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Abstract

This vignette illustrates the use of the metaRNASeq package to combine data
from multiple RNA-seq experiments. Based both on simulated and real publicly
available data, it also explains the way the p-value data provided in the package
have been obtained.
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1 Introduction

High-throughput sequencing (HTS) data, such as RNA-sequencing (RNA-seq) data, are
increasingly used to conduct differential analyses, in which gene-by-gene statistical tests
are performed in order to identify genes whose expression levels show systematic covari-
ation with a particular condition, such as a treatment or phenotype of interest. Due to
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their large cost, however, only few biological replicates are often considered in each exper-
iment leading to a low detection power of differentially expressed genes. For this reason,
analyzing data arising from several experiments studying the same question can be a
useful way to increase detection power for the identification of differentially expressed
genes.

The metaRNASeq package implements two p-value combination techniques (inverse
normal and Fisher methods); see [4] for additional details. There are two fundamental
assumptions behind the use of these p-value combination procedures: first, that p-values
have been obtained the same way for each experiment (i.e., using the same model and
test); and second, that they follow a uniform distribution under the null hypothesis. In
this vignette, we illustrate these p-value combination techniques after obtaining p-values
for differential expression in each individual experiment using the DESeq2 Bioconduc-
tor package [1]. Count data are simulated using the sim.function provided in the
metaRNASeq package; see section 2 for additional detail.

2 Simulation study

To begin, we load the necessary packages and simulation parameters:

> library(metaRNASeq)

> data(param)

> dim(param)

[1] 26408 3

> data(dispFuncs)

These simulation parameters include the following information:

• param: Matrix of dimension (26408 × 3) containing mean expression in each of
two conditions (here, labeled “condition 1” and “condition 2”) and a logical vector
indicating the presence or absence of differential expression for each of 26,408 genes

• dispFuncs: List of length 2, where each list is a vector containing the two estimated
coefficients (α0 and α1) for the gamma-family generalized linear model (GLM) fit
by DESeq (version 1.8.3) describing the mean-dispersion relationship for each of
the two real datasets considered in [4]. These regressions represent the typical
relationship between mean expression values µ and dispersions α in each dataset,
where the coefficients α0 and α1 are found to parameterize the fit as α = α0+α1/µ.

These parameters were calculated on real data sets from two human melanoma cell
lines [5], corresponding to two different studies performed for the same cell line compar-
ison, with two biological replicates per cell line in the first and three per cell line in the
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second. These data are presented in greater detail in [5] and [2], and are freely available
in the Supplementary Materials of the latter.

Once parameters are loaded, we simulate data. We use the set.seed function to
obtain reproducible results.

> set.seed(123)

> matsim <- sim.function(param = param, dispFuncs = dispFuncs)

> sim.conds <- colnames(matsim)

> rownames(matsim) <- paste("tag", 1:dim(matsim)[1],sep="")

> dim(matsim)

[1] 26408 16

The simulated matrix data contains 26, 408 genes and 4 replicates per condition
per study. It is possible to change the number of replicates in each study using either
the nrep argument or the classes argument. Using nrep simulates the same number
of replicates per condition per study. In order to simulate an unbalanced design, the
classes argument may be used. For example, setting

classes = list(c(1,2,1,1,2,1,1,2),c(1,1,1,2,2,2,2))

leads to 5 and 3 replicates in each condition for the first study, and 3 and 4 replicates
in each condition in the second.

3 Individual analyses of the two simulated data sets

Before performing a combination of p-values from each study, it is necessary to perform
a differential analysis of the individual studies (using the same method). In the following
example, we make use of the DESeq2 package to obtain p-values for differential analyses
of each study independently; however, we note that other differential analysis methods
(e.g., edgeR or baySeq) could be used prior to the meta analysis.

3.1 Differential analysis of each individual study with DESeq2

Inputs to DEseq2 methods can be extracted with extractfromsim for each individual
study whose name appears in the column names of matsim, see the following example
for study1 and study2.

> colnames(matsim)

[1] "study1cond1" "study1cond1" "study1cond1" "study1cond1"

[5] "study1cond2" "study1cond2" "study1cond2" "study1cond2"

[9] "study2cond1" "study2cond1" "study2cond1" "study2cond1"

[13] "study2cond2" "study2cond2" "study2cond2" "study2cond2"
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> simstudy1 <- extractfromsim(matsim,"study1")

> head(simstudy1$study)

rep1 rep2 rep3 rep4 rep5 rep6 rep7 rep8

tag1 338 401 428 565 476 545 407 367

tag2 919 849 1397 1541 917 1268 1596 1020

tag3 127 166 235 276 133 206 238 127

tag4 224 353 426 252 881 717 889 808

tag5 4 4 8 6 9 5 10 9

tag6 108 61 39 22 158 97 16 107

> simstudy1$pheno

study condition

rep1 study1 untreated

rep2 study1 untreated

rep3 study1 untreated

rep4 study1 untreated

rep5 study1 treated

rep6 study1 treated

rep7 study1 treated

rep8 study1 treated

> simstudy2 <- extractfromsim(matsim,"study2")

Differential analyses for each study are then easily performed using the DESeq-

DataSetFromMatrix method.

> if (requireNamespace("DESeq2", quietly = TRUE)) {

+ dds1 <- DESeq2::DESeqDataSetFromMatrix(countData = simstudy1$study,

+ colData = simstudy1$pheno,design = ~ condition)

+ res1 <- DESeq2::results(DESeq2::DESeq(dds1))

+ dds2 <- DESeq2::DESeqDataSetFromMatrix(countData = simstudy2$study,

+ colData = simstudy2$pheno,design = ~ condition)

+ res2 <- DESeq2::results(DESeq2::DESeq(dds2))

+ }

We recommand to store both p-value and Fold Change results in lists in order to
perform meta-analysis and keep track of the potential conflicts (see section 5)

> if (exists("res1") && exists("res2"))

+ {

+ rawpval <- list("pval1"=res1[["pvalue"]],"pval2"=res2[["pvalue"]])

+ FC <- list("FC1"=res1[["log2FoldChange"]],"FC2"=res2[["log2FoldChange"]])
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+ } else {

+ data(rawpval)

+ data(FC)

+ }

Differentially expressed genes in each individual study can also be marked in a matrix
DE:

> if (exists("res1") && exists("res2"))

+ {

+ adjpval <- list("adjpval1"=res1[["padj"]],"adjpval2"=res2[["padj"]])

+ } else {

+ data(adjpval)

+ }

> studies <- c("study1", "study2")

> DE <- mapply(adjpval, FUN=function(x) ifelse(x <= 0.05, 1, 0))

> colnames(DE)=paste("DE",studies,sep=".")

DE returns a matrix with 1 for genes identified as differentially expressed and 0
otherwise (one column per study)

Since the proposed p-value combination techniques rely on the assumption that p-
values follow a uniform distribution under the null hypothesis, it is necesary to check
that the histograms of raw-pvalues reflect that assumption:

> par(mfrow = c(1,2))

> hist(rawpval[[1]], breaks=100, col="grey", main="Study 1", xlab="Raw p-values")

> hist(rawpval[[2]], breaks=100, col="grey", main="Study 2", xlab="Raw p-values")

The peak near 0 corresponds to differentially expressed genes, no other peak should
appear. Sometimes another peak may appear due to genes with very low values of
expression which often lead to an enrichment of p-values close to 1 as they take on
discrete values. As such genes are unlikely to display evidence for differential expression,
it is recommended to perform an independent filtering. The application of such a filter
typically removes those genes contributing to a peak of p-values close to 1, leading to
a distribution of p-values under the null hypothesis more closely following a uniform
distribution. As the proposed p-value combination techniques rely on this assumption,
it is sometimes necessary to independently filter genes with very low read counts.

In this example the results function of DESeq2 performs an automatic independent
filtering. If a row is filtered by independent filtering, then only the adjusted p-value will
be set to NA, and the graphic of raw p-values does not change. In order to have a
distribution of raw p-values under the null hypothesis following a uniform distribution,
we must manually set the corresponding raw p-values to NA.

> filtered <- lapply(adjpval, FUN=function(pval) which(is.na(pval)))

> rawpval[[1]][filtered[[1]]]=NA

> rawpval[[2]][filtered[[2]]]=NA
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Figure 1: Histograms of raw p-values for each of the individual differential analyses
performed using the DESeq2 package.

To confirm that the raw p-values under the null hypothesis are roughly uniformly dis-
tributed, we may also inspect histograms of the raw p-values from each of the individual
differential analyses (see Figure 2):

> par(mfrow = c(1,2))

> hist(rawpval[[1]], breaks=100, col="grey", main="Study 1",

+ xlab="Raw p-values")

> hist(rawpval[[2]], breaks=100, col="grey", main="Study 2",

+ xlab="Raw p-values")

4 Use of p-value combination techniques

The code in this section may be used independently from the previous section if p-values
from each study have been obtained using the same differential analysis test between
the different studies. Vectors of p-values must have the same length; rawpval is a
list (or data.frame) containing the vectors of raw p-values obtained from the individual
differential analyses of each study.

The p-value combination using the Fisher method may be performed with the fish-

ercomb function, and the subsequent p-values obtained from the meta-analysis may be
examined (Figure 3, left):
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Figure 2: Histograms of raw p-values for each of the individual differential analyses
performed using the independent filtering from DESeq2 package.

> fishcomb <- fishercomb(rawpval, BHth = 0.05)

> hist(fishcomb$rawpval, breaks=100, col="grey", main="Fisher method",

+ xlab = "Raw p-values (meta-analysis)")

The use of the inverse normal combination technique requires the choice of a weight
for each study. In this example, we choose nrep=8, since 8 replicates had been simulated
in each study. As before, we may examine a histogram of the subsequent p-values
obtained from the meta-analysis (Figure 3, right).

> invnormcomb <- invnorm(rawpval,nrep=c(8,8), BHth = 0.05)

> hist(invnormcomb$rawpval, breaks=100, col="grey",

+ main="Inverse normal method",

+ xlab = "Raw p-values (meta-analysis)")

Finally, we suggest summarizing the results of the individual differential analyses as
well as the differential meta-analysis (using the Fisher and inverse normal methods) in
a data.frame:

> DEresults <- data.frame(DE,

+ "DE.fishercomb"=ifelse(fishcomb$adjpval<=0.05,1,0),

+ "DE.invnorm"=ifelse(invnormcomb$adjpval<=0.05,1,0))

> head(DEresults)
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Figure 3: (Left) Histogram of raw p-values obtained after a meta-analysis of all studies,
with p-value combination performed using the Fisher method. (Right) Histogram of
raw p-values obtained after a meta-analysis of all studies, with p-value combination
performed using the inverse normal method.

DE.study1 DE.study2 DE.fishercomb DE.invnorm

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 1 1 1 1

5 0 NA 0 0

6 0 0 0 0

5 Treatment of conflicts in differential expression

As pointed out in [4], it is not possible to directly avoid conflicts between over- and
under- expressed genes in separate studies that appear in differential meta-analyses of
RNA-seq data. We thus advise checking that individual studies identify differential
expression in the same direction (i.e., if in one study, a gene is identified as differentially
over-expressed in condition 1 as compared to condition 2, it should not be identified as
under-expressed in condition 1 as compared to condition 2 in a second study). Genes
displaying contradictory differential expression in separate studies should be removed
from the list of genes identified as differentially expressed via meta-analysis.

We build a matrix signsFC gathering all signs of fold changes from individual studies.

> signsFC <- mapply(FC, FUN=function(x) sign(x))
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> sumsigns <- apply(signsFC,1,sum)

> commonsgnFC <- ifelse(abs(sumsigns)==dim(signsFC)[2], sign(sumsigns),0)

The vector commonsgnFC will return a value of 1 if the gene has a positive log2 fold
change in all studies, -1 if the gene has a negative log2 fold change in all studies, and 0
if contradictory log2 fold changes are observed across studies (i.e., positive in one and
negative in the other). By examining the elements of commonsgnFC, it is thus possible
to identify genes displaying contradictory differential expression among studies.

> unionDE <- unique(c(fishcomb$DEindices,invnormcomb$DEindices))

> FC.selecDE <- data.frame(DEresults[unionDE,],do.call(cbind,FC)[unionDE,],

+ signFC=commonsgnFC[unionDE], DE=param$DE[unionDE])

> keepDE <- FC.selecDE[which(abs(FC.selecDE$signFC)==1),]

> conflictDE <- FC.selecDE[which(FC.selecDE$signFC == 0),]

> dim(FC.selecDE)

[1] 1468 8

> dim(keepDE)

[1] 1252 8

> dim(conflictDE)

[1] 216 8

> head(keepDE)

DE.study1 DE.study2 DE.fishercomb DE.invnorm FC1

4 1 1 1 1 1.3953545

11 1 1 1 1 -0.9995552

22 1 1 1 1 -1.1846747

36 1 1 1 1 -3.0703646

55 0 1 1 1 -0.4229671

59 1 1 1 1 1.1465211

FC2 signFC DE

4 2.0827031 1 TRUE

11 -0.5666576 -1 TRUE

22 -0.9829686 -1 TRUE

36 -2.8604490 -1 TRUE

55 -1.0557672 -1 TRUE

59 1.3520264 1 TRUE

Note that out of all the conflicts, 150 represented genes were simulated to be truly
differentially expressed.

> table(conflictDE$DE)

FALSE TRUE

66 150
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6 IDD, IRR and Venn Diagram

Different indicators can be used to evaluate the performance of the meta-analysis, some
of them are described in [3] and returned by the function IDD.IRR. DE corresponds to the
number of differentially expressed genes. IDD (Integration Driven discoveries) returns
the number of genes that are declared DE in the meta-analysis that were not identified
in any of the individual studies alone, Loss the number of genes that are identified DE
in individual studies but not in meta-analysis. The Integration-driven Discovery Rate
(IDR) and Integration-driven Revision Rate (IRR) are the corresponding proportions of
IDD and Loss.

> fishcomb_de <- rownames(keepDE)[which(keepDE[,"DE.fishercomb"]==1)]

> invnorm_de <- rownames(keepDE)[which(keepDE[,"DE.invnorm"]==1)]

> indstudy_de <- list(rownames(keepDE)[which(keepDE[,"DE.study1"]==1)],

+ rownames(keepDE)[which(keepDE[,"DE.study2"]==1)])

> IDD.IRR(fishcomb_de,indstudy_de)

DE IDD Loss IDR IRR

1248.00 18.00 0.00 1.44 0.00

> IDD.IRR(invnorm_de ,indstudy_de)

DE IDD Loss IDR IRR

1217.00 22.00 35.00 1.81 2.85

In this example, the p-value combination technique with Fisher’s method gives 18
(1.44%) new genes and 0 (0%), are sidetracked. The inverse normal combination tech-
nique gives 22 (1.81%) new genes and 35 (2.85%), are sidetracked

To compare visually the number of differentially expressed genes in individual studies
or in meta-analysis, it is also possible to draw a Venn diagram, for example with the
VennDiagram package.

> if (require("VennDiagram", quietly = TRUE)) {

+ venn.plot<-venn.diagram(x = list(study1=which(keepDE[,"DE.study1"]==1),

+ study2=which(keepDE[,"DE.study2"]==1),

+ fisher=which(keepDE[,"DE.fishercomb"]==1),

+ invnorm=which(keepDE[,"DE.invnorm"]==1)),

+ filename = NULL, col = "black",

+ fill = c("blue", "red", "purple","green"),

+ margin=0.05, alpha = 0.6)

+ jpeg("venn_jpeg.jpg");

+ grid.draw(venn.plot);

+ dev.off();

+ }
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Figure 4: Venn Diagram comparing the list of DE genes at a 5% BH threshold obtained
by each individual study and p-value combination techniques

7 Session Info

> sessionInfo()

R version 4.1.1 Patched (2021-09-28 r80981)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Debian GNU/Linux 11 (bullseye)

Matrix products: default

BLAS: /srv/R/R-patched/build.21-09-30/lib/libRblas.so

LAPACK: /srv/R/R-patched/build.21-09-30/lib/libRlapack.so
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locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] grid stats graphics grDevices utils

[6] datasets methods base

other attached packages:

[1] VennDiagram_1.6.20 futile.logger_1.4.3

[3] metaRNASeq_1.0.7

loaded via a namespace (and not attached):

[1] Rcpp_1.0.7 locfit_1.5-9.4

[3] lattice_0.20-45 png_0.1-7

[5] Biostrings_2.60.2 utf8_1.2.2

[7] R6_2.5.1 GenomeInfoDb_1.28.4

[9] futile.options_1.0.1 stats4_4.1.1

[11] RSQLite_2.2.8 httr_1.4.2

[13] ggplot2_3.3.5 pillar_1.6.3

[15] zlibbioc_1.38.0 rlang_0.4.11

[17] rstudioapi_0.13 annotate_1.70.0

[19] blob_1.2.2 S4Vectors_0.30.1

[21] Matrix_1.3-4 splines_4.1.1

[23] BiocParallel_1.26.2 geneplotter_1.70.0

[25] RCurl_1.98-1.5 bit_4.0.4

[27] munsell_0.5.0 DelayedArray_0.18.0

[29] compiler_4.1.1 pkgconfig_2.0.3

[31] BiocGenerics_0.38.0 tidyselect_1.1.1

[33] KEGGREST_1.32.0 SummarizedExperiment_1.22.0

[35] tibble_3.1.5 GenomeInfoDbData_1.2.6

[37] IRanges_2.26.0 matrixStats_0.61.0

[39] XML_3.99-0.8 fansi_0.5.0

[41] crayon_1.4.1 dplyr_1.0.7

[43] bitops_1.0-7 xtable_1.8-4

[45] gtable_0.3.0 lifecycle_1.0.1

[47] DBI_1.1.1 formatR_1.11
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[49] magrittr_2.0.1 scales_1.1.1

[51] cachem_1.0.6 XVector_0.32.0

[53] genefilter_1.74.0 ellipsis_0.3.2

[55] vctrs_0.3.8 generics_0.1.0

[57] lambda.r_1.2.4 RColorBrewer_1.1-2

[59] tools_4.1.1 bit64_4.0.5

[61] Biobase_2.52.0 glue_1.4.2

[63] DESeq2_1.32.0 purrr_0.3.4

[65] MatrixGenerics_1.4.3 parallel_4.1.1

[67] fastmap_1.1.0 survival_3.2-13

[69] AnnotationDbi_1.54.1 colorspace_2.0-2

[71] GenomicRanges_1.44.0 memoise_2.0.0
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