
Incidence Function Model in R

Jari Oksanen

May 11, 2004

Abstract

Metapopulation dynamics predicts that species incidences in patches are
a function of colonization and extinction rates. Incidence function model
finds colonization and extinction rates as a function of patch size and
connectivity. Patch size and connectivity are relatively easy to estimate
from the data. Fitting incidence function model is a special case of gen-
eralized linear models with binomial error and logistic link function. This
document explains how to fit the model in R.

Contents

1 The incidence function model 2

2 Preliminaries: Data and plotting 2

3 Fitting 4
3.1 Theory . 4
3.2 Fitting a snapshot in R . 5
3.3 Fitting data from two surveys . 6
3.4 Separating e and y with two surveys 8
3.5 Covariates . 9
3.6 Estimating α . 11
3.7 Confidence intervals of estimates 12

4 Simulation 14

5 Metacommunity capacity 15

6 About this document 19

A Appendix: Data set 19

1

1 The incidence function model

The incidence function model can be defined with the following set of equation
(Hanski, 1999):

Ji =
Ci

Ci + Ei − CiEi
(1)

Ei =
e

Ax
i

, forA ≥ e1/x (2)

Mi = βS = β
R∑

j 6=i

exp(−αdij)pjAj (3)

Ci =
M2

i

M2
i + y2

=
S2

i

S2
i + y

, where y absorpsβ (4)

Ji =
S2

i Ax
i

S2
i Ax

i + ey
=

1
1 + ey

S2
i Ax

i

=
[
1 +

ey

S2
i Ax

i

]−1

(5)

Here incidence Ji in patch i is defined twice: in eq. 1 incidence Ji is defined
in terms of colonization Ci and Ei extinction rates, and in eq. 5 in terms of
patch connectivity Si and size Ai, and with three parameters x, e, y than can
be estimated from the data. Eq. 2 defines extinction rate E as a function of
patch size A and two estimated parameters e, x. Eq. 3 defines connectivity S as
a function of occupancies pj , patch sizes Aj , patch distances dij and a species-
specific dispersion length parameter α. Eq. 4 defines colonization rate Ci as
a function of patch connectivity Si and one estimated parameter y. Finally,
substituting Ci and Ei in eq. 1 with eqs. 2 and 4 yields eq. 5 after some
acrobacy.

2 Preliminaries: Data and plotting

The data are stored in a data frame called fritty:

> load("fritty.rda")

> summary(fritty)

x.crd y.crd A p
Min. :0.0202 Min. :0.0921 Min. :0.0012 Min. :0.00
1st Qu.:1.6646 1st Qu.:2.2349 1st Qu.:0.0300 1st Qu.:1.00
Median :2.4435 Median :3.6454 Median :0.1150 Median :1.00
Mean :2.2797 Mean :3.3123 Mean :0.4141 Mean :0.82
3rd Qu.:2.8707 3rd Qu.:4.5256 3rd Qu.:0.3225 3rd Qu.:1.00
Max. :4.6853 Max. :5.9480 Max. :4.6000 Max. :1.00

p2
Min. :0.00
1st Qu.:0.25
Median :1.00
Mean :0.74
3rd Qu.:1.00
Max. :1.00

2

The data are fictitious: they were generated using simulation (section 4, page
14). However, the system resembles a Melitaea cinxia network: The patch areas
(in ha) are the same, and the configuration of plots is similar as described by
Hanski et al. (1994). The advantage of simulated data is that the real parameter
values are known so that we can assess the accuracy and reliability of the fitting
procedures. The following parameter values were used: α = 1 (in km), x = 0.41,
y = 3.912 and e = 0.063 (Hanski et al., 1994; Hanski, 1999). Please note that
parameter y appears both as squared and unsquared in eq. 4. It seems to me
that the original usage was not quite consistent, and using squared values for
the given y resulted in more consistent fit. The remaining two variables p and
p2 are simulated presences in two consecutive simulation years.

The standard plotting uses equal aspect ratio (asp=1), scales the symbol
area to patch size (cex), and uses different colour and shading for occupied and
empty patches. The graph (Fig. 1) uses easy shortcuts utilizing the notation
where empty patches are p = 0, and occupied are p = 1.

Figure 1 Basic plot of occupied and empty metapopulation patches.
> attach(fritty)

> plot(x.crd, y.crd, asp = 1, xlab = "", ylab = "", cex = sqrt(A *

+ 5), pch = 21, col = p + 1, bg = 5 * p)

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3 4 5

0
1

2
3

4
5

6

3

3 Fitting

3.1 Theory

Fitting of the incidence function model is based on eq. 5, where the incidence is
given as a function of connectivity S and patch size A, which both can be found
from the data. The incidence function model (eq. 5) can be parameterized as a
linear model for the log-odds of incidence:

Ji =
[
1 +

ey

S2
i Ax

i

]−1

(6)

=
1

1 + exp(log(ey)− 2 log(Si)− x log(Ai))
(7)

log
(

Ji

1− Ji

)
= − log(ey) + 2 log(Si) + x log(Ai) (8)

logit(Ji) = β0 + 2 log S + β1 log A (9)

The final equation 9 defines a generalized linear model with logistic link func-
tion. The response variable are the presences pi of species in patches. This is
clearly a binomial variate, and fitting the incidence function applied standard
generalized linear model (McCullagh and Nelder, 1989; Venables and Ripley,
2002) with log S and log A as independent variables, binomial error and logistic
link function. The remaining problems are deriving connectivity S, and sep-
arating parameters e and y of eqs. 5 and 6, which are combined into single
parameter β0.

This suggests the following procedure:

1. Given data are patch sizes Ai, patch occupancies pi, and patch locations
from which we find distances dij .

2. Use additional field observations or dirty tricks to find the strength of
distance decay α.

3. Estimate connectivity (isolation) S from Ai, dij and fixed α as Si =∑R
j 6=i exp(−αdij)pjAj .

4. Fit GLM using p as dependent variable, and log A and log S as indepent
variables to get estimates of − log(ey) and x in Ei = e/Ax

i and Ci =
S2

i /(S2
i + y).

5. Tear apart e and y (which may be painful, but is needed for simulation).

The only remaining problem is to separate estimates of e and y from their
estimated product β̂0 = − log(êy). This cannot be solved from the fitted GLM,
since any pair of values of e and y giving the estimated êy are just equally
good. However, if we manage to fix either e or y, the another will be found with
division. For a single snapshot we may assume that the smallest plot where the
species was present is of the size where extinction probability E = 1:

êy = exp(−β̂0) (10)

ẽ = min
p6=0

Ax̂ (11)

ỹ = êy/ẽ (12)

4

We shall inspect another alternative with two consecutive surveys (section 3.4,
page 8).

3.2 Fitting a snapshot in R

Standard function dist can be used to find the Euclidean distances d among
patches. Then we need an estimate of α, and setting diagonal to zero means
taking only dj 6=i. Finally we multiply the columns with A, and get the row sums
for occupied sites, so that S =

∑
j 6=i exp(−αdij)pjAj :

> d <- dist(cbind(x.crd, y.crd))

> alpha <- 1

> edis <- as.matrix(exp(-alpha * d))

> diag(edis) <- 0

> edis <- sweep(edis, 2, A, "*")

> S <- rowSums(edis[, p > 0])

Distances d = {dij} and matrix edis = {exp(−αdij)} will be re-used several
times in this document. Actually, it is unnecessary to explicitly set diagonal of
edis to zero, since they are zero anyhow. Now we have the two variables S and
A needed in fitting the incidence function model. Binomial fitting with logistic
link function is waiting for us in R:

> mod <- glm(p ~ offset(2 * log(S)) + log(A), family = binomial)

> summary(mod)

Call:
glm(formula = p ~ offset(2 * log(S)) + log(A), family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.365 0.133 0.279 0.446 1.563

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.590 0.905 0.65 0.515
log(A) 0.471 0.264 1.78 0.075

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 30.314 on 49 degrees of freedom
Residual deviance: 27.095 on 48 degrees of freedom
AIC: 31.10

Number of Fisher Scoring iterations: 5

The model uses fixed coefficient β = 2 for connectivity log S. In R, this can be
achieved using offset. Consequently, only two coefficients are estimated. The
response variable p is binary (0 or 1), so we need not give the binomial denomi-
nator. The logistic function is the default link function in binomial models, and
need not be specified explicitly.

The parameters of the incidence function are:

5

> beta <- coef(mod)

> (xhat <- beta[2])

log(A)
0.47088

> (A0 <- min(A[p > 0]))

[1] 0.002

> (ey <- exp(-beta[1]))

(Intercept)
0.55444

> (etilde <- A0^xhat)

log(A)
0.053595

> (ytilde <- ey/etilde)

(Intercept)
10.345

The real values used in simulation were x = 0.41, e = 0.063, and y = 3.912 =
15.29.

In plotting the results, it is natural to use colour to show the predicted
incidence. The graph (Fig. 2) uses heat colours: the redder, the higher the
incidence. R knows several other palettes that can be used.

3.3 Fitting data from two surveys

Fitting a model for two (or more) surveys is nearly as simple as fitting a snap-
shot. With several surveys, the response variable is the number (integer) of
observed occupancies, and binomial denominator (another integer) is the num-
ber of surveys. In principle, the denominator can vary among observations,
but this is hardly sensible in incidence function models. However, the observed
proportional incidences must be used in weighting the patches when assessing
connectivity.

In the following, we combine the two snapshots p and p2 into one sum vector
P. Distances weighted by patch sizes were already calculated above and saved
to edis, and we need only weight these with observed frequencies when getting
the connectivity. The definition of the GLM is slightly more complicated, too.
When binomial denominator is larger than one, the response variable should
be given as a two-column matrix, with success (occupied) and failure (empty)
counts as columns.

> P <- p + p2

> S <- rowSums(sweep(edis, 2, P/2, "*"))

> mod2 <- glm(cbind(P, 2 - P) ~ offset(2 * log(S)) +

+ log(A), family = binomial)

> summary(mod2)

6

Figure 2 Fitted incidences.
> col <- heat.colors(100)[99 * (1 - fitted(mod)) + 1]

> plot(x.crd, y.crd, asp = 1, xlab = "", ylab = "", pch = 21,

+ col = "blue", bg = col, cex = sqrt(A * 5))

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3 4 5

0
1

2
3

4
5

6

Call:
glm(formula = cbind(P, 2 - P) ~ offset(2 * log(S)) + log(A),

family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.0874 -0.0432 0.4266 0.7006 2.5012

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.0701 0.5590 0.13 0.900
log(A) 0.4148 0.1692 2.45 0.014

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 59.245 on 49 degrees of freedom
Residual deviance: 53.166 on 48 degrees of freedom
AIC: 65.48

7

Number of Fisher Scoring iterations: 5

The incidence function parameters can be found in the same way as above:

> beta <- coef(mod2)

> xhat <- beta[2]

> ey <- exp(-beta[1])

> etilde <- min(A[P > 0])^xhat

> ytilde <- ey/etilde

> par <- c(xhat, etilde, ytilde)

> names(par) <- c("x", "e", "y")

> par

x e y
0.41482 0.06143 15.17674

3.4 Separating e and y with two surveys

With two consecutive surveys, it is possible to estimate the parameter y from
the number of transitions T between two surveys. Transition is an empty patch
becoming occupied, or an occupied patch becoming empty. The estimate ỹ can
be found as the root of the equation (Hanski, 1999):

R∑
i=1

1
S2

i + ỹ

[
S2

i (1− pi) +
êypi

Ax̂
i

]
= T (13)

After solving ỹ, the remaining parameter can be estimated as ẽ = êy/ỹ. R
provides function uniroot for solving equations. We have to write a function to
be minimized. It is most practical to define the function with only the estimated
parameter, and wish that the function will find other needed parameters in the
local scope. The only extra parameter needed is the fork (0, 50) where we search
the root. It is not safe to use variable name T, as it may be taken as a shortcut
for logical TRUE.

> f <- function(x) sum(1/(S * S + x) * (S * S * (1 -

+ pmean) + ey * pmean/A^xhat)) - Tpar

> (Tpar <- sum(p != p2))

[1] 6

> beta <- coef(mod2)

> xhat <- beta[2]

> ey <- exp(-beta[1])

> pmean <- P/2

> (sol <- uniroot(f, c(0, 50)))

$root
[1] 13.048

$f.root
[1] -7.394e-07

8

$iter
[1] 8

$estim.prec
[1] 6.1035e-05

> etilde <- ey/sol$root

> par2 <- c(xhat, etilde, sol$root)

> names(par2) <- c("x", "e", "y")

> rbind(par, par2)

x e y
par 0.41482 0.061430 15.177
par2 0.41482 0.071452 13.048

3.5 Covariates

It is trivial to add covariates to a GLM, but it is much more difficult to un-
derstand what this means in terms of colonization and extinction probabilities.
Hanski (1999) discusses in detail how to do this in a structured way, but fitting
models becomes more intricate (although fitting non-linear maximum likelihood
models directly is easy in R). Here I inspect the meaning of adding covariates
in a GLM model.

There are no real covariates that can be used in our data, since the data really
are generated with a completely defined simulation model with no covariates.
Therefore I use random data in the following examples.

The first case concerns adding a class covariate with two levels:

> Class <- factor(sample(c("A", "B"), length(p), replace = TRUE))

> modc <- glm(p ~ offset(2 * log(S)) + log(A) + Class -

+ 1, family = binomial)

> coef(modc)

log(A) ClassA ClassB
0.50603 0.56676 1.01305

Term -1 in the model formula usually removes the intercept (which cannot
be done), but with class covariate it just parametrizes the model so that the
coefficients give fitted averages of factor levels. Now these factor coefficients
are the estimates of − log(êy) for each factor level, and we should break them
separately for the estimate of e and y. Parameter e is site-specific and influences
extinction probability (eq. 2), but parameter y influences the connectivity (eq.
3). It is natural to think that y should be constant for both factor levels, but
the differences should be shown in e. This cannot be done easily, except for
two surveys (section 3.4). Further, this fitting assumes that another site specific
variable x is constant and independent of the covariate. We can relax this
assumption with the following model:

> modc <- glm(p ~ offset(2 * log(S)) + Class/log(A) -

+ 1, family = binomial)

> coef(modc)

9

ClassA ClassB ClassA:log(A) ClassB:log(A)
-0.16864 2.81093 0.20055 0.95425

This fits a nested model and the coefficients give separate estimates of both x̂
and − log(êy) for factor levels. There still remains the problem of separating e
and y.

The model is just as simple to define with a continuous covariate:

> vec <- runif(length(p))

> modv <- glm(p ~ offset(2 * log(S)) + log(A) + vec,

+ family = binomial)

However, now − log(êy) is dependent on the value of the continuous covariate,
and typically is different for all observations:

> (b <- coef(modv))

(Intercept) log(A) vec
-0.20779 0.47955 1.58994

> ey <- exp(-(b[1] + b[3] * vec))

Separating e and y may again be impossible or painful.
The interaction term with log(A) should be defined as:

> modv <- glm(p ~ offset(2 * log(S)) + log(A) * vec,

+ family = binomial)

Now the estimate of x̂ is dependent on the covariate, too:

> (b <- coef(modv))

(Intercept) log(A) vec log(A):vec
0.534362 0.689839 0.040317 -0.450945

> xhat <- b[2] + b[4] * vec

> ey <- exp(-(b[1] + b[3] * vec))

An alternative is to keep the intercept − log(êy) constant, but let x̂ vary with
the covariates. I show below how this can be done for continuous and factor
covariates, but analyse in more detail only the latter case:

> modx <- glm(p ~ offset(2 * log(S)) + log(A) * vec -

+ vec, family = binomial)

> coef(modx)

(Intercept) log(A) log(A):vec
0.55489 0.69441 -0.46030

> modx <- glm(p ~ offset(2 * log(S)) + Class/log(A) -

+ Class, family = binomial)

> (b <- coef(modx))

(Intercept) ClassA:log(A) ClassB:log(A)
0.58606 0.41923 0.49246

10

> A0 <- min(A[p > 0])

> (etilde <- A0^b[2:3])

ClassA:log(A) ClassB:log(A)
0.073876 0.046866

> (ytilde <- exp(-b[1])/etilde)

ClassA:log(A) ClassB:log(A)
7.5331 11.8746

This fits a model where x̂, ẽ and ỹ are dependent on the covariate, but ẽ×ỹ = êy
is independent of the covariate. This is simpler, but not very as realistic as the
previous more complete models.

The problems in model fitting concern only expressing the site effects with
primitive parameters e and y. The fitted models and their confidence limits may
be appropriate, although we are unable to translate the GLM parametrization
into coefficients e and y. We can assess the “significance” of covariates in the
usual way:

> anova(modc, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: p

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 50 31.8
Class 2 1.5 48 30.3 0.5
Class:log(A) 2 5.1 46 25.2 0.1

Since we used a random covariate, its effect should be non-significant.

3.6 Estimating α

We have analysed incidence function as a model with three estimated parameters
x, e, and y. However, there is also a fourth parameter, α of eq. 3. Parameter α
is specific to species, and it must be estimated separately. After estimating α,
it is fixed, and the other parameters are estimated conditionally to the fixed α.

Parameter α is the inverse of average dispersal length, and typically it is
estimated by studying the dispersal patterns. Hanski (1999) discusses various
ways of estimating α before fitting the incidence function model. However, we
can estimate α from the snapshot of site occupancies. This may be very in-
accurate and misleading, but can be used as a last resort in lack of biological
observations on the origin of occupied patches. In principle, fitting is extremely
simple: we try with different values of α and select the value giving the best

11

fitting incidence function model. This means that we have to recalculate con-
nectivities Si for each value of α making the procedure so long that it is best to
write a separate function for the task. The criterion value of the function is the
deviance of the fitted GLM, and we can use R function optimize to find the
best value of α:

> alphascan <- function(alpha, d, A, p) {

+ edis <- as.matrix(exp(-alpha * d))

+ diag(edis) <- 0

+ edis <- sweep(edis, 2, A, "*")

+ S <- rowSums(edis[, p > 0])

+ mod <- glm(p ~ offset(2 * log(S)) + log(A), family = binomial)

+ deviance(mod)

+ }

> (sol <- optimize(alphascan, c(0.1, 5), d = d, p = p,

+ A = A))

$minimum
[1] 1.5491

$objective
[1] 26.222

We scanned the interval α = 0.1 . . . 5, and got the estimate α̂ = 1.549 with
deviance 26.22. The real value used in simulation was α = 1 with deviance
27.1. The difference of deviances is 0.8736 which has p = 0.35 in Chi-square
distribution with one degree of freedom. Fig. 3 gives the profile deviance for α:
the deviance obtained with different levels of α. The deviance is approximately
distributed as Chi-squared, and we can use the profile deviance for assessing the
confidence intervals of α. More detailed discussion can be found consulting R
documentation of functions profile and confint.

3.7 Confidence intervals of estimates

The standard errors of GLM estimates are directly available:

> (tmp <- summary(mod2)$coefficients)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.07010 0.55898 0.12541 0.900202
log(A) 0.41482 0.16915 2.45239 0.014191

Approximate 95 % confidence intervals are the parameter estimate ±2 times
standard error:

> tmp[1, 1] + c(-2, 2) * tmp[1, 2]

[1] -1.0479 1.1881

> tmp[2, 1] + c(-2, 2) * tmp[2, 2]

[1] 0.076522 0.753124

12

Figure 3 Profile deviance of α. The horizontal line limits the deviance which
deviates less than the critical level corresponding to p = 0.05 in Chi-square
distribution with one d.f. and belong to the 95 % confidence interval of α. The
vertical lines show the best fitting (solid) and real values (dotted line) of α.
> nseq <- 21

> alpha <- seq(0.1, 5, length = nseq)

> prof <- numeric(nseq)

> for (i in 1:nseq) prof[i] <- alphascan(alpha[i], d = d,

+ A = A, p = p)

> plot(alpha, prof, ylab = "Deviance", type = "l", col = "blue",

+ lwd = 3)

> abline(v = sol$minimum)

> abline(v = 1, lty = 2)

> abline(h = sol$objective + qchisq(0.95, 1))

0 1 2 3 4 5

30
35

40

alpha

D
ev

ia
nc

e

13

or more cryptically but efficiently using outer:

> tmp[, 1] + t(outer(c(-2, 2), tmp[, 2]))

[,1] [,2]
(Intercept) -1.047863 1.18806
log(A) 0.076522 0.75312

These confidence limits are based on the assumption of asymptotic normality of
parameter estimates. More robust estimates are based on profile deviance, and
can be found using function confint.glm (and implicitly profile.glm) of the
MASS library (Venables and Ripley, 2002):

> library(MASS)

> confint(mod2)

Waiting for profiling to be done...
2.5 % 97.5 %

(Intercept) -0.95580 1.2501
log(A) 0.08543 0.7561

We already looked at the profile deviance for α (section 3.6). However, if we
estimate α from the data, the standard errors will be biased in GLM, since they
are based on fixed α.

The standard errors are for the GLM parameters x̂ (log(A)) and − log(êy)
((Intercept)). There is no easy way of estimating the standard errors of real
parameters e and y from the standard error of their product.

Standard function predict can be used to find the standard errors and
confidence limits of fitted incidences.

4 Simulation

For simulation, the incidence function model must be expressed in terms of colo-
nization and extinction probabilities (eq. 1) for each site. Therefore parameters
e and y must be separated from each other after fitting the model. The following
pseudocode describes the simulation:

• Set Ai, dij , α, e, y, x, pi(t) ∈ {0, 1}

• Ei ← eA−x
i

• for t in Time:

1. Si(t)←
∑

j 6=i exp(−αdij)Aj × pj(t)

2. Ci(t)←
S2

i (t)
S2

i (t) + y

3. for i in Patches:

(a) if pi(t) ∈ {0}: fill at probability Ci(t)
(b) if pi(t) ∈ {1}: kill at probability [1− Ci(t)]Ei

14

Parameters indexed with time (t) change in each simulation step. This
means that extinction rate Ei and

∑
j 6=i exp(−αdij)Aj remain constant and

can be solved once before simulation, but Si(t), Ci(t) and p(t) change. The
fixed parameters are the observed patch sizes Ai, patch distances dij , species
dispersion parameter α, incidence function parameters e, y, x, and starting val-
ues of occupancies pi.

An R implementation of a single simulation step is:

> metastep <- function(p, edis, E, y) {

+ p <- p > 0

+ if (any(p)) {

+ S <- rowSums(edis[, p, drop = FALSE])

+ C <- S^2/(S^2 + y)

+ cond <- ifelse(p, (1 - C) * E, C)

+ p <- ifelse(runif(length(p)) < cond, !p, p)

+ }

+ as.numeric(p)

+ }

Using current values of model parameters and previously calculated matrix edis,
a single step can be run using:

> tmp <- p

> par

x e y
0.41482 0.06143 15.17674

> E <- pmin(par[2]/A^par[1], 1)

> tmp <- metastep(tmp, edis, E, par[3])

A simulation run of 100 timesteps is:

> occup <- matrix(0, nrow = length(p), ncol = 100 + 1)

> occup[, 1] <- p

> for (t in 1:100) occup[, t + 1] <- metastep(occup[,

+ t], edis, E, par[3])

Figure 4 demonstrates how to plot the simulation history, figure 5 compares
simulated incidences against snapshot fitting.

5 Metacommunity capacity

Metapopulation capacity describes the ability of a patch network to sustain a
metapopulation (Hanski and Ovaskainen, 2000). It is defined as the largest
(“leading”) eigenvalue λM of matrix M with elements

mij =

{
Ai exp(−αdij)Aj if i 6= j

0 if i = j
(14)

Here the latter part exp(−αdij)Aj contains the familiar component of the con-
nectivity (eq. 3), or the rate at which patch j colonizes patch i. The first

15

Figure 4 Simulated population size.
> plot(colSums(occup), type = "l", col = "blue", lwd = 2,

+ xlab = "Time", ylab = "Population Size")

> abline(h = mean(colSums(occup)), col = "red", lty = 2)

0 20 40 60 80 100

34
36

38
40

42
44

46

Time

P
op

ul
at

io
n

S
iz

e

component, Ai, is the expected lifetime of colonized patch assuming that e = 1
and x = 1 in E = e/Ax (eq. 4). By clever selection of unit of patch size, we
can always make e = 1, and it makes sense to assume that extinction rate is
linearly related to A so that x = 1. However, the absolute value of λM will
be dependent on the units of measurement, both for the patch sizes Ai and Aj

(which might be different!) and for distance d. This means that we cannot say
when absolute values of λM are “large” or “small”, but we can compare different
patch networks of the same species, or the effect of changes in patch networks.

Metapopulation capacity is almost trivial to compute in R using the old
distance matrix d and using α = 1:

> alpha <- 1

> M <- outer(A, A) * as.matrix(exp(-alpha * d))

> tmp <- eigen(M)

Function eigen finds all eigenvalues, but we need only the first one and the
associated squared eigenvector.

> lambda.M <- tmp$value[1]

> lambda.vec <- tmp$vector[, 1]^2

16

Figure 5 Simulated incidences against fitted incidence.
> plot(rowMeans(occup), fitted(mod), pch = 21, col = "red",

+ bg = "yellow", xlab = "Simulated incidence", ylab = "Fitted incidence")

> abline(0, 1, col = "blue")

● ●●●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●
●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Simulated incidence

F
itt

ed
 in

ci
de

nc
e

The estimated metapopulation capacity is λM = 13.07. However, we have no
idea if this is large or small, since changing the units of A would change these
values.

The following code studies the change in metapopulation capacity when we
remove patches in random order. The data are (or may be) ordered, so we have
to use sample to order them randomly, but we will use the same ordering in
all analyses, and we can reuse matrix M calculated previously. The resulting
capacity profile is shown in Fig 6.

> N <- length(A)

> take <- sample(N)

> tmp <- M[take, take]

> cap <- numeric(N)

> for (i in 1:N) cap[i] <- eigen(tmp[i:N, i:N])$value[1]

The analysis (Fig 6) is based only one random ordering, and different runs
would yield different capacity profiles. Metapopulation capacity seems to drop
at abrupt steps: The removal of an important patch decreases capcity sharply,
but many other patches hardly influence the capacity. The critical capacity for
survival can be assessed with simulation.

17

Figure 6 Metapopulation capacity as a function of number of randomly selected
patches.
> plot(N:1, cap, xlab = "Number of Patches", ylab = "Metapopulation Capacity",

+ type = "b", col = "red", pch = 21, bg = "yellow")

●●

●●

●●

●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●

0 10 20 30 40 50

0
2

4
6

8
10

12

Number of Patches

M
et

ap
op

ul
at

io
n

C
ap

ac
ity

The eigen function produces normalized eigenvectors in R. This means that
the sum of squared values is unity for each eigenvector. We saved above these
squared values in vector lambda.vec, and these give directly the proportional
contribution of each patch to the total capacity:

> round(lambda.vec, 3)

[1] 0.380 0.177 0.157 0.173 0.005 0.014 0.011 0.066 0.004 0.000
[11] 0.001 0.000 0.000 0.001 0.002 0.002 0.000 0.001 0.002 0.000
[21] 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
[31] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
[41] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The contributions distribute very unevenly. The most important patch con-
tributes 38 % to the total capacity and five most important patches contribute
95.3 % of the total capacity. The metapopulation capacities of the network of
five best patches and all other patches are:

> take <- rev(order(lambda.vec))

> eigen(M[take[1:5], take[1:5]])$value[1]

18

[1] 12.452

> eigen(M[take[6:N], take[6:N]])$value[1]

[1] 0.68921

Figure 7 continues the simulation of 5 separately for the network of five best
and the remaining 45 poorer patches. The steps in 7 look complicated, but they
just divide the original data into two subsets, and repeat the analysis of Fig. 5
for each.

6 About this document

This document was created automatically using the Sweave tool in R. The
basic document was formatted in LATEX, but the original document contained
only R input, and the output and graphics were added when processing the
source file with Sweave (this also implies that all code was tested for syntactical
correctness). If you change or replace the source file fritty.rda, output will
be adjusted to the new data (however, I have not yet debugged the source file
so that some discrepancies may be left). In addition, many analyses were based
on simulation, and their output will be different each time you generate a new
version of the document.

A Appendix: Data set

> fritty

x.crd y.crd A p p2
1 2.756198 4.33625 4.6000 1 1
2 2.063587 3.85860 2.7000 1 1
3 2.876978 4.70939 1.8000 1 1
4 2.481195 4.21329 1.6000 1 1
5 4.220646 5.94800 1.5000 1 1
6 3.662137 4.94735 0.9000 1 0
7 1.626086 3.25092 0.9000 1 1
8 2.644281 4.43233 0.8300 1 1
9 3.320014 2.74123 0.8000 1 1
10 1.236315 1.76146 0.5000 0 0
11 3.391192 2.41816 0.4800 1 1
12 2.455908 1.97514 0.4000 1 1
13 2.503299 1.72068 0.3300 1 1
14 2.157133 2.47000 0.3000 1 1
15 1.592676 3.91793 0.3000 1 1
16 1.811007 3.75921 0.2500 1 1
17 0.020215 2.41252 0.2500 0 0
18 3.232148 5.67419 0.2400 1 1
19 1.956237 3.92153 0.1900 1 1
20 0.904536 0.81989 0.1800 1 1
21 2.311231 3.88864 0.1600 1 1

19

Figure 7 Simulation results separately for the sites with highest metapopulation
capacity (“5 Best”) and other 45 sites (“Rest”). For 100 first time steps, the
simulation is identical to that in Fig. 5, but is displayed separately for the
subset of patches, but after that (vertical line), the simulation was continued
separately for the subsets.
> best <- matrix(0, nrow = 5, ncol = 101)

> rest <- matrix(0, N - 5, ncol = 101)

> best[, 1] <- occup[take[1:5], 101]

> rest[, 1] <- occup[take[6:N], 101]

> i <- take[1:5]

> for (t in 1:100) best[, t + 1] <- metastep(best[, t],

+ edis[i, i], E[i], par[3])

> i <- take[6:N]

> for (t in 1:100) rest[, t + 1] <- metastep(rest[, t],

+ edis[i, i], E[i], par[3])

> bestline <- c(colSums(occup[1:5,]), colSums(best[,

+ -1]))

> restline <- c(colSums(occup[6:N,]), colSums(rest[,

+ -1]))

> matplot(1:201, cbind(bestline, restline), xlab = "Time",

+ ylab = "Occupied patches", type = "l", lwd = 2,

+ lty = 1)

> abline(v = 101)

> legend(150, 0.8 * max(restline), c("5 Best", "Rest"),

+ lty = 1, col = 1:2, lwd = 2)

0 50 100 150 200

0
10

20
30

40

Time

O
cc

up
ie

d
pa

tc
he

s

5 Best
Rest

20

22 3.223386 2.97488 0.1500 0 0
23 2.493993 1.93321 0.1400 1 1
24 1.640751 3.73955 0.1300 1 1
25 1.289309 1.85776 0.1200 1 1
26 2.105513 2.58391 0.1100 1 1
27 1.886316 2.20186 0.1000 1 1
28 1.989523 3.46758 0.1000 1 0
29 2.960682 4.69625 0.0800 1 1
30 0.172328 0.49156 0.0750 0 0
31 2.851745 5.01974 0.0660 1 1
32 2.843055 4.54838 0.0600 1 1
33 0.837135 2.33413 0.0480 1 0
34 1.470259 1.28972 0.0450 0 0
35 3.690926 4.55332 0.0430 1 1
36 4.685348 4.20734 0.0400 0 0
37 2.953328 1.83039 0.0300 1 1
38 2.169728 3.94790 0.0300 1 1
39 3.006825 2.66304 0.0230 1 1
40 2.424058 4.60411 0.0200 1 1
41 2.555626 4.67892 0.0200 1 1
42 2.575048 4.45705 0.0150 1 1
43 2.490998 1.64436 0.0100 1 0
44 1.146973 1.16018 0.0100 0 0
45 2.431145 4.84117 0.0100 1 1
46 1.736047 3.55126 0.0100 1 1
47 2.587934 4.65960 0.0040 1 1
48 3.242839 5.03358 0.0020 1 0
49 0.102708 0.09210 0.0012 0 0
50 1.198278 3.37319 0.0012 0 1

References

Hanski, I. 1999. Metapopulation Ecology. Oxford UP.

Hanski, I., M. Kuussaari, and M. Nieminen. 1994. Metapopulation structure
and migration in buttefly Melitaea cinxia. Ecology 75:747–762.

Hanski, I. and O. Ovaskainen. 2000. The metapopulation capacity of a frag-
mented landscape. Nature 404:755–758.

McCullagh, P. and J. A. Nelder. 1989. Generalized linear models. 2nd edition,
Chapman and Hall.

Venables, B. and B. D. Ripley. 2002. Modern applied statistics with S. 4th
edition, Springer.

21

	The incidence function model
	Preliminaries: Data and plotting
	Fitting
	Theory
	Fitting a snapshot in R
	Fitting data from two surveys
	Separating e and y with two surveys
	Covariates
	Estimating
	Confidence intervals of estimates

	Simulation
	Metacommunity capacity
	About this document
	Appendix: Data set

