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Abstract

This vignettes and related materials are designed for the staffs in the Saskatchewan
Health Quality Council who consider the problem of estimating a number of
missed cases on some identification process in a closed population with a certain
condition. This user’s manual will guide the staffs how to use the package ipeglim

based on our proposed methodology called an imprecise inferential framework.
Implementation of several existing statistical models is also included. All essentials on
the use of this package are presented for data analysis and simulation studies in the
forms of input arguments of given functions and their outputs.

Note: This vignettes includes auto-generated outputs produced from the R code
chunks inserted in this document; thus, numerical results and its graphs will be changed
whenever the new is provided.
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1 Brief Description of Research Objective

Background: Administrative health databases are considered as a source of an
epidemiological surveillance system for knowing the burden of a disease in a population of
interest. However, this system is not free from the problem of underreporting (i.e., a number
of reported cases is smaller than a number of actual cases) because of various reasons. Since
the size of true cases cannot be known, questions of “how useful our surveillance system is?”
or “Does the count include all records that should be included?” cannot be answered.

Quality Measurement – Completeness: Consider a hypothetical population with a
certain condition of size N and assume that there is some identification process (or reporting
system) for health researchers to know who is with that condition in the form of Table 1.
If this reporting system has a maximal performance (or capacity) that captures all cases
occurred in this population, the expectation exists that all cases will be reported without
any missed cases. In this sense, a measurement of completeness is defined as a proportion
of the number n of reported cases to the expected number N̂ of all cases so that a degree of
usefulness of this reporting system can be measured. Hence, the objective of this research is
to estimate N by estimating the size n0 of missed cases.

Table 1: Data Structure (Y may be a binary indicator or a frequency of some conditions)

PID Source 1 Source 2 Observed
P00001 Y1,1 Y2,1 Yes
P00002 Y1,2 Y2,2 Yes
P00003 Y1,3 Y2,3 Yes

...
...

...
...

P20332 Y1,n Y2,n Yes
Pxxxxx Y1,n+1 Y2,n+1 No
Pxxxxx Y1,n+2 Y2,n+2 No

...
...

... No
Pxxxxx Y1,N Y2,N No

Existing Statistical Methodology: Capture-Recapture (CR) method seems to be the
best existing efforts for achieving this research objective. Details of model specification, its
assumptions, advantages and disadvantages, simulation results under various conditions, and
suggestions are written in the sections of Introduction and Data Analysis of Lee (2013).

Imprecise Inferential Framework One approach to model an uncertainty of some event
of our interest in a mathematical sense is to employ an imprecise prior (i.e., a set of
probability distributions that represent a prior knowledge) for leading a reasonable course
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of decision making. Imprecise inferential framework is presented for such a statistical
reasoning in Lee (2013).

NOTE: More contents will be added by feedback or request.
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2 Installation and Configuration

Installation of the package ipeglim can be done by typing the following command:

R> install.packages("ipeglim", dependencies=TRUE)

For the actual use, the package ipeglim should be attached to the library on your system:

R> library(ipeglim)

When the installation is successfully done, basic information about the package is
retrieved by:

R> packageDescription("ipeglim")

Package: ipeglim
Version: 0.2.4
Date: 2013-09-17
Title: Imprecise Inferential Framework on Statistical

Reasoning
Authors@R: c(person(given="Chel Hee", family="Lee",

role=c("aut","cre", "cph", "trl"),
email="gnustats@gmail.com"),
person(given="Mikelis", family="Bickis",
role=c("aut", "ths"),
email="bickis@snoopy.usask.ca"))

Author: Chel Hee Lee and Mikelis Bickis
Maintainer: Chel Hee Lee <gnustats@gmail.com>
Depends: R (>= 2.7.1),
Suggests: mvtnorm, bindata, MASS, mgcv, lattice, sn,

grid
Description: Imprecise inferential framework on

statistical reasoning with count data based on
the Walley's imprecise probability theory.

Type: Package
License: GPL (>= 2)
LazyData: true
URL: http://r-forge.r-project.org/projects/ipeglim/
BugReports:

http://r-forge.r-project.org/projects/ipeglim/
Collate: 'a90logit.R' 'addOnBoundaries.R' .....
Packaged: 2013-09-19 19:58:54 UTC; gnustats
Built: R 3.0.1; ; 2013-09-19 19:58:56 UTC; unix

-- File: /home/gnustats/R/x86_64-pc-linux-gnu-library/3.0/ipeglim/Meta/package.rds

You are also to see the same list of functions as below:

R> ls("package:ipeglim")
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[1] "a90logit" "addOnBoundaries"
[3] "bayesPoisLogGammaIS" "bayesPoisLogGammaLA"
[5] "bayesPoisLogGammaMH" "bayesPoisLogGammaNA"
[7] "bayesPoisNormalIS" "bayesPoisNormalLA"
[9] "bayesPoisNormalMH" "bayesPoisNormalNA"
[11] "bayesPoisXregIS" "bayesPoisXregLA"
[13] "bayesPoisXregMH" "cv"
[15] "dztpois" "IINEE"
[17] "impose" "model"
[19] "print.summary.a90logit" "print.summary.ztpr"
[21] "pztpois" "setGrid"
[23] "simulateYX" "simulateYX2"
[25] "skewness" "summary.a90logit"
[27] "summary.ztpr" "ztpr"

In order to cite this package,

R> citation(package="ipeglim")

To cite package ‘ipeglim’ in publications use:

Chel Hee Lee and Mikelis Bickis (2013). ipeglim:
Imprecise Inferential Framework on Statistical
Reasoning. R package version 0.2.4.
http://r-forge.r-project.org/projects/ipeglim/

A BibTeX entry for LaTeX users is

@Manual{,
title = {ipeglim: Imprecise Inferential Framework on Statistical Reasoning},
author = {Chel Hee Lee and Mikelis Bickis},
year = {2013},
note = {R package version 0.2.4},
url = {http://r-forge.r-project.org/projects/ipeglim/},

}

The imprecise inferential framework is performed by the use of three functions: model,
impose, and update. Input arguments, output values, purposes, detailed methodological
description, limitations, special notes on the use, references, TODO list, and FIXME items
about these functions are provided in the HTML format on a default web-browser installed
on your operating system as shown in the Figure 1. For example, the help file about model

is invoked by the following command:

R> ?model

Please try to type impose and update.
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update {ipeglim} R Documentation

Applying Bayes Rule to Imprecise Prior

Description

update is used to update an imprecise prior M0 by the Bayes' rule with a given formula
when data is newly taken.

Usage

  update.imprecise(obj, method = c("MH", "IS", "LA", "NA"),
    priorType = c("lgamma", "normal"), ...)

Arguments

obj an optional object, vector, matrix, or list containing a set of hyper-
parameters that characterize an imprecise prior. The details of
hyperparameter spacification are given under 'Details'.

method the method to be used for a numerical approximation in fitting model. See
'Details'.

priorType the choice of prior distribution for a model without covariates.
... other arguments

Details

Note that arguments after ... must be matched exactly.

Method "MH" is an implementation of Metropolis-Hastings algorithm described in the
study of Author (XXXX). Lengths of Markov chain nchains and burn-in period are set as
2e3 and 5e2 by default. A p-dimensional multivariate normal distribution with mean
jDistMean and variance-covariance matrix jDistVcov is used for generating a candidate
density. Initial values of jDistMean and jDistVcov are set as the estimated parameters and
its variance-covariance fitted by glm with log-link function.

Method "LA" is an implementation of Laplace Approximation described in the study of
Tierney (1986). Hessian and mode of a log-posterior are found by optim with BFGS which
is a quasi-Newton method. iniParams are initial values for the parameters of
log-posterior to be optimized over.

Method "IS" is an implementation of Importance Sampling described in the book of
Author (XXXX). A sample of size 1e3 is used.

Method "NA" is an analytic solution (if it exists).

By default, update.m0 uses the numerical method "LA". Methods are applied to each
model.

Value

An object of class m1class with components including

R: Applying Bayes Rule to Imprecise Prior http://127.0.0.1:24880/library/ipeglim/html/update.html

1 of 2 13-08-29 09:54 AM

Figure 1: HTML-based HELP page

model package:ipeglim R Documentation

Sampling Model Specification for Imprecise Inferential Framework

Description:

‘model’ is used to describe a sampling model by giving a symbolic
description of the linear predictor in ‘formula’ to be fitted to
the ‘data’ and a description of the sampling distribution in
‘dist’.

Usage:

model(formula, data, dist, ztrunc = FALSE, ...)

Arguments:

formula: an object of class "formula": a symbolic description of the
model to be fitted. The details of model specification are
given under 'Details'.

data: an optional data frame, list or environment containing
variables to be used in the model. If not found in ‘data’,
variables are taken from ‘environment{formula}’.

dist:

ztrunc: logical, Is a sampling model truncated at zero?
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...: other arguments

Details:

Arguments after ... must be matched exactly to those in the
environment.

• ‘y~0’ models without predictors

• ‘y~1’ models with an intercept but no preditors

• ‘y~.’ models with all predictors in the ‘data’

Value:

An object of class ‘imprecise’ with components including

Xreg: the logical value determined by ‘formula’ and ‘data’, Is the
model a regression?

ztrunc: the logical value supplied

y: the model reponse used

X: the model matrix used

formula: the formula supplied

init: the list of regression coefficients and its
variance-covariance matrix which are fitted by ‘glm’

TODO:

• It seems to be reasonable to get ‘init’ by the use of the
zero-truncated Poisson regression model when ‘ztrunc=TRUE’
rather than the simple use of ‘glm’.

FIXME:

• No bugs are found yet.

Note:

All details are identical to those of ‘formula’ in ‘glm’.

Author(s):

Chel Hee Lee <<email: gnustats@gmail.com>>

References:

Walley (1991)

See Also:

‘glm’, ‘formula’, ‘bayesPoisLogGamma’

Examples:

# Do not run

In order to make sure input argumnets of a function which are intended to use, the
command args is helpful:
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R> args(model)

function (formula, data, dist, ztrunc = FALSE, ...)
NULL
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3 Learn Basic Use (Generating Random Variates)

Throughout this section, basic use of this package will be exercised by several examples
on the generation of random variates which of characteristics are close enough to those of the
actual data compiled from the administrative health databases in Saskatchewan. Following
three questions are mainly examined during a simulation study before applying this package
to the actual data analysis:

• Are all results reproducible under a certain controlled condition?

• Are values of estimated parameters sufficiently close enough to those which were
originally used on generating random variates under various simulation conditions?

• Is a computing time considerably fast enough in practice?
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Example 3.1. Consider a hypothetical situation where a population is closed and its size is
N . We also assume that only n subjects are captured by some identification process which
of system is log(µi) = β0 + β1x1, where x1 ∼ N(0, 1) and β = (−1.5, 0.5)T . When random
variates are generated, it will be structured as shown in the Table 1. Note: The values of
regression parameters gives a similar characteristics of the actual data.

R> param <- c(-1.5, 0.5) # (i.e., beta)
R> N <- 1e3 # (i.e., a population size)
R> TRUNCATED <- TRUE # it could be FALSE.

A predictor matrix X = [x0, x1] is structured by the use of correlation matrix XR, vectors
of means of x0 and x1, and its standard deviations:

R> XR <- diag(2) # Correlation between x0 and x1
R> Xsd <- c(0,1) # Standard deviations of x0 and x1
R> Xmean <- c(1,0) # Means of x0 and x1

To see the resulted structure of X,

R> Xmat <- diag(Xsd) %*% XR %*% t(diag(Xsd))
R> Xmat

[,1] [,2]
[1,] 0 0
[2,] 0 1

The function simulateYX() is used to generating random variates with this structured
X.

R> args(simulateYX)

function (N, param, Xstr = list(type = c("mvnorm", "mvbion",
"mixed", "multinomial"), mean, R, sd, Xmat), shape, ztrunc = FALSE,
Xreg = FALSE, seed = NULL, ...)

NULL

R> mydata <- simulateYX(N=N, Xreg=TRUE, param=param,
+ Xstr=list(type="mvnorm", mean=Xmean, R=XR, sd=Xsd),
+ link="log", ztrunc=TRUNCATED, seed=NULL)$yX
R> head(mydata)

y x1
1 1 0.6649553
10 1 0.3987912
18 1 -0.5896040
29 1 -0.4618881
35 1 -0.2466177
36 1 0.9310450
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R> table(mydata$y)

1 2 3 5
196 25 3 2

Example 3.2. Alternative approach is to use the option Xmat without explicit description
of correlation, means, and standard deviations of X.

R> Xmat <- cbind(x0=rnorm(N,1,0), x1=rnorm(N,0,1))
R> tmp <- simulateYX(N=N, Xreg=TRUE, param=param,
+ Xstr=list(type="mixed", Xmat=Xmat), link="log",
+ ztrunc=TRUNCATED, seed=NULL)

Note that simulateYX returns several object with this generation process:

R> names(tmp)

[1] "N" "yX" "y" "X" "Xstr" "ztrunc"
[7] "Xreg" "seed" "n" "mu"

Details about the returned values are noted on the help page(?simulateYX). With this
simulated data, the rate of missing cases is computed by

R> n.missed <- tmp$N - tmp$n
R> n.missed

[1] 818

Example 3.3. Now, consider another system of log(µi) = β0 + β1x1 + β2x2, where x1 ∼
N(0, 1), x2 ∼ N(0, 1) and β = (−1.5, 0.5,−0.5)T .

R> Xmat <- cbind(x0=rnorm(N,1,0), x1=rnorm(N,0,1), x1=rnorm(N,0,1))
R> tmp <- simulateYX(N=N, Xreg=TRUE, param=c(-1.5, 0.5, -0.5),
+ Xstr=list(type="mixed", Xmat=Xmat), link="log",
+ ztrunc=TRUNCATED, seed=NULL)
R> mydata3 <- tmp$yX
R> head(mydata3)
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y x1 x2
2 1 -1.186532848 0.01020061
6 1 -1.726442233 -1.34034384
9 2 0.382808892 0.20843416
16 2 0.478243748 -1.08655302
21 1 -0.002173377 0.35396581
30 1 -0.412249334 -0.54454641

R> table(mydata3$y)

1 2 3 4
187 27 4 2

Example 3.4. One may consider a system of log(µi) = b1x1 + b2x2, where x1 ∼
Bernoulli(0.5), x2 ∼ Bernoulli(0.3), and β = (−1.5, 1.0)T .

R> Xmat <- cbind(x1=rbinom(N, size=1, prob=0.5), x2=rbinom(N, size=1, prob=0.3))
R> tmp <- simulateYX(N=N, Xreg=TRUE, param=c(-1.5, 1.0),
+ Xstr=list(type="mixed", Xmat=Xmat), link="log",
+ ztrunc=TRUNCATED, seed=NULL)
R> mydata4 <- tmp$yX
R> head(mydata4)

y x1
3 3 0
7 1 0
9 1 0
11 1 0
13 5 1
14 5 1

R> table(mydata4$y)

1 2 3 4 5 6 7 8
250 115 74 28 12 7 3 1

Example 3.5. You may consider a case where types of predictors are mixed such as
log(µi) = β0 + β1x1 + β2x2 + β3x3, where x1 ∼ N(0, 1), x2 ∼ Bernoulli(0.4), and
x3 ∼ Multinomial(0.3, 0.2, 0.5) with coefficients beta = (−1.5, 1.0, β3). β3 can be set as
β3 = (0.5, 0.2,−0.5) when a dummy coding is performed with x3.

R> Xmat <- cbind(1, rnorm(N,0,1), rbinom(N,1,0.4),
+ t(rmultinom(N, size=1, prob=c(0.3, 0.2, 0.5))))
R> tmp <- simulateYX(N=N, Xreg=TRUE, param=c(-1.5, 1.0, -0.5, 0.5, 0.2, -0.5),
+ Xstr=list(type="mixed", Xmat=Xmat), log="log",
+ ztrunc=TRUNCATED)
R> mydata5 <- tmp$yX
R> head(mydata5)
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y x1 x2 x3 x4 x5
7 1 0.7821571 0 1 0 0
8 1 0.1633791 0 1 0 0
13 2 1.3544918 1 0 1 0
16 1 0.6832420 0 1 0 0
17 1 0.4496003 0 0 1 0
19 1 1.6474607 1 0 0 1

R> table(mydata5$y)

1 2 3 4 5 6 7
173 44 14 1 1 1 1

Example 3.6. Generation of random variates from the model without predictors is also
possible. In this case, the Xstr agrument is not neccessary on the use of simulateYX.

R> mydata0 <- simulateYX(N=N, Xreg=FALSE, param=1, ztrunc=TRUNCATED, link="log")$y
R> head(mydata0)

[1] 3 1 1 3 1 2

R> table(mydata0)

mydata0
1 2 3 4 5 6

370 174 57 7 2 2
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4 Zero-Truncated Poisson and Negative Binomial

Regression Models

Requirements:

• Yi in the Table 1 is a frequency data of interest at the individual level which is compiled
from a single data source;

• Zero-truncated Negative Binomial regression model is an alternative of zero-truncated
Poisson regression model when an over-dispersion is highly suspected;

• Useful references are van˜der Heijden et˜al. (2003) and Cruyff and van˜der Heijden
(2008).

Example 4.1. Consider a mechanism log(µi) = β0 + β1x1 + β2x2, where x1 and x2 are
continuous and discrete types of variables, respectively, with β = (−1.0, 0.5,−0.5).

Zero-truncated Poisson regression model is demonstrated first.

R> rm(list=ls())
R> N <- 1e3
R> b <- c(-1.0, 1.0, -0.5)
R> Xmat <- cbind(rnorm(N,1,0), rnorm(N,0,1), rbinom(N, size=1, p=0.5))
R> Dt.poisson <- simulateYX(N=N, Xreg=TRUE, Xstr=list(type="mixed", Xmat=Xmat),
+ ztrunc=TRUE, param=b)$yX
R> table(Dt.poisson$y)

1 2 3 4 5 6 9
224 66 22 5 3 2 1

R> head(Dt.poisson)

y x1 x2
1 1 0.4569557 1
2 1 0.2707489 1
3 2 1.3581471 0
4 1 -1.5605277 1
9 1 1.0620594 1
12 1 -0.6312651 1

R> # Check a number of missed data
R> (N - nrow(Dt.poisson))/N

[1] 0.677

R> # Fit a model to the data
R> fit <- ztpr(formula=y~x1+x2, data=Dt.poisson, dist="poisson", ztrunc=TRUE)
R> summary(fit)
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The model is successfully converged
Optimization method BFGS is used
Number of iterations in optimization is 40

Coefficients for zero-truncated Poisson model with log link

Estimate SE z-score Pr(>|z|)
(Intercept) -1.110520 0.167764 -6.6195 3.604e-11 ***
x1 0.977437 0.085944 11.3729 < 2.2e-16 ***
x2 -0.320121 0.165339 -1.9361 0.05285 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-likelihood = -240.7756 on 3
AIC = 487.5512

Now, zero-truncated Negative Binomial regression model is illustrated.

R> Dt.nbinom <- simulateYX(N=N, Xreg=TRUE, Xstr=list(type="mixed", Xmat=Xmat),
+ ztrunc=TRUE, param=b, shape=0.5)$yX
R> table(Dt.nbinom$y)

1 2 3 4 5 6 7 8 10 11 12 13 18
143 41 15 15 10 2 2 2 1 2 1 1 1

R> head(Dt.nbinom)

y x1 x2
20 1 0.8267912 1
26 1 0.5680219 0
27 3 1.1780081 1
29 1 1.0188100 0
30 3 1.9354110 1
32 1 1.8924609 1

Random variates with a negative binomial distribution has a longer tail rather than the
one with a Poisson distribution.

R> # Check a number of missed data
R> (N - nrow(Dt.nbinom))/N

[1] 0.764

R> # fit a model with the data
R> fit <- ztpr(formula=y~x1+x2, data=Dt.nbinom, dist="nbinom", ztrunc=TRUE)
R> summary(fit)

The model is successfully converged
Optimization method BFGS is used
Number of iterations in optimization is 39

Coefficients for zero-truncated Negative Binomial model with log link

Estimate SE z-score Pr(>|z|)
(Intercept) -1.32965 0.61642 -2.1570 0.0310 *
x1 0.95819 0.14024 6.8327 8.335e-12 ***
x2 -0.27311 0.24087 -1.1339 0.2569
log(shape) -1.14261 0.84146 -1.3579 0.1745
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-likelihood = -301.6745 on 4
AIC = 611.349
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5 Imprecise Zero-Truncated Poisson Regression Model

The imprecise inferential framework is demonstrated in this section.

Example 5.1. Consider a system of log(µi) = −1.0 + 1.5x1.

R> rm(list=ls())
R> N <- 1e3
R> Xmat <- cbind(x0=rnorm(N,1,0), x1=rnorm(N,0,1))
R> Dt <- simulateYX(N=N, Xreg=TRUE, param=c(-1.0, 1.5),
+ Xstr=list(type="mixed", Xmat=Xmat), link="log",
+ ztrunc=TRUE, seed=NULL)$yX
R> table(Dt$y)

1 2 3 4 5 6 7 8 9 10 12 13 14 15 16
201 80 32 22 13 7 8 4 6 2 2 1 4 2 1
17 18 23 36 51 59
1 1 1 1 1 1

R> xi <- as.vector(as.matrix(Dt)[5,])
R> xi # Values of fifth observation

[1] 1.0000000 0.7720286

Imprecise inferential framework is performed in a sequence of

• model for representing a mathematical relation between zero-truncated y and its
corresponding predictors X organized in the data frame Dt:

R> mfit <- model(formula=y~x1, data=Dt, ztrunc=TRUE)

• impose for modelling uncertainty about the model parameters with a set of linear
inequality constraints:

R> b <- ztpr(formula=y~x1, data=Dt, ztrunc=TRUE, dist="poisson")$cfs
R> cmfit <- impose(obj=mfit, circle=list(x0=b[1], y0=b[2], r=1,len=15))

where b is a vector of estimated coefficients with the existing zero-truncated Poisson
regression model since these estimates are the best information in our hand at this
moment. Ambiguity of model parameters is expressed by a circle of radius r from the
central point b.

• update for incorporting the data with prior strength B and predicting y given values
of xi,

17
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R> B <- diag(c(0.001, 0.001))
R> results <- update(obj=cmfit, method="LA", B=B, xi=xi)

• summary for creating human-readable results.

R> output <- summary(results)
R> output

Zero-truncated Poisson regression model is fitted
with an imprecise prior
Laplace approximation is used for numerical approximation

Estimates of expected regression parameters
(Intercept) x1

xtm.1 -1.81761 1.7525
xtm.2 -1.63412 1.5909
xtm.3 -1.31868 1.3981
xtm.4 -0.94832 1.2249
xtm.5 -0.59138 1.1162
xtm.6 -0.33864 1.0810
xtm.7 -0.22881 1.1251
xtm.8 -0.27313 1.2303
xtm.9 -0.45969 1.3751
xtm.10 -0.75451 1.5351
xtm.11 -1.10406 1.6864
xtm.12 -1.44485 1.7991
xtm.13 -1.71271 1.8632
xtm.14 -1.84838 1.8468
xtm.15 -1.81761 1.7525

First five estimates are printed
Please type following commands for further statistics:
'obj$est' -> all estimates
'obj$imprecision' -> degree of imprecision

Please see details of these functions by typing ?model, ?impose, ?update, and ?summary.
Visualized output is shown in the Figure 2.

R> plot(output)

The circle with blue colour and the ellipse with yellow colour represent prior ignorance and
its corresponding posterior imprecision, respectively. Detailed interpretation about this figure
is written in the Lee (2013).

If you are in the wrong sequence of imprecise inferential framework, error messages will
guide you. For example,

R> summary(cmfit)

You will see the message as

18
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Figure 2: Prior Shrinkage by Taking Data

Error in summary.imprecise(cmfit) :
Not correct order of imprecise inferential framework.

'summary' should be followed by 'update'

Analogously,

R> update(mfit)

Error in update.imprecise(mfit) :
Not correct order of imprecise inferential framework.

'update' should be followed by 'impose'
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Example 5.2. One may consider a situation where a log-gamma imprecise prior is imposed
on the model parameter for the model without predictors.

R> rm(list=ls())
R> y <- simulateYX(N=10, param=1, ztrunc=TRUE, Xreg=FALSE)$y
R> table(y)

y
1 2
5 1

R> mfit <- model(formula=y~0, ztrunc=TRUE)
R> lc <- list(lhs=rbind(c(1,0), c(-1,0), c(0,1), c(0,-1)),
+ rhs=c(0.05, -10, 0.05, -10))
R> cmfit <- impose(obj=mfit, eqns=lc)
R> fitall <- update(obj=cmfit, method="LA", priorType="lgamma")
R> output <- summary(fitall)
R> output

Zero-truncated Poisson model is fitted
with an imprecise lgamma prior
Laplace approximation is used for numerical approximation

Estimates of expected canonical parameter

theta exp(theta)
xtm.1 -1.6115103 0.19959
xtm.2 -2.9933370 0.05012
xtm.3 0.9100074 2.48434
xtm.4 -0.2443516 0.78321

Please type following commands for further statistics:
'obj$est' -> all estimates
'obj$imprecision' -> degree of imprecision

The function impose provides a number of options how to impose a set of linear inequality
constraints for modelling a prior ignorance. For example, a box-constrained type is shown in
the left panel of the Figure 3.

R> plot(cmfit)

R> cmfit1 <- setGrid(cmfit, len=10)
R> plot(cmfit1)

Two kinds of prior shrinkage with an imprecise prior (box- and polygon-constrained) are
shown in the Figure 4.

20



DR
AF

T

Ver.0.45.1 September 20, 2013

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

●

●

●

●

˜

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0 2 4 6 8 10

0
2

4
6

8
10

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

Figure 3: Box-constrained Imprecise Prior

R> plot(output, clevels=10)

R> fitall1 <- update(obj=cmfit1, method="LA", priorType="lgamma")
R> output1 <- summary(fitall1)
R> z <- range(output1$est)
R> plot(output1, xlim=c(-2,12), ylim=c(-2, 12),
+ zlim=c(z[1]-0.5, z[2]+0.5), clevels=10)

R> bounds <- impose(circle=list(x0=5,y0=5,r=5,len=7))
R> plot(output1, xlim=c(-2,12), ylim=c(-2,12), bnd=bounds,
+ zlim=c(z[1]-0.5, z[2]+0.5), clevels=10)

Example 5.3. Consider another model without predictors where a normal imprecise prior
is imposed on the model parameter.

R> rm(list=ls())
R> y <- simulateYX(N=10, param=1, ztrunc=TRUE, Xreg=FALSE)$y
R> table(y)

y
1 2 3
3 1 1
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Figure 4: Surface Plot of Imprecise Posterior with Given Constraints

R> mfit <- model(formula=y~0, ztrunc=TRUE)
R> lc <- list(lhs=rbind(c(1,0), c(-1,0), c(0,1), c(0,-1)), rhs=c(-5,-5,0.5,-2))
R> cmfit <- impose(obj=mfit, eqns=lc)
R> cmfit <- setGrid(obj=cmfit, len=10)
R> fitall <- update(obj=cmfit, method="LA", priorType="normal")
R> output2 <- summary(fitall)
R> output2

Zero-truncated Poisson model is fitted
with an imprecise normal prior
Laplace approximation is used for numerical approximation

Estimates of expected canonical parameter

theta exp(theta)
xtm.1 -3.5452157 0.02886
xtm.2 -2.5158804 0.08079
xtm.3 -1.5978118 0.20234
xtm.4 -0.8496082 0.42758
xtm.5 -0.2812892 0.75481

Please type following commands for further statistics:
'obj$est' -> all estimates
'obj$imprecision' -> degree of imprecision

R> z <- range(output2$est)
R> plot(output2, xlim=c(-6,6), ylim=c(0, 3),
+ zlim=c(z[1]-0.5, z[2]+0.5), drape=TRUE, clevels=10)
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Figure 5: Surface Plot of Imprecise Posterior with Normal Imprecise Prior

6 Application I. Cholera Epidemic in India

This example is taken from the study of Böhning et˜al. (2005). Since there is no available
predictors, the data is fitted to the model with an intercept.

R> rm(list=ls())
R> tab <- c(32, 16, 6, 1)
R> Kendrick <- as.data.frame(rep(1:length(tab), times=tab))
R> names(Kendrick) <- c("y")
R> fit <- ztpr(formula= y~1, data=Kendrick, dist="poisson")
R> summary(fit)

The model is successfully converged
Optimization method BFGS is used
Number of iterations in optimization is 14

Coefficients for zero-truncated Poisson model with log link

Estimate SE z-score Pr(>|z|)
(Intercept) -0.028218 0.168707 -0.1673 0.8672

Log-likelihood = -54.77768 on 1
AIC = 111.5554
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7 Application 2. Illigal Immigrants in the Netherlands

This example is taken from the study of van˜der Heijden et˜al. (2003).

R> rm(list=ls())
R> data(IINEE)
R> fit <- ztpr(capture ~ ., data=IINEE, dist="poisson")
R> print(summary(fit))

The model is successfully converged
Optimization method BFGS is used
Number of iterations in optimization is 45

Coefficients for zero-truncated Poisson model with log link

Estimate SE z-score Pr(>|z|)
(Intercept) -2.317185 0.449371 -5.1565 2.516e-07 ***
gender 0.397373 0.163047 2.4372 0.0148029 *
age 0.974439 0.408204 2.3871 0.0169801 *
nation1 -1.674381 0.602882 -2.7773 0.0054814 **
nation2 0.190023 0.194003 0.9795 0.3273385
nation3 -0.911244 0.300968 -3.0277 0.0024641 **
nation4 -2.337257 1.013891 -2.3052 0.0211534 *
nation5 -1.092308 0.301634 -3.6213 0.0002931 ***
reason 0.010969 0.161527 0.0679 0.9458606
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-likelihood = -848.4481 on 9
AIC = 1714.896

This result is very close enough to the result in the Table 4. of the study of van˜der
Heijden et˜al. (2003).

R> fit0 <- summary(ztpr(capture ~ 1, data=IINEE, dist="poisson"))
R> fit1 <- summary(ztpr(capture ~ gender, data=IINEE, dist="poisson"))
R> fit2 <- summary(ztpr(capture ~ gender + age, data=IINEE, dist="poisson"))
R> fit3 <- summary(ztpr(capture ~ gender + age + nation1 + nation2 + nation3
+ + nation4 + nation5, data=IINEE, dist="poisson"))
R> fit4 <- summary(ztpr(capture ~ ., data=IINEE, dist="poisson"))
R> fit <- list(fit0, fit1, fit2, fit3, fit4)
R> tab <- data.frame(AIC=unlist(lapply(fit, "[[", "aic")),
+ DF=unlist(lapply(fit, "[[", "df")))
R> tab$G2 <- c(NA, diff(-(tab$AIC-2*tab$DF), lag=1))
R> tab$G2DF <- c(NA, diff(tab$DF, lag=1))
R> tab$P <- pchisq(q=tab$G2, df=tab$G2DF, lower.tail=FALSE)
R> tab$N <- unlist(lapply(fit, "[[", "N"))
R> tab$cil <- unlist(lapply(fit, "[[", "cil"))
R> tab$ciu <- unlist(lapply(fit, "[[", "ciu"))
R> rownames(tab) <- c("NULL", "G", "G+A", "G+A+N", "G+A+N+R")
R> print(tab)

AIC DF G2 G2DF P
NULL 1805.904 1 NA NA NA
G 1798.278 2 9.626259681 1 1.918148e-03
G+A 1789.043 3 11.234558538 1 8.028820e-04
G+A+N 1712.901 8 86.142191041 5 4.336493e-17
G+A+N+R 1714.896 9 0.004567914 1 9.461149e-01

Again, this result is very close enough to the result in the Table 5. in the study of van˜der
Heijden et˜al. (2003).
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8 Log-Linear Model

Requirements:

• Yi in the Table 1 is a binary indication of presence or absence of some condition of
interest;

• At least two data sources should be linked without mismatches at the individual level.

NOTE: Imprecise inferential framework is not supported with this model.

With Two Data Sources

R> rm(list=ls())
R> library(ipeglim)
R> tmp <- simulateYX2(N=1e3, Ystr=list(mean=c(0.5, 0.5), sigma=diag(2)),
+ Xreg=FALSE, ztrunc=TRUE)
R> y <- tmp$y
R> head(y)

y1 y2
1 1 1
2 1 1
4 1 0
5 1 0
6 1 1
7 1 0

R> ytab <- tmp$ytab
R> ytab

y1 y2 freq
1 0 0 NA
2 1 0 261
3 0 1 228
4 1 1 259

R> n <- sum(ytab, na.rm=TRUE)
R> fit <- glm(formula=freq~y1+y2, data=ytab, family=poisson(link="log"))
R> summary(fit)

Call:
glm(formula = freq ~ y1 + y2, family = poisson(link = "log"),

data = ytab)

Deviance Residuals:
[1] 0 0 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.437038 0.109902 49.472 <2e-16 ***
y1 0.127482 0.090813 1.404 0.16
y2 -0.007692 0.087706 -0.088 0.93
---

25



DR
AF

T

Ver.0.45.1 September 20, 2013

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2.7873e+00 on 2 degrees of freedom
Residual deviance: -5.1070e-15 on 0 degrees of freedom
(1 observation deleted due to missingness)

AIC: 28.066

Number of Fisher Scoring iterations: 2

R> n00 <- exp(fit$coef[1])
R> N <- n + n00
R> N

(Intercept)
981.7606

With More Than Three Data Sources Contents for this paragraph will be added by
request.

NOTES:

• The number of data sources supported by this package is three.

• Imprecise inferential framework is not supported with this model.
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9 Logistic Regression Model

Requirements:

• Yi in the Table 1 is a binary indication of presence or absence of some condition of
interest;

• A number of data sources required for this model is only two.

NOTE: Imprecise inferential framework is not supported with this model.

Example 9.1. Consider the case where

log

(
p1i

1 − p1i

)
= 0.5 + 0.8xi, (1)

log

(
p2i

1 − p2i

)
= 1.5 + 0.4xi (2)

(Alho, 1990, p.˜630).

R> rm(list=ls()) ## 100, 300, 1000
R> set.seed(1)
R> N <- 1e3
R> beta1 <- c(0.5, 0.8)
R> beta2 <- c(1.5, 0.4)
R> Xmat <- cbind(rnorm(N,1,0), rnorm(N,0,1))
R> Dt <- simulateYX2(N=N, param1=beta1, param2=beta2, Xstr=list(type="mixed",
+ Xmat=Xmat), Xreg=TRUE, ztrunc=TRUE)$yX
R> head(Dt)

y1 y2 x1
1 1 0 -0.6264538
2 0 1 0.1836433
3 1 1 -0.8356286
4 1 1 1.5952808
5 1 1 0.3295078
6 1 1 0.4874291

R> fit <- a90logit(formula=cbind(y1, y2)~ x1 , data=Dt, nlists=2)
R> summary(fit)

The model is successfully converged
Newton-Raphson method is used
Number of iterations in optimization is 6

Coefficients for Logistic Regression Model with logit link

Estimate SE z-score Pr(>|z|)
(Intercept) 0.550587 0.079010 6.9686 3.202e-12 ***
x1 0.804251 0.086654 9.2812 < 2.2e-16 ***

1.493914 0.108665 13.7478 < 2.2e-16 ***
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0.360309 0.114337 3.1513 0.001626 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-likelihood = -794.0573 on 4
AIC = 1596.115

N = 976.8863 (with SE= 15.23253 )
95 % CI of N = [ 947.0311 , 1006.741 ]

Example 9.2.

log

(
p1i

1 − p1i

)
= −0.5 + 0.8xi, (3)

log

(
p2i

1 − p2i

)
= −1.0 + 0.4xi (4)

(Alho, 1990, p˜630).

R> rm(list=ls()) ## 100, 300, 1000
R> N <- 1e3
R> beta1 <- c(-0.5, 0.8)
R> beta2 <- c(-1.0, 0.4)
R> Xmat <- cbind(rnorm(N,1,0), rnorm(N,0,1))
R> Dt <- simulateYX2(N=N, param1=beta1, param2=beta2, Xstr=list(type="mixed",
+ Xmat=Xmat), Xreg=TRUE, ztrunc=TRUE)$yX
R> head(Dt)

y1 y2 x1
1 1 1 1.61970074
2 1 0 -0.05584993
3 1 1 0.69641761
4 0 1 -1.31028350
5 1 0 -0.20807859
6 1 0 -0.31278658

R> fit <- a90logit(formula=cbind(y1, y2) ~ x1 + 1 , data=Dt, nlists=2)
R> summary(fit)

The model is successfully converged
Newton-Raphson method is used
Number of iterations in optimization is 6

Coefficients for Logistic Regression Model with logit link

Estimate SE z-score Pr(>|z|)
(Intercept) -0.38565 0.13857 -2.7831 0.0053841 **
x1 0.91496 0.14283 6.4061 1.493e-10 ***

-1.01624 0.12651 -8.0327 9.533e-16 ***
0.38924 0.11812 3.2953 0.0009831 ***

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-likelihood = -547.9902 on 4
AIC = 1103.98

N = 1004.769 (with SE= 84.75674 )
95 % CI of N = [ 838.6488 , 1170.889 ]
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Example 9.3. Consider a situation where there are three predictors are in hand.

log

(
p1i

1 − p1i

)
= 0.5 + 0.8x1 − 0.2x2 (5)

log

(
p2i

1 − p2i

)
= 1.5 + 0.4x1 + 0.5x2 (6)

R> rm(list=ls()) ## 100, 300, 1000
R> N <- 1e3
R> beta1 <- c(0.5, 0.8, -0.2)
R> beta2 <- c(1.5, 0.4, 0.5)
R> Xmat <- cbind(rnorm(N,1,0), rnorm(N,0,1), rnorm(N,0,1))
R> Dt <- simulateYX2(N=N, param1=beta1, param2=beta2, Xstr=list(type="mixed",
+ Xmat=Xmat), Xreg=TRUE, ztrunc=TRUE)$yX
R> head(Dt)

y1 y2 x1 x2
1 1 0 0.7645571 0.6291412
2 1 1 0.5707101 -1.6781940
3 1 1 -1.3516939 1.1797811
4 0 1 -2.0298855 1.1176545
5 1 0 0.5904787 -1.2377359
6 0 1 -1.4130700 -1.2301645

R> fit <- a90logit(formula=cbind(y1, y2)~x1+x2 , data=Dt, nlists=2)
R> summary(fit)

The model is successfully converged
Newton-Raphson method is used
Number of iterations in optimization is 7

Coefficients for Logistic Regression Model with logit link

Estimate SE z-score Pr(>|z|)
(Intercept) 0.500954 0.077142 6.4939 8.363e-11 ***
x1 0.716037 0.085002 8.4238 < 2.2e-16 ***
x2 -0.186490 0.079177 -2.3554 0.0185052 *

1.477575 0.111434 13.2597 < 2.2e-16 ***
0.382725 0.113043 3.3856 0.0007101 ***
0.486217 0.108583 4.4779 7.540e-06 ***

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Log-likelihood = -836.5418 on 6
AIC = 1685.084

N = 1014.328 (with SE= 15.73687 )
95 % CI of N = [ 983.4842 , 1045.172 ]

10 Contact Information for Maintenance

The project website is running at the http://ipeglim.r-forge.r-project.org.
Bugs reports or requests for additional features of this package should be sent to
gnustats@gmail.com or chl948@mail.usask.ca.
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