
int64 : 64 bits integer vectors

Romain François - romain@r-enthusiasts.com

int64 version 1.1.2

Abstract

The int64 package adds 64 bit integer vectors to R. The package provides the int64 and uint64 classes for
signed and unsigned integer vectors. This project has been sponsored by the Google Open Source Programs
Office.

1 Background

Integers in R are represented internally as 32 bit int. Aplications now require larger ranges of values to represent
large quantities. This package exposes C++ types int64_t and uint64_t to R for this purpose. The table˜1
shows the limits of these types.

C++ type R type min max
int integer -2147483647 2147483647

int64_t int64 -9223372036854775807 9223372036854775807

uint64_t uint64 0 18446744073709551614

Table 1: Numeric limits of integer types

2 Usage

This section shows a few examples on how to use the package.

> # create a new int64 vector

> x <- int64(4)

> # set a subset of values

> x[1:2] <- 1:2 # via integers

> x[3:4] <- c("123456789123456", "-9876543219876") # ... or characters

> x

[1] 1 2 123456789123456 -9876543219876

> # convert integer or character vectors into int64 vectors

> x <- as.int64(1:6)

> x

[1] 1 2 3 4 5 6

> y <- as.int64(c("-1234", "1234"))

> y

[1] -1234 1234

> # create a data frame with a column of int64

> df <- data.frame(a = 1:4)

> df$y <- as.int64(1:4)

> df

1

a y

1 1 1

2 2 2

3 3 3

4 4 4

3 The int64 and uint64 classes

3.1 Class representation

Both int64 and uint64 are represented as lists of pairs of integers.

> str(as.int64(1:2))

int64 [1:2] 1 2 ...

Each int64 or uint64 number is represented as a couple of 32 bit integers. Internally, the C++ code goes back
and forth between the native representation of these numbers as C++ data types (int64_t and uint64_t) and
their representation as couples of 32 bit integers by splitting the 64 bits.

For example, the int64_t value (-123) is represented in memory as:

1110000101

These 64 bits are split into the two following chunks:

11111111111111111111111111111111 11111111111111111111111110000101

The R representation of -123 is therefore composed by the two integers whose binary representation is above,
i.e (-1,-123). This representation has been chosen against other alternatives to allow these key requirements:

• Data must be serializable

• int64 and uint64 vectors have to be usable of columns of data frames.

• The int64 and uint64 types must supposrt missing values (NA)

3.2 Creating new vectors

The functions int64 and uint64 can be used to create new vectors of signed or usigned 64 bit integers of the
given length. These functions are similar to the usual R functions numeric, integer, etc ...

> int64(3)

[1] 0 0 0

> uint64(10)

[1] 0 0 0 0 0 0 0 0 0 0

3.3 Converting integer or character vectors

The functions as.int64 and as.uint64 can be used to convert integer or character vectors into signed or
unsigned 64 bit integers.

> as.int64(1:4)

[1] 1 2 3 4

> as.uint64(c("123456789", "987654321987654321"))

[1] 123456789 987654321987654321

Internally integer vectors are converted using a reguar cast, and character vectors are converted using the
C function atol.

2

3.4 Subsetting

Extracting or setting subsets from a int64 or uint64 vector is similar to other vector classes in R.

> x <- as.int64(1:4)

> x[1:2]

[1] 1 2

> x[3:4] <- 5:6

> x

[1] 1 2 5 6

3.5 Arithmetic operations

The Arith group generic is implemented for classes int64 and uint64.

> x <- as.int64(1:4)

> x + 1L

[1] 2 3 4 5

> x - 1:2

[1] 0 0 2 2

> x * x

[1] 1 4 9 16

> x / 2L

[1] 0 1 1 2

> x %% 2L

[1] 1 0 1 0

> x %/% 2L

[1] 0 1 1 2

3.6 Logical operations

The Compare group generic is implemented for classes int64 and uint64.

> x <- as.int64(1:5)

> x < 3L

[1] TRUE TRUE FALSE FALSE FALSE

> x > 6L - x

[1] FALSE FALSE FALSE TRUE TRUE

> x != 3L

[1] TRUE TRUE FALSE TRUE TRUE

> x == 4L

[1] FALSE FALSE FALSE TRUE FALSE

> x <= 3L

[1] TRUE TRUE TRUE FALSE FALSE

> x >= 5L

[1] FALSE FALSE FALSE FALSE TRUE

3

3.7 Summary operations

The Summary group generic is implemented for classes int64 and uint64.

> x <- as.int64(1:5)

> min(x)

[1] 1

> max(x)

[1] 5

> range(x)

[1] 1 5

> prod(x)

[1] 120

> sum(x)

[1] 15

> any(x)

[1] TRUE

> all(x)

[1] TRUE

4 Binary representation

The binary generic function shows the bit representation of numeric, integer, int64 and uint64.

> binary(1:4) # integer

[1] 00000000000000000000000000000001 00000000000000000000000000000010

[3] 00000000000000000000000000000011 00000000000000000000000000000100

> binary(c(1.2, 1.3)) # numeric

[1] 0011111111110011001100110011001100110011001100110011001100110011

[2] 0011111111110100110011001100110011001100110011001100110011001101

> binary(as.int64(1:4)) # signed 64 bit integer (int64)

[1] 0001

[2] 0010

[3] 0011

[4] 000100

> binary(as.uint64(1:4)) # unsigned 64 bit integer (uint64)

[1] 0001

[2] 0010

[3] 0011

[4] 000100

4

5 Numeric limits and missing values

The numeric_limits function gives the limits for types integer, int64, uint64.

> numeric_limits("integer")

[1] -2147483647 2147483647

> numeric_limits("int64")

[1] -9223372036854775807 9223372036854775807

> numeric_limits("uint64")

[1] 0 18446744073709551614

int64 and uint64 classes support missing values using the same mechanism as R uses for integer vectors.
For signed 64 bit integer vectors (int64), NA is represented by the value −263, hence the range of acceptable

values is

[−263 + 1, 263 − 1]

For unsigned 64 bit integer vectors (uint64), NA is represented by the value 264 − 1, hence the range of
acceptable values is

[0, 264 − 2]

6 Reading 64 bit integers from files

The int64 implements the necessary methods so that read.csv can read signed and unsigned 64 bit integers
from files.

> tf <- tempfile()

> df <- data.frame(x = 1:10, y = 1:10, z = 1:10)

> write.table(df, tf, sep = ",", row.names = FALSE)

> df <- read.csv(tf, colClasses = c("integer", "int64", "uint64"))

> df

x y z

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

9 9 9 9

10 10 10 10

> sapply(df, class)

x y z

"integer" "int64" "uint64"

5

	Background
	Usage
	The int64 and uint64 classes
	Class representation
	Creating new vectors
	Converting integer or character vectors
	Subsetting
	Arithmetic operations
	Logical operations
	Summary operations

	Binary representation
	Numeric limits and missing values
	Reading 64 bit integers from files

