
Developers guide to phylobase

Peter Cowan, Ben Bolker & other developers of phylobase

May 8, 2014

Contents

1 Introduction 2

2 R-Forge 2

3 Building phylobase 2

4 Coding standards 2

5 Release procedure 3

6 Unit testing with RUnit 4

7 Non-exported functions 4
.chnumsort . 4
.createEdge . 4
.createLabels . 5
.genlab . 5
.phylo4Data . 5
.phylo4ToDataFrame . 5
.bubLegendGrob . 5
drawDetails.bubLegend . 5
orderIndex . 5

8 The Nexus Class Library and Rcpp 5
8.1 Organization of the repository . 5

9 S4 classes and methods 6

10 Grid graphics 6

11 Converting between tree formats and “round-trip” issues 6

A Subversion 6
A.1 Organization of the phylobase repository . 6
A.2 Using subversion for the first time . 7
A.3 Subversion patches . 8
A.4 Branching and merging with svn . 9

1

1 Introduction

This vignette is intended as a guide for the development of phylobase and a repository of
technical notes of primary interest to it’s developers and others interested in gory details — by
contrast the other phylobase vignette is more of an introduction & user’s manual.

2 R-Forge

Our development infrastructure hosted by R-Forge,1 and includes a Subversion repository (see
Appendix˜A˜[Subversion]) for source code management, trackers for bug reports and feature
requests,2 and mailing lists for development discussion and tracking changes in the source code.3

The R-Forge manual4 describes how to develop a package using their infrastructure Of
particular importance is the section on getting ssh keys to work so that you can commit changes
to the phylobase code using Subversion (svn).

On feature of R-Forge is a package repository that allows prerelease versions of phylobase
to be install directly from R.

> install.packages("phylobase", repos = "http://r-forge.r-project.org")

3 Building phylobase

If you are interested in building phylobase from source, you will need the same tools required
to build R itself. These are documented in the R Installation and Administration manual.5 If
you are running Mac OS X you’ll need to have the developer tools.6 On Windows you’ll need
to install the “Windows toolset”7 as described in the above manual. If you are running Linux,
you probably already know what you need. To build the vignettes and LATEX˜documentation
you will need to install a TEX˜distribution like MacTex8 for Mac OS X, Tex-Live for Linux, or
MiKTeX9 for Windows. Once you have the proper tools installed follow the instruction in the
Writing R Extensions manual.10

4 Coding standards

We try to follow the coding standards of Bioconductor.11 Namely, variables and particularily
function exposed to users should be in camelCase. As of this writing many non-exported
functions are prefixed with ‘.’ however, future private functions should be named without this
convention. Indentation should be 4 spaces and tabs should be avoided. We also use <- for
assignment, and place spaces after commas, in indexes and function calls (e.g. df[2, 2] and
seq(1, 2, 0.1), not df[2,2] or seq(1,2,0.1.)

1http://phylobase.r-forge.r-project.org
2http://r-forge.r-project.org/tracker/?group_id=111
3http://r-forge.r-project.org/mail/?group_id=111
4http://r-forge.r-project.org/R-Forge_Manual.pdf
5http://cran.r-project.org/doc/manuals/R-admin.html
6http://developer.apple.com/technology/xcode.html
7http://www.murdoch-sutherland.com/Rtools/
8http://www.tug.org/mactex/
9http://www.miktex.org/

10http://cran.r-project.org/doc/manuals/R-exts.html
11http://wiki.fhcrc.org/bioc/Coding_Standards

2

http://phylobase.r-forge.r-project.org
http://r-forge.r-project.org/tracker/?group_id=111
http://r-forge.r-project.org/mail/?group_id=111
http://r-forge.r-project.org/R-Forge_Manual.pdf
http://cran.r-project.org/doc/manuals/R-admin.html
http://developer.apple.com/technology/xcode.html
http://www.murdoch-sutherland.com/Rtools/
http://www.tug.org/mactex/
http://www.miktex.org/
http://cran.r-project.org/doc/manuals/R-exts.html
http://wiki.fhcrc.org/bioc/Coding_Standards

5 Release procedure

When the package code has stabilized or significant bugs have been fixed we want to push those
changes out to CRAN. This section documents the release sequence used for when submitting
the package to CRAN.

1. Update the NEWS file which resides in the pkg/ directory and describes changes in the
package since its last release. New changes should be appended above the earlier entries
and formatted so that it can be read by news(package="phylobase"), (format docu-
mented in ?news). Briefly, the version header should look like a previous entry and
changes should be grouped in categories which start at the beginning of a line. Within
each category individual changes should be marked with an indented (4 spaces) asterisk,
with the change text indented and wrapped a further four space, eight total. The most
comprehensive way to find the changes since the last version is to look at the SVN log.
This procedure was followed for the the 0.5 release and assumes that you have the entire
project checked out, including the www and tags directories.

Navigate to the tag for the previous release and get the revision it was created:

~$ cd phylobase/tags/phylobase-0.4

~$ svn log --stop-on-copy

--

r309 | skembel | 2008-12-18 12:55:14 -0800 (Thu, 18 Dec 2008) | 1 line

Tagging current version as 0.4 prior to hackathon changes

--

In this case we can see that the tag was created in revision 309 and as this was the current
release, we want all the changes that have been made since. To do that we navigate to
the top level to get the change log from any branches that have been made and save the
log. If there are unmerged branches, care should be taken to exclude those changes from
the NEWS file. Because this file may be rather large we’ll output it to a file.

~$ cd ../..

~$ svn log -r309:HEAD > RecentChanges.txt

The NEWS file can then be updated by going through the RecentChanges.txt file and
picking out significant changes.

2. The DESCRIPTION file should be updated to reflect the new version number and current
date. Version numbers should follow the 0.5.0 format (no dashes), and the date should be
formatted as 2009-01-30.

3. Rebuild the vignettes to incorporate the latest changes. CRAN may not have all the
package we use to build our vignettes or able to run latex the multiple time necessary to
generate the PDFs with the proper cross references and table of contents.

~$ cd phylobase/pkg/inst/doc

~$ R CMD Sweave phylobase.Rnw

~$ pdflatex phylobase.tex

3

~$ pdflatex phylobase.tex

~$ pdflatex phylobase.tex

~$ R CMD Sweave developer.Rnw

~$ pdflatex developer.tex

~$ pdflatex developer.tex

~$ pdflatex developer.tex

~$ rm *.toc *.out *.log *.aux *.tex

4. Code freeze. Before the package can be submitted to CRAN it must pass the R-Forge
build and check process which happens every night. The easiest way to handle this is to
freeze the the code for a day or two after the NEWS, DESCRIPTION and PDF files have
been updated.

5. Tag the release in SVN. Each release is tagged so that a copy of it is easily available if
needed at a later date. This is done using the SVN copy as follows for a hypothetical
0.5.1 release:

~$ cd phylobase/

~$ svn copy pkg/ tags/phylobase-0.5.1

~$ svn commit -m "tagging version 0.5.1"

6. Uploading to CRAN is done by clicking the Upload to CRAN link on the R-Forge package
page. Ensure that the revision number corresponds to the revision with the updated
NEWS etc. files.

7. Update the R-Forge website with the correct version number and PDFs of the vignettes.

6 Unit testing with RUnit

We are in the process of moving our testing infrastructure to the RUnit12 framework. New con-
tributions and bug fixes should be accompanied by unit tests which test the basic functionality
of the code as well as edge cases (e.g what happens when the function is passed an empty string
or negative number – even when those inputs don’t make sense.) Unit tests are stored in the
inst/unitTests/ directory and are named according to the source file they correspond to. See
the included tests and the RUnit documentation for further details. RUnit has a few advantages
over the other testing frameworks in R, namely the examples in documentation, vignettes,

7 Non-exported functions

These functions are for internal use in phylobase not exported. Since most are not documented
elsewhere, they are documented here.

.chnumsort A convenience function that coerces vector of strings to numbers for sorting, then
coerces the vector back to stings. Currently only used inside the prune method.

12http://cran.r-project.org/web/packages/RUnit/index.html

4

http://cran.r-project.org/web/packages/RUnit/index.html

.createEdge

.createLabels Used any time labels are needed, including when updating the labels via
labels()<- or constructing a phylo4 object. It takes a vector of names to use or NULL if
new labels should be generated, integers indicating the number of tips and internal nodes,
as well as a string to indicated the type of labels to generate “tip” and “internal”, for
either tip or internal labels along or “allnode” or all nodes.

.genlab A handy function that can generate labels for applying to nodes and tips. The function
takes to arguments, a ‘base’ string, and an integer indicating the number of labels desired.
The result is a vector of string with a number (padded with ‘0’) suffix e.g. foo01...foo12.
This function is used to generate names in the .createLabels function as well as for for
making temporary names during the prune method.

.phylo4Data

.phylo4ToDataFrame

.bubLegendGrob This function generates a Grid graphics object (a grob) for drawing the
phylobubbles() legend. For reason I have not been able to understand, it must be
defined outside of the phylobubbles function. It takes the raw tip data values for a
phylo4d object as well as the scaled values used for making the bubble plot, both of these
vectors are passed directly to the drawDetails.bubLegend function.

drawDetails.bubLegend This function is the drawDetails method for the bubLegend grob
described above. The drawDetails method is called every time a plot is generated or
resized. In this case it calculates labels and sizes for drawing the example bubbles in the
phylobubbles legend. This is necessary because the because the main bubble plot bubble
can change in size as the plot is resized. Because the legend and the bubble plot occur
in different viewports the legend cannot know the size of the main plot circles (they are
plotted relative to the space available in their viewport.)

orderIndex This function is called from the reorder method. It takes a phylo4 or phylo4d

object and a string indicating the desired tree ordering, currently one of “preorder” or
“postorder”. It’s value is a vector indicating the respective ordering of the edge matrix
from top to bottom (i.e. in postorder the first edge in the edge matrix would terminate
in a tip, while in preorder the first edge would be the root edge.

8 The Nexus Class Library and Rcpp

8.1 Organization of the repository

We manage NCL source code as a “Vendor branch” as described in the “SVN book”. You
should refer to this section of the SVN book before upgrading to a newer version of NCL.

The original copies of NCL are stored at the root of the repository in the folder libncl/.
When a new version of NCL is released:

1. the newest tarball should be unpacked in the folder with the appropriate version number;

2. this new directory should then be copied over the current/ folder (using svn copy);

5

3. the potential new files should be added with svn add, and the missing files removed with
svn delete. At this stage, the changes can be commited.

4. The new version of NCL can then be tagged.

5. The new version of NCL can finally be merged in the pkg/src directory.

For more information look at the section “General Vendor Branch Management” in the SVN
book13.

9 S4 classes and methods

10 Grid graphics

11 Converting between tree formats and “round-trip” is-
sues

We should in principle be able to convert from other formats to phylo4(d) and (ape::phylo,
ouch::ouch etc.) and back without losing any information. The two classes of exceptions would
be (1) where phylo4 stores less information than the other formats (we would try to avoid this),
and (2) where there are ambiguities etc. in the other formats (we would try to avoid this, too,
but it may be difficult; ideally we would consult the package maintainers and try to get them
to eliminate the ambiguities in their formats).

Ideally we would be able to use identical() to test equality — this tests “bit-by-bit”
equality, and is intolerant of any differences in format. More loosely, all.equal() allows for
numeric variation below a certain tolerance, etc. (these correspond to RUnit::checkEquals()

and RUnit::checkIdentical()).
Case in point: ape is not entirely consistent in its internal representations, which causes

some difficulty in creating perfect round trips (see tests/roundtrip.R for workarounds). In
particular,

• unroot() contains several statements that subtract 1 from components of the data struc-
ture that were previously stored as integer. Because 1 is subtracted an not 1L (an
explicitly integer constant), this coerces those elements to be numeric instead.

• different ways of creating trees in ape (read.tree(), rcoal()) generate structures with
the internal elements in different orders. When phylobase re-exports them, it always uses
the order {edge, edge.length, tip.label, Nnode, [node.label], [root.edge]}, which
matches the trees produced by rcoal but not those produced by read.tree

• because of differences in ordering standards, it’s not clear that we can always preserve
ordering information through non-trivial manipulations in phylobase

A Subversion

A.1 Organization of the phylobase repository

The phylobase subversion repository is organized with four top level directories

13http://svnbook.red-bean.com/en/1.5/svn.advanced.vendorbr.html

6

http://svnbook.red-bean.com/en/1.5/svn.advanced.vendorbr.html

• branches/ where changes that will result in large disruption of the package take place

• libncl/ where we keep unaltered source of NCL.

• pkg/ where the main trunk of the project exists. This directory is built and available
through the R-Forge install mechanism so it is important that it passes R CMD check

• tags/ where copies of previous phylobase releases are kept

• www/ where the R-Forge webpage for phylobase is maintained. This must be kept and the
top level for R-Forge to find it

A.2 Using subversion for the first time

The general a subversion work flow goes as follows. I’ve written this with macs linux in mind,
however windows users will follow the same work flow but probably use a graphical front end
for subversion, like TortoiseSVN.14

R-Forge allows code to be checked out in two different ways. First, you can get the code
anonymously using this terminal command:

svn checkout \

svn://svn.r-forge.r-project.org/svnroot/phylobase

If you would like to make commits directly to the source repository you need to register with
R-Forge and be added to the phylobase project as a developer. Once you’ve done this, you’ll
need to have the ssh key set up in your R-Forge account. These terminal commands will make
a copy of the folder “phylobase”, and all the source files for the package, in whatever directory
you are in (in this case “~/Code”), change “[name]” to your R-Forge username.

cd ~/Code/

svn checkout \

svn+ssh://[name]@svn.r-forge.r-project.org/svnroot/phylobase

Once you have a copy of the package, hack away at it and adding functions and documen-
tation. Save changes. Then check to make sure you have the latest version of the package, it is
often the case that another developer has committed a change while you were working.

svn update

R provides some tools for checking packages. They help ensure that the package can be
installed and that all the proper documentation has been added. To keep the repository clean
of files that are created during the build process copy the package folder to a tmp folder before
running the check.

cp -R ~/Code/phylobase/pkg/ ~/Code/phylobase-tmp/

R CMD check ~/Code/phylobase-tmp

14http://tortoisesvn.tigris.org/

7

http://tortoisesvn.tigris.org/

Fix any errors or warnings that come up, and repeat R CMD check as necessary. The R core
developers provide a manual 15 for writing R Extensions (packages) which describes the package
and documentation formats. Main gotchas are being sure that you’ve properly updated the
DESCRIPTION and NAMESPACE files and ensuring that the documentation is in the proper format.
R CMD check warnings/errors are very useful for helping figure out what the issue is. And,
the command prompt() will provide “fill-in-the-blank” documentation if you’re documenting a
function for the first time.

The next step is to take a look at what we’ve actually changed. The status command will
show any file that’s been added (A), modified (M), or is unknown (and may need to be added)
to subversion (?).

svn status

For instance if I’ve added a new file called foo.R subversion doesn’t follow it until I tell it
to. So I might see something like:

? fooBar.R

Which we can remedy with

svn add fooBar.R

svn status will then show:

A fooBar.R

Update again for good measure (you can’t overdo it on this).

svn up

And, finally commit the changes with a helpful message (the -m portion) about what they
change does:

svn commit fooBar.R -m "Function fooBar for calculating foo on the class bar"

Subversion, has a whole bag of tricks, full documentation of which can be found in the
subversion book.16 There are also a number of graphical interface programs that you can use
with Subversion as well.

A.3 Subversion patches

If you don’t have developer access to the project but you’d like to fix a bug or add a feature
you can provide the change as a patch. To make a patch with subversion first get a copy of the
most recent code.

svn checkout svn://svn.r-forge.r-project.org/svnroot/phylobase/pkg

Make whatever changes in the code or documentation are necessary. For instance if there is
a simple function helloWorld, in a file called fooBar.R

15http://cran.r-project.org/doc/manuals/R-exts.pdf
16http://svnbook.red-bean.com/

8

http://cran.r-project.org/doc/manuals/R-exts.pdf
http://svnbook.red-bean.com/

helloWorld <- function(){

This is a comment

print('Hello World!')
}

And, I want to update it, would find the file fooBar.R in my svn checkout and change it to:

helloWorld <- function(x){

This is a comment

This is a new comment

print(paste('Hello', x, '!')
}

To supply that change to a developer with subversion access I would make a diff file of the
change. The way to make a diff is to run the svn diff command on the file in question.

svn diff fooBar.R > helloWorld.diff

This however just spits the output of svn diff to the terminal. To save the output to a file
use “>” which tells the terminal to save the output to a file, this file should end in “.diff” and
will have pluses and minuses to indicate which lines have been added and removed.

svn diff fooBar.R > fooBar.diff

--- /Users/birch/fooBar.R

+++ /Users/birch/fooBar.R

-helloWorld <- function(){

+helloWorld <- function(x){

This is a comment

- print('Hello World!')
+ # This is a new comment

+ print(paste('Hello', x, '!')
}

The fooBar.diff file can then be sent to the developers mailing list or the R-Forge Patches
issue tracker.17 Where another developer can easily review and apply the patch.

A.4 Branching and merging with svn

17https://r-forge.r-project.org/tracker/?atid=490&group_id=111&func=browse

9

https://r-forge.r-project.org/tracker/?atid=490&group_id=111&func=browse

	Introduction
	R-Forge
	Building phylobase
	Coding standards
	Release procedure
	Unit testing with RUnit
	Non-exported functions
	.chnumsort
	.createEdge
	.createLabels
	.genlab
	.phylo4Data
	.phylo4ToDataFrame
	.bubLegendGrob
	drawDetails.bubLegend
	orderIndex

	The Nexus Class Library and Rcpp
	Organization of the repository

	S4 classes and methods
	Grid graphics
	Converting between tree formats and ``round-trip'' issues
	Subversion
	Organization of the phylobase repository
	Using subversion for the first time
	Subversion patches
	Branching and merging with svn

