 0.02970 0.14453

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -15.96 1.32 -12.1 <2e-16

log10(density) 5.31 0.39 13.6 <2e-16
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Residual standard error: 0.0464 on 228 degrees of freedom

(10 observations deleted due to missingness)

Multiple R-squared: 0.449, Adjusted R-squared: 0.446

F-statistic: 185 on 1 and 228 DF, p-value: <2e-16

> plot(log10(strength) ~ log10(density), data=d.tunnel1) ## scater plot

> abline(r.lm) ## draw the estimated regression line
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b Residual analysis.

> par(mfrow=c(2,2), mar=c(3,3,2,1), mgp=c(2,0.8,0))

> plot(r.lm)
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c Prediction.

> plot(log10(strength) ~ log10(density), data=d.tunnel1) ## scater plot

> abline(r.lm) ## draw the estimated regression line

> lusr <- par("usr")

> x <- seq(lusr[1],lusr[2],length=51) ## equally space values along x

> xdf <- data.frame(density=10^x)

> r.pred <- predict(r.lm, newdata=xdf, interval="prediction")

> matlines(x,r.pred[,2:3], lty=5, col="red", lwd=2)
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