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Abstract This vignette describes the R hglm package via a series of applications that may be of
interest to applied scientists. The hglm package implements the estimation algorithm for hierarchical
generalized linear models. The package fits generalized linear models with random effects, where
the random effect may come from a conjugate exponential-family distribution (Gaussian, Gamma,
Beta or inverse-Gamma). The design matrices both for the fixed and random effects can be explicitly
specified, which allows fitting correlated random effects as well as random regression models. Fixed
effects may also be modeled in the dispersion parameter. The hglm package produces estimates of
fixed effects, random effects, variance components as well as their standard errors. Model diagnostics
such as deviances and leverages can be visualized. At the end of this vignette, estimates from the
hglm package are compared to the ones from other software packages including GenStat for several
examples previously published by Lee and Nelder.
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Introduction

The hglm package implements the estimation algorithm for hierarchical generalized linear model
(HGLM; Lee and Nelder, 1996). The package fits generalized linear models (GLM; McCullagh and
Nelder, 1989) with random effects, where the random effect may come from a conjugate exponential-
family distribution (normal, gamma, beta or inverse-gamma). The user may explicitly specify the
design matrices both for the fixed and random effects, which means that correlated random effects as
well as random regression models can be fitted. Fixed effects may also be modeled in the dispersion
parameter.

Generalized linear mixed models (GLMM) have previously been implemented in several R (R
Development Core Team, 2009) function, such as the glmer() function in the lme4 library and in the
glmmPQL() function in the MASS library. In GLMM, the random effects are assumed to be Gaussian
whereas the hglm() function allow for other distributions for the random effect. Thehglm() function
also extends the fitting algorithm of Gordon Smyth’s dglm package by including random effects in the
linear predictor for the mean. Moreover, the model specification in hglm() can be given as a formula
or alternatively in terms of y, X, Z and X.disp, where y is the vector of observed responses, X and Z are
the design matrices for the fixed and random effects, respectively, in the linear predictor for the mean,
and X.disp is the design matrix for the fixed effects in the dispersion parameter. This enables a more
flexible modeling of the random effects than specifying the model by an R formula. Consequently,
this option is not as user friendly but gives the user a possibility to fit random regression models and
random effects with known correlation structure.

The hglm package produces estimates of fixed effects, random effects, variance components as well
as their standard errors. In the output it also produces diagnostics such as deviances and leverages.

New in version 1.2

From version 1.2 of the package it is possible to fit several random effects (see Salamnder example
below). The bigRR = TRUE option was added for fitting p� n problems (see also the bigRR package;
Shen et al., 2013). Likelihoods are computed with the calc.like = TRUE option.

New in version 2.0

From version 2.0 of the package (Alam et al., 2014) it is possible to

• Fit several random effects from different distributions (e.g. rand.family = list(Gamma(),gaussian())).

• Fit a linear predictor for the dispersion of the random effects (e.g. X.rand.disp = X).

• Fit a spatial CAR model for the random effects (e.g. rand.family = CAR(D = nbr)).

• Fit a spatial SAR model for the random effects (e.g. rand.family = SAR(D = nbr)).

• Use “HL(1,1)” correction on EQL, see Lee and Lee (2012); Noh and Lee (2007) (e.g. method =
"EQL1").

• Perform a likelihood-ratio test for the the dispersion parameter of the random effects (function
lrt()).

See Section 2.11, 2.12, 2.13 and 2.14 for examples.
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Table 1: hglm functions.

Function Description Reference
Beta Extended usage of the Beta family
CAR Conditional autoregressive family
GLM.MME Internal IWLS estimation for hglm() Lee et al. (2006)
hglm Fitting hierarchical generalized linear models Lee and Nelder (1996)
hglm2 hglm model specified in lmer single equation style
inverse.gamma Extended usage of the inverse-Gamma family
SAR Simultaneous autoregressive family

- Utilities -
logLik Print log-likelihoods while calc.like = TRUE
lrt Print likelihood-ratio test while calc.like = TRUE
plot Plot individual deviances and hatvalues

for the fitted hglm objects
print Produce basic statistics from hglm estimation

in a simplified way
summary Produce standard summary statistics

for the fitted hglm objects

Important implementation details

Brief overview of the fitting algorithm

The fitting algorithm is described in detail in Lee et al. (2006) and we summarize it here. Let n be the
number of observations and k be the number of levels in the random effect. The algorithm is then
given by:

1. Initialize starting values;

2. Construct an augmented model with response yaug =

(
y

E(u)

)
;

3. Use a GLM to estimate β and v given the vector φ and the dispersion parameter for the random
effect λ. Save the deviances and leverages from the fitted model;

4. Use a gamma GLM to estimate βd from the first n deviance residuals d and leverages h obtained
from the previous model. The response variable and weights for this model are d/(1− h)
and (1− h)/2, respectively. Update the dispersion parameter by putting φ equal to the fitted
response values for this model;

5. Use a similar GLM as in Step 4 to estimate λ from the last k deviance residuals and leverages
obtained from the GLM in Step 3;

6. Iterate between steps 3-5 until convergence.

The h-likelihood theory

Let y be the response and u an unobserved random effects. The hglm package fits a hierarchical
model y|u ∼ fm(µ, φ) and u ∼ fd(ψ, λ) where fm and fd are specified distributions for the mean and
dispersion parts of the model.
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We follow the notation of Lee and Nelder (1996), which is based on the GLM terminology by
McCullagh and Nelder (1989). We also follow the likelihood approach where the model is described
in terms of likelihoods. The conditional (log-)likelihood for y given u has the form of a GLM:

l(θ′, φ; y|u) = yθ′ − b(θ′)
a(φ)

+ c(y, φ) (1)

where θ′ is the canonical parameter, φ is the dispersion term, µ′ is the conditional mean of y given u
where η′ = g(µ′), i.e. g(.) is a link function for the GLM. The linear predictor µ′ is given by η′ = η + v
where η = Xβ and v = v(u) for some strict monotonic function of u. The hierarchical likelihood
(h-likelihood) is defined by:

h = l(θ′, φ; y|u) + l(α; v) (2)

where l(α; v) is the log density for v with parameter α. The estimates of β and v are given by ∂h
∂β = 0

and ∂h
∂v = 0. The dispersion components are estimated by maximizing the adjusted profile h-likelihood:

hp =

(
h +

1
2

log |2πH−1|
)

β=β̂,v=v̂
(3)

where H is the Hessian matrix of the h-likelihood. The dispersion term φ can be connected to a liner
predictor Xdβd given a link function gd(.) with gd(φ) = Xdβd. The adjusted profile likelihoods of l and
h may be used for inference of β, v and the dispersion parameters φ and λ (pp. 186 in Lee et al., 2006).

Detailed description of the fitting algorithm for a linear mixed model with heteroscedas-
tic residual variance

In this section we describe the fitting algorithm in detail for a linear mixed model where fixed effects
are included in the model for the residual variance. The extension to other distributions than Gaussian
are described at the end of the section.

Lee and Nelder (1996) showed that linear mixed models can be fitted using a hierarchy of GLM by
using an augmented linear model. The linear mixed model

y = Xβ + Zu + e

V = ZZ′σ2
u + Rσ2

e

where R is a diagonal matrix, and in the first iteration of the HGLM algorithm R is equal to the identity
matrix. The model may be written as an augmented weighted linear model:

ya = Taδ + ea (4)

where

ya =

(
y
0q

)

Ta =

(
X Z
0 Iq

)

δ =

(
β
u

)

ea =

(
e
−u

)
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Here, q is the number of columns in Z, 0q is a vector of zeros of length q, and Iq is the identity matrix
of size q× q. The variance-covariance matrix of the augmented residual vector is given by

V(ea) =

(
Rσ2

e 0
0 Iqσ2

u

)

Given σ2
e and σ2

u , this weighted linear model gives the same estimates of the fixed and random effects
(β and u respectively) as Henderson (1976)’s mixed model equations.

The estimates from weighted least squares are given by:

T′aW−1Taδ̂ = T′aW−1ya

where W ≡ V(ea).
The two variance components are estimated iteratively by applying a gamma GLM to the residuals

e2
i and u2

i with intercept terms included in the linear predictors. The leverageshi for these models are
calculated from the diagonal elements of the hat matrix:

Ha = Ta(T′aW−1Ta)
−1T′aW−1 (5)

A gamma GLM is used to fit the dispersion part of the model with response

yd,i = e2
i /(1− hi) (6)

where E(yd) = µd and µd ≡ φ (i.e. σ2
e for a Gaussian response). The GLM model for the dispersion

parameter is then specified by the link function gd(.) and the linear predictor Xdβd, with prior weights
(1− hi)/2, for

gd(µd) = Xdβd (7)

Similarly, a gamma GLM is fitted to the dispersion term α (i.e. σ2
u for a GLMM) for the random effect

v, with
yα,j = u2

j /(1− hn+j) (8)

and
gα(µα) = λ (9)

where the prior weights are (1− hn+j)/2 and the estimated dispersion term for the random effect is
given by α̂ = g−1

α (λ̂). The algorithm iterates by updating R = diag(φ̂) and going back to eq. (4).
For a non-Gaussian response variable y, the estimates are obtained simply by fitting a GLM instead

of eq. (4) and by replacing e2
i and u2

j with the deviance residuals from the augmented model (Lee et al.,
2006).

Based on log fθ(y|v), Lee and Nelder (1996) proposed using the scaled deviance for the goodness-
of-fit test, having the estimated degrees of freedom, d. f . = n− pD, where

pD = trace{(T′mΣ−1
m Tm)

−1}T′mΣ−1
0 Tm

with Σ−1
0 = Wma{diag(Φ−1, 0)}, and m represents the mean model. E(D) is the expected deviance.

Lee and Nelder (1996) showed that, under the assumed model, degrees of freedom can be estimated
as E(D) ≈ n− pD. This extends the scaled deviance test for GLMs to HGLMs.

Distributions and link functions

There are two important classes of models that can be fitted in hglm: GLMM and conjugate HGLM. In
GLMM we have a Gaussian random effect, whereas the conjugate HGLM has also been commonly
used since explicit formulas for the marginal likelihood exist. HGLMs can also be used to fit models in
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survival analysis (frailty models), where for instance the complementary-log-log link function can be
used on binary responses (e.g. Carling et al., 2004; Alam and Carling, 2008). The gamma distribution
plays an important role in modeling responses with a constant coefficient of variation (see Chapter 8
in McCullagh and Nelder, 1989), and for such responses with a gamma distributed random effect we
have a gamma-gamma model. A summary of the most important models are given in Tables 2 and 3.

Table 2: Commonly used distributions and link functions possible to fit with hglm()

Model name y|u distribution Link g(µ) u distribution Link v(u)
Linear mixed model Gaussian identity Gaussian identity
Binomial conjugate Binomial logit Beta logit
Binomial GLMM Binomial logit Gaussian identity
Binomial frailty Binomial comp-log-log Gamma log
Poisson GLMM Poisson log Gaussian identity
Poisson conjugate Poisson log Gamma log
Gamma GLMM Gamma log Gaussian identity
Gamma conjugate Gamma inverse Inverse-Gamma inverse
Gamma-Gamma Gamma log Gamma log

Table 3: hglm() code for commonly used models

Model name hglm() code: family = hglm() code: rand.family =
Linear mixed model gaussian(link = identity) gaussian(link = identity)
Beta-Binomial binomial(link = logit) Beta(link = logit)
Binomial GLMM binomial(link = logit) gaussian(link = identity)
Binomial frailty binomial(link = cloglog) Gamma(link = log)
Poisson GLMM poisson(link = log) gaussian(link = identity)
Poisson frailty poisson(link = log) Gamma(link = log)
Gamma GLMM Gamma(link = log) gaussian(link = identity)
Gamma conjugate Gamma(link = inverse) inverse.gamma(link = inverse)
Gamma-Gamma Gamma(link = log) Gamma(link = log)

Interacting with the hglm function

The main function is hglm() and the input is specified in a similar manner as for glm(). For instance, to
fit a logit model for y with week as fixed effect and ID represents the clusters for a normally distributed
random intercept, we run

require(hglm)
data <- data.frame(y = y, week = week, ID = factor(ID))
hglm(fixed = y ~ week, random = ~1 | ID, family = binomial(link = logit), data = data)

Given an hglm object, the standard generic functions are print(), summary() and plot(). For this
example, hglm allows an alternative command if the user would like to define the design matrices
directly. If the design matrices of week and ID have been defined as

fixed.design <- model.matrix(~week)
random.design <- model.matrix(~factor(ID) - 1)

respectively, we may run the following command instead.

The hglm Package (Version 2.0) Lars Rönnegård, Moudud Alam, Xia Shen
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hglm(X = fixed.design, y = y, Z = random.design, family = binomial(link = logit))

Now we analyze the bacteria data available in the MASS library using a binomial GLMM. The data
consists of observations on the presence of H.influenzae at five occasions (at weeks 0, 2, 4, 6 and 11) on
50 individuals. Thirty observations were not reported and there are in total 220 observations.

library(MASS)
data(bacteria)
g1 <- hglm(fixed = y ~ week, random = ~1 | ID, data = bacteria, family = binomial(link = logit))
summary(g1)

## Call:
## hglm.formula(family = binomial(link = logit), fixed = y ~ week,
## random = ~1 | ID, data = bacteria)
##
## ----------
## MEAN MODEL
## ----------
##
## Summary of the fixed effects estimates:
##
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 2.30216 0.33627 6.846 9.84e-11 ***
## week -0.13510 0.04127 -3.273 0.00126 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Note: P-values are based on 193 degrees of freedom
##
## Summary of the random effects estimates:
##
## Estimate Std. Error
## IDX01 0.7472 0.9897
## IDX02 -0.2844 0.8385
## IDX03 0.8602 0.9591
## ...
## NOTE: to show all the random effects, use print(summary(hglm.object), print.ranef = TRUE).
##
## ----------------
## DISPERSION MODEL
## ----------------
##
## NOTE: h-likelihood estimates through EQL can be biased.
##
## Dispersion parameter for the mean model:
## [1] 0.7581
##
## Model estimates for the dispersion term:
##
## Link = log
##
## Effects:
## Estimate Std. Error
## -0.2769 0.1019
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## Dispersion parameter for the random effects:
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## [1] 1.613
##
## Dispersion model for the random effects:
##
## Link = log
##
## Effects:
## .|Random1
## Estimate Std. Error
## 0.4779 0.2816
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## EQL estimation converged in 14 iterations.

The model diagnostics produced by the hglm() function are shown in Figures 1 and 2. In Figure 1
there are two random effects with leverages > 0.7, which correspond to two individuals that only
have two observations each. We also see that the assumption of the deviance residuals being gamma
distributed is acceptable (Figure 2). The variance of the random individual effect was estimated to
1.6126 and the algorithm converged in 14 iterations.

plot(g1, device = "pdf", name = "fig_bacteria")

HL(1,1) estimator and EQL1 correction for GLMM

The theory below summarizes the first order fixed effects correction for generalized linear mixed
models (GLMM) derived in Lee & Lee (2012). Consider a GLMM with response y, fixed effect β and
random effect v

µ = E[y|v] (10)
g(µ) = η = Xβ + Zv (11)

v ∼ N(0, W−1
2 ) (12)

Here, X and Z are design matrices for the fixed and random effect, respectively. The linearized
response is z1 = η+ (y− µ) ∂η

∂µ having a diagonal variance matrix W1. The hierarchical likelihood is

h(β, σ2
v , φ) = log( f (y|v)) + log( f (v)), where we have W−1

2 = σ2
v I and φ is the dispersion parameter.

∂h
∂β = 0 and ∂h

∂v = 0 give the following mixed model equations for GLMM

X′W1Xβ̂ + X′W1Zv̂ = X′W1z1 (13)
X′W1Zβ̂ + (Z′W1Z + W2)v̂ = Z′W1z1 (14)

The estimating equations for the HL(1,1) estimator are derived from ∂pv(h)
∂β = 0 and ∂h

∂v = 0, where
pv(h) is the adjusted profile h-likelihood (Lee and Nelder, 1996). Lee and Lee (2012) showed that
∂pv(h)

∂β = 0 and ∂h
∂v = 0 give the following estimating equations for GLMM

X′W1Xβ̂ + X′W1Zv̂ = X′W1(z1 − s
∂η

∂µ
) (15)

X′W1Zβ̂ + (ZW1Z + W2)v̂ = Z′W1z1 (16)
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Figure 1: Residual diagnostics for the observations in the mean model.
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Figure 2: Leverages (i.e. diagonal elements of the augmented hat-matrix) for each observation 1 to
220 , and for each level in the random effect (index 221-282).

Hence, the HL(1,1) estimator can be computed merely by adjusting z1 in the mixed model equations
by the vector s ∂η

∂µ , given in the Appendix of Lee and Lee (2012). See also the comparison with the
implementation in the HGLMMM package in section 2.17. In hglm, such correction is implemented
as method = "EQL1". The slight difference between EQL1 and Lee and Lee (2012)’s “HL(1,1)” correction
is that Lee and Lee (2012) applied the correction to their HL(0,1) estimates whereas we apply such
correction directly to EQL. The EQL algorithm does not account for the fact that the estimator for
the random effects is a function of the dispersion parameters for non-normal mixed models. HL(0,1)
accounts for this dependency, but otherwise the estimators are identical.

Possible future developments

In the current version of hglm() it is possible to random effects in the mean part of the model. An
important development would be to include random effects in the dispersion parts of the model
too. The latter class of models are called Double HGLM and have been shown to be a useful tool for
modeling heavy tailed distributions Lee and Nelder (2006).

The algorithm of hglm() gives true marginal likelihood estimates for conjugate HGLM, whereas for
other models the estimates are approximated. Lee and co-workers (see Lee et al., 2006, and references
therein) have developed higher-order approximations, which give very good estimates. Only the EQL1
correction is currently implemented (from version 2.0), whereas higher-order approximations are not
implemented. For these possible future extensions, we refer to the commercially available GenStat
software and also to coming updates of the hglm package.

Linear mixed model with fixed effects in the residual variance

We consider a normal-normal model with heteroscedastic residual variance. In biology, for instance,
this is important if we wish to model a random genetic effect (e.g. Rönnegård and Carlborg, 2007) for
a trait y and where the residual variance is different between sexes.

For the response y and observation number i we have:

yi|β, u, βd ∼ N(Xiβ + Ziu, exp(Xd,iβd))

The hglm Package (Version 2.0) Lars Rönnegård, Moudud Alam, Xia Shen
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Figure 3: Deviance diagnostics for each observation and level in the random effect.
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u ∼ MVN(0, Iσ2
u)

where β and u are the fixed and random effects in the mean part of the model, βd is the fixed effect
in the residual variance part of the model. The variance of the random effect u is given by σ2

u. The
subscript i for the matrices X, Z, and Xd indicate the i:th row. Here, a log link function is used for
the dispersion term (i.e. the residual variance) and the model for the residual variance is therefore
given by exp(Xd,iβd). In the more general GLM notation the dispersion term φ is given by the residual
variance here and log(φi) = Xd,iβd.

This model is not possible to fit in the dglm package, for instance, because we have random effects
in the mean part of the model and it is also an improvement compared to the glmer() function since
we allow a model for the residual variance.

We simulate data where there are five clusters with 20 observations in each cluster. For the mean
part of the model, The simulated intercept value is µ = 0 and the variance for the random effect is
σ2

u = 0.2. Given the explanatory variable xd, the simulated residual variance is 1.0 for xd = 0 and 2.72
for xd = 1. In this example, and the following ones, we show how the input code can be given in
terms of the model matrices y, X, Z and X.disp instead of using R formula.

n.cluster <- 5
n.per.cluster <- 20
sigma2_u <- 0.2
sigma2_e <- 1
beta.disp <- 1
mu <- 0
n <- n.cluster * n.per.cluster
set.seed(1234)
X <- matrix(1, n, 1)
Z <- diag(n.cluster) %x% rep(1, n.per.cluster)
a <- rnorm(5, 0, sqrt(sigma2_u))
X_d <- matrix(1, n, 2)
X_d[, 2] <- rbinom(n, 1, 0.5)
e <- rnorm(n, 0, sqrt(sigma2_e * exp(beta.disp * X_d[, 2])))
y <- mu + Z %*% a + e
simul1 <- hglm(y = y, X = X, Z = Z, X.disp = X_d)
summary(simul1)

## Call:
## hglm.default(X = X, y = y, Z = Z, X.disp = X_d)
##
## ----------
## MEAN MODEL
## ----------
##
## Summary of the fixed effects estimates:
##
## Estimate Std. Error t-value Pr(>|t|)
## X.1 -0.004186 0.267928 -0.016 0.988
## Note: P-values are based on 96 degrees of freedom
##
## Summary of the random effects estimates:
##
## Estimate Std. Error
## Z.1 0.0454 0.3163
## Z.2 0.0284 0.3183
## Z.3 0.4311 0.3173
## Z.4 -0.8330 0.3163
## Z.5 0.3282 0.3129
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##
## ----------------
## DISPERSION MODEL
## ----------------
##
## NOTE: h-likelihood estimates through EQL can be biased.
##
## Model estimates for the dispersion term:
##
## Link = log
##
## Effects:
## Estimate Std. Error
## 1 0.0247 0.1859
## 2 0.5048 0.2958
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## Dispersion parameter for the random effects:
## [1] 0.298
##
## Dispersion model for the random effects:
##
## Link = log
##
## Effects:
## .|Random1
## Estimate Std. Error
## -1.2107 0.7758
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## EQL estimation converged in 5 iterations.

The output shows that the variance of the random effect is 0.298, and that β̂d = (0.0247, 0.5048).

Poisson model with Gamma distributed random effects

For dependent count data it is common to model a Poisson distributed response with a gamma
distributed random effect (Lee et al., 2006). If we assume no overdispersion conditional on u and
thereby have a fixed dispersion term, this model may be specified as:

E(yi|β, u) = exp(Xiβ + Ziv)

where a level j in the random effect v is given by vj = log(uj) and uj are iid with gamma distribution
having mean and variance: E(uj) = 1, var(uj) = λ.

This model is also possible to fit with the hglm package and extends other GLMM functions (e.g.
glmer()) to allow for non-normal distributions for the random effect.

We simulate a Poisson model with random effects and test if there are differences in the dispersion
term for an explanatory variable xd. This example uses the data from the previous example. Hence, the
simulated parameters and matrices mu, a and Z are the same. (Continued from the previous example)

eta <- exp(mu + Z %*% a)
y <- rpois(length(eta), eta)
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simul.pois <- hglm(y = y, X = X, Z = Z, X.disp = X_d, family = poisson(link = log))
summary(simul.pois)

## Call:
## hglm.default(X = X, y = y, Z = Z, family = poisson(link = log),
## X.disp = X_d)
##
## ----------
## MEAN MODEL
## ----------
##
## Summary of the fixed effects estimates:
##
## Estimate Std. Error t-value Pr(>|t|)
## X.1 -0.07242 0.34406 -0.21 0.834
## Note: P-values are based on 95 degrees of freedom
##
## Summary of the random effects estimates:
##
## Estimate Std. Error
## Z.1 -0.7040 0.4189
## Z.2 0.3625 0.3748
## Z.3 0.8082 0.3640
## Z.4 -0.7171 0.4196
## Z.5 0.2504 0.3752
##
## ----------------
## DISPERSION MODEL
## ----------------
##
## NOTE: h-likelihood estimates through EQL can be biased.
##
## Model estimates for the dispersion term:
##
## Link = log
##
## Effects:
## Estimate Std. Error
## 1 -0.0367 0.1859
## 2 0.3427 0.2963
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## Dispersion parameter for the random effects:
## [1] 0.5244
##
## Dispersion model for the random effects:
##
## Link = log
##
## Effects:
## .|Random1
## Estimate Std. Error
## -0.6454 0.7515
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## EQL estimation converged in 5 iterations.

The hglm Package (Version 2.0) Lars Rönnegård, Moudud Alam, Xia Shen



R PACKAGE VIGNETTE 15

The estimated variance of the random effect is 0.5244. The output also gives the estimate and standard
error (0.7515) of log(σ2

u).

Poisson-Gamma model with an offset for the mean model

The pump failure data of Gaver and O’Muircheartaigh (1987) contains the number of failures yi and
the period of operation ti recorded for each of 10 pumps, so that the empirical failure rate is yi/ti.
Gaver and O’Muircheartaigh (1987) mentioned that there are two groups of the pumps, where 4
pumps were operated continuously, and the rest intermittently. We fit the conjugate Poisson-Gamma
HGLM with the group effects as fixed effects, the effects of the pumps as random effects, and an offset
of log ti.

data(pump)
offset.model <- hglm(fixed = S ~ factor(Gr), random = ~1 | System, offset = log(t),

fix.disp = 1, family = poisson(), rand.family = Gamma(link = log), data = pump)
print(offset.model)

## Call:
## hglm.formula(family = poisson(), rand.family = Gamma(link = log),
## fixed = S ~ factor(Gr), random = ~1 | System, data = pump,
## fix.disp = 1, offset = log(t))
##
## ---------------------------
## Estimates of the mean model
## ---------------------------
##
## Fixed effects:
## (Intercept) factor(Gr)1
## 0.07479 -1.66527
##
## Random effects:
## as.factor(System)1 as.factor(System)2 as.factor(System)3
## 0.2951 0.1092 0.4324
## ...
## as.factor(System)9 as.factor(System)10
## 1.542 1.874
## NOTE: to show all the random effects estimates, use print(hglm.object, print.ranef = TRUE).
##
## Dispersion parameter for the mean model: 1
##
## Dispersion parameter for the random effects: 1.047
##
## Estimation converged in 4 iterations

On a log scale, the dispersion estimate of the random effects is log(1.0467) = 0.5523.

Linear mixed model with a correlated random effect

In animal breeding, it is important to estimate variance components prior to ranking of animal
performances (Lynch and Walsh, 1998). In such models the genetic effect of each animal is modelled as
a level in a random effect and the correlation structureA is a matrix with known elements calculated
from the pedigree information. The model is given by

yi|β, u ∼ N( Xiβ + Ziu, σ2
e )
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Figure 4: Histogram and qqplot for the analyzed trait in the QTLMAS data.

u ∼ MVN(0, Aσ2
u)

The model may be reformulated as (e.g. Lee et al., 2006; Rönnegård and Carlborg, 2007)

yi|β, u ∼ N( Xiβ + Z∗i u∗, σ2
e )

u∗ ∼ MVN(0, Iσ2
u)

where Z∗ = ZL and L is the Cholesky factorization of A.
The model can be fitted with the hglm() function since the input matrix Z is user-specified. Now

we analyze the data set QTLMAS included in the hglm package as an example. The data consists of
2025 individuals from two generations where 1000 individuals have observed trait values y that are
approximately normal (Figure 4). The data we analyze was simulated for the QTLMAS 2009 Workshop
(Coster et al., 2009)1.

data(QTLMAS)
y <- QTLMAS[, 1]
pdf("fig_qtlmas_y.pdf", height = 5, width = 10)
par(mfrow = c(1, 2), pty = "s")
hist(y, density = 18, col = "slateblue")
qqnorm(y, col = "olivedrab")
qqline(y, col = 2)
dev.off()

## pdf
## 2

A longitudinal growth trait was simulated but for simplicity we analyze only the values given
on the third occasion at age 265 days. We fitted a model with a fixed intercept and a random animal
effect, a, where the correlation structure of a is given by the additive relationhip matrix A (which
is obtained from the available pedigree information). A design matrix Z0 was constructed giving
relating observation id-number in the pedigree. For observation yi coming from individual j in the
ordered pedigree file Z0[i, j] = 1, and all other elements are 0. Let L be the Cholesky factorization of
A, and Z = Z0L. The design matrix for the fixed effects, X, is a column of ones.

1http://www.qtlmas2009.wur.nl/UK/Dataset
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rm(list = ls())
data(QTLMAS)
y <- QTLMAS[, 1]
Z <- as.matrix(QTLMAS[, 2:2026])
X <- matrix(1, 1000, 1)
system.time(test1 <- hglm(y = y, X = X, Z = Z))

## NOTE: You are fitting a model with one Gaussian random effect term,
## and the number of effects (p) is greater than the number of
## observations (n). Consider turning on the argument 'bigRR' that may
## speed up a lot if p >> n.
## user system elapsed
## 14.951 0.308 16.130

print(test1)

## Call:
## hglm.default(X = X, y = y, Z = Z)
##
## ---------------------------
## Estimates of the mean model
## ---------------------------
##
## Fixed effects:
## X.1
## 7.28
##
## Random effects:
## Z1 Z2 Z3
## -1.192 1.649 1.319
## ...
## Z2024 Z2025
## 0.4102 -0.2024
## NOTE: to show all the random effects estimates, use print(hglm.object, print.ranef = TRUE).
##
## Dispersion parameter for the mean model: 2.211
##
## Dispersion parameter for the random effects: 1.503
##
## Estimation converged in 2 iterations

The estimated variance components are σ̂2
e = 2.2112 and σ̂2

u = 1.5025.

Random regression with a Gamma distributed random effect

The observed trait values y are the same as the previous example. Here we model a Gamma distributed
random marker effect on chromosome 1. The incidence matrix Zm is 1000× 90 since there are 1000
observed phenotypes and 90 genetic markers on chromosome 1 in this data set. An element Zm[i, j] is
given by the number of copies (0, 1 or 2) for marker j in individual i. The design matrix for the fixed
effects, X, is a column of ones. The marker with the highest estimated random effect (Figure 5) was
close to the main genetic effect simulated on chromosome 1. (Continued from the previous example)

Z.markers <- as.matrix(QTLMAS[, 2027:2116])
test2 <- hglm(y = y, X = X, Z = Z.markers, rand.family = Gamma(link = log))
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Figure 5: Estimated random effects for the 90 markers on chromosome 1 for trait values at 265 days.
The main genetic effect was simulated close to marker number 40.

pdf("fig_qtlmas_effects.pdf", width = 8, height = 5)
plot(log(test2$ranef), type = "h", col = "slateblue")
dev.off()

## pdf
## 2

Binomial model with a Beta distributed random effect

The seed germination data presented by Crowder (1978) has previously been analyzed using a
binomial GLMM (Breslow and Clayton, 1993) and a binomial-beta HGLM (Lee and Nelder, 1996).
The data consists of 831 observations from 21 germination plates. The effect of seed variety and type
of root extract was studied in a 2× 2 factorial lay-out. We fit the binomial-beta HGLM used by Lee
and Nelder (1996) and setting the convergence criteria in hglm() to 0.005 produces the same estimates
for the fixed effects as the ones obtained by Lee and Nelder (with differences < 10−2). The beta
distribution parameter α in Lee and Nelder (1996) was defined as 1/(2a) where a is the dispersion
term obtained from hglm().

data(seeds)
germ <- hglm(fixed = r/n ~ extract * I(seed == "O73"), weights = n, data = seeds,

random = ~1 | plate, family = binomial(), rand.family = Beta(), fix.disp = 1)
summary(germ)

## Call:
## hglm.formula(family = binomial(), rand.family = Beta(), fixed = r/n ~
## extract * I(seed == "O73"), random = ~1 | plate, data = seeds,
## weights = n, fix.disp = 1)
##
## ----------
## MEAN MODEL
## ----------
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##
## Summary of the fixed effects estimates:
##
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) -0.54240 0.19108 -2.839 0.017591
## extractCucumber 1.33916 0.27085 4.944 0.000583
## I(seed == "O73")TRUE 0.07651 0.30897 0.248 0.809442
## extractCucumber:I(seed == "O73")TRUE -0.82567 0.43077 -1.917 0.084261
##
## (Intercept) *
## extractCucumber ***
## I(seed == "O73")TRUE
## extractCucumber:I(seed == "O73")TRUE .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Note: P-values are based on 10 degrees of freedom
##
## Summary of the random effects estimates:
##
## Estimate Std. Error
## as.factor(plate)1 0.4430 0.2482
## as.factor(plate)2 0.5021 0.2304
## as.factor(plate)3 0.4405 0.2259
## ...
## NOTE: to show all the random effects, use print(summary(hglm.object), print.ranef = TRUE).
##
## ----------------
## DISPERSION MODEL
## ----------------
##
## NOTE: h-likelihood estimates through EQL can be biased.
##
## Dispersion parameter for the mean model:
## [1] 1
##
## Model estimates for the dispersion term:
##
## Link = log
##
## Effects:
## [1] 1
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## Dispersion parameter for the random effects:
## [1] 0.02442
##
## Dispersion model for the random effects:
##
## Link = log
##
## Effects:
## .|Random1
## Estimate Std. Error
## -3.7124 0.5348
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##

The hglm Package (Version 2.0) Lars Rönnegård, Moudud Alam, Xia Shen



R PACKAGE VIGNETTE 20

## EQL estimation converged in 10 iterations.

The output from the R code gives â = 0.0244 and the corresponding estimate given in Lee and Nelder
(1996) is â = 1/(2α̂) = 0.023.

Gamma HGLM with a structured dispersion

In this example, we analyze the semiconductor data taken from Myers et al. (2002), which involves
a designed experiment in a semiconductor plant. Six factors, lamination temperature, lamination
time, lamination pressure, firing temperature, firing cycle time and firing dew point, are employed,
and we are interested in the curvature of the substrate devices produced in the plant. The curvature
measurement is made four times on each device produced. Each design variable in taken at two levels.
The measurement is known to be non-normally distributed, and the measurements taken on the same
device are correlated. Myers et al. (2002) considered a gamma response model with a log link and
used a GEE method assuming an AR(1) working correlation.

We consider a gamma HGLM by adding a random effect for the device in the mean model

log µ = β0 + x1β1 + x3β3 + x5β5 + x6β6.

And the dispersion model is
log φ = γ0 + x2γ2 + x3γ3

The variance λ of random effects represents the between-group variance, while φ represents the
within-group variance. Results are shown as follows, and residual plots for the mean and dispersion
models are in Figures (6, 7, 8, 9). The estimates are the same as those obtained using EQL in GenStat.

data(semiconductor)
gamma.model <- hglm(fixed = y ~ x1 + x3 + x5 + x6, random = ~1 | Device, family = Gamma(link = log),

disp = ~x2 + x3, data = semiconductor)
summary(gamma.model)

## Call:
## hglm.formula(family = Gamma(link = log), fixed = y ~ x1 + x3 +
## x5 + x6, random = ~1 | Device, disp = ~x2 + x3, data = semiconductor)
##
## ----------
## MEAN MODEL
## ----------
##
## Summary of the fixed effects estimates:
##
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) -4.71168 0.06696 -70.368 < 2e-16 ***
## x1 0.20979 0.06638 3.160 0.00263 **
## x3 0.32893 0.06696 4.913 9.34e-06 ***
## x5 -0.17314 0.06638 -2.608 0.01185 *
## x6 -0.35690 0.06633 -5.380 1.80e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Note: P-values are based on 52 degrees of freedom
##
## Summary of the random effects estimates:
##
## Estimate Std. Error
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## as.factor(Device)1 0.2724 0.1787
## as.factor(Device)2 0.0097 0.1787
## as.factor(Device)3 -0.2697 0.1584
## ...
## NOTE: to show all the random effects, use print(summary(hglm.object), print.ranef = TRUE).
##
## ----------------
## DISPERSION MODEL
## ----------------
##
## NOTE: h-likelihood estimates through EQL can be biased.
##
## Model estimates for the dispersion term:
##
## Link = log
##
## Effects:
## Estimate Std. Error
## (Intercept) -2.5887 0.1972
## x2 -0.6861 0.1971
## x3 -0.5024 0.1971
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## Dispersion parameter for the random effects:
## [1] 0.0486
##
## Dispersion model for the random effects:
##
## Link = log
##
## Effects:
## .|Random1
## Estimate Std. Error
## -3.0242 0.5172
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## EQL estimation converged in 4 iterations.

plot(gamma.model, cex = 0.6, pch = 1, cex.axis = 1/0.6, cex.lab = 1/0.6, cex.main = 1/0.6,
mar = c(3, 4.5, 0, 1.5), device = "pdf", name = "fig_semi")

More than one random effect in the hglm2 function

From version 1.2 of the hglm package, it is possible to fit models having several random effects. The
model is specified using the lme4 formula convension in the hglm2 function, or using the matrix-type
input X,y,Z in the hglm function as described earlier. Here the hglm2 function is illustrated using
the classical data set from a Salamander mating experiment McCullagh and Nelder (1989). The
binary response variable (Mate) is mating success or not, and two variance components σ2

f and σ2
m are

estimated for females and males, respectively.

data(salamander)
hglm.salam <- hglm2(meanmodel = Mate ~ TypeF + TypeM + TypeF * TypeM + (1 |
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Figure 6: Residual plots of the mean model for the semiconductor data.
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Figure 7: Residual plots of the dispersion model for the semiconductor data.
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Figure 8: Diagnostics plots of the hat-values and deviances for the semiconductor data.
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Figure 9: Deviance diagnostics for each observation and level in the random effects (the semiconductor
data).
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Female) + (1 | Male), family = binomial(), data = salamander, conv = 1e-08,
maxit = 40)

summary(hglm.salam)

## Call:
## hglm2.formula(meanmodel = Mate ~ TypeF + TypeM + TypeF * TypeM +
## (1 | Female) + (1 | Male), data = salamander, family = binomial(),
## conv = 1e-08, maxit = 40)
##
## ----------
## MEAN MODEL
## ----------
##
## Summary of the fixed effects estimates:
##
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 0.7881 0.3210 2.455 0.0146 *
## TypeFW -2.2903 0.4315 -5.308 2.12e-07 ***
## TypeMW -0.5410 0.3890 -1.391 0.1654
## TypeFW:TypeMW 2.8208 0.4974 5.671 3.26e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Note: P-values are based on 308 degrees of freedom
##
## Summary of the random effects estimates:
##
## Estimate Std. Error
## (Intercept)| Female:1 0.3982 0.6527
## (Intercept)| Female:2 0.7099 0.6902
## (Intercept)| Female:3 0.3160 0.6595
## ...
## NOTE: to show all the random effects, use print(summary(hglm.object), print.ranef = TRUE).
##
## Summary of the random effects estimates:
##
## Estimate Std. Error
## (Intercept)| Male:1 0.7426 0.6451
## (Intercept)| Male:2 0.0169 0.6435
## (Intercept)| Male:3 0.7487 0.6439
## ...
## NOTE: to show all the random effects, use print(summary(hglm.object), print.ranef = TRUE).
##
## ----------------
## DISPERSION MODEL
## ----------------
##
## NOTE: h-likelihood estimates through EQL can be biased.
##
## Dispersion parameter for the mean model:
## [1] 0.9954
##
## Model estimates for the dispersion term:
##
## Link = log
##
## Effects:
## Estimate Std. Error
## -0.0046 0.0806
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##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## Dispersion parameter for the random effects:
## [1] 0.7245 0.6402
##
## Dispersion model for the random effects:
##
## Link = log
##
## Effects:
## .|Random1
## Estimate Std. Error
## -0.3222 0.2833
##
## .|Random2
## Estimate Std. Error
## -0.4460 0.2941
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## EQL estimation converged in 28 iterations.

The results show that σ̂2
f = 0.7245 and σ̂2

m = 0.6402 (the EQL method in GenStat gives σ̂2
f = 0.72 and

σ̂2
m = 0.62).

EQL1 correction for a Poisson GLMM

The EQL1 method gives improved estimates compared to EQL1 for a Poisson GLMM when the number
of levels in the random effect are large and i.i.d. The implementation follows the Appendix in Lee and
Lee (2012). In the following example we show how the bias using EQL1, for the extreme case of having
the number of levels equal to the number of observations, can be resolved by using EQL1.

# A simulation study to compare EQL and EQL1 estimates in Poisson GLMM where
# No. of levels in the random effect = No. of observations
n <- 100 # No. of observations
p <- 100 # No. of levels in the random effect
Z <- diag(p)
sigma2u <- 1 # Variance of the random effects
mu <- 1 # Simulated intercept term
n.rep <- 30 # Number of simulation replicates
set.seed(123)
results.EQL <- results.EQL1 <- matrix(NA, n.rep, 3)
colnames(results.EQL) <- colnames(results.EQL1) <- c("Intercept", "Variance component",

"Converged")
# This takes a while to run!
t0 <- proc.time()[3]
for (i.rep in 1:n.rep) {

u <- rnorm(p, 0, sqrt(sigma2u))
eta <- mu + Z %*% u
y <- rpois(n, exp(eta))
hglm <- hglm(y = y, X = matrix(1, n, 1), Z = Z, family = poisson(link = log),

fix.disp = 1, maxit = 100)
results.EQL[i.rep, 1] = hglm$fixef
results.EQL[i.rep, 2] = hglm$varRanef
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results.EQL[i.rep, 3] = as.numeric(hglm$Converge == "converged")
hglm.EQL1 <- hglm(y = y, X = matrix(1, n, 1), Z = Z, family = poisson(link = log),

fix.disp = 1, maxit = 100, method = "EQL1")
results.EQL1[i.rep, 1] = hglm.EQL1$fixef
results.EQL1[i.rep, 2] = hglm.EQL1$varRanef
results.EQL1[i.rep, 3] = hglm.EQL1$Converge == "converged"
if (i.rep%%10 == 0)

cat(i.rep, " ")
}

## 10 20 30

proc.time()[3] - t0

## elapsed
## 23.49

summary(results.EQL)

## Intercept Variance component Converged
## Min. :0.938 Min. :0.585 Min. :1
## 1st Qu.:1.056 1st Qu.:0.747 1st Qu.:1
## Median :1.109 Median :0.817 Median :1
## Mean :1.119 Mean :0.851 Mean :1
## 3rd Qu.:1.184 3rd Qu.:0.952 3rd Qu.:1
## Max. :1.270 Max. :1.266 Max. :1

summary(results.EQL1)

## Intercept Variance component Converged
## Min. :0.793 Min. :0.649 Min. :1
## 1st Qu.:0.913 1st Qu.:0.835 1st Qu.:1
## Median :0.968 Median :0.909 Median :1
## Mean :0.982 Mean :0.935 Mean :1
## 3rd Qu.:1.058 3rd Qu.:1.039 3rd Qu.:1
## Max. :1.155 Max. :1.367 Max. :1

Note that both the intercept term and the variance component are highly biased for the EQL method
(and that one replicate did not converge). The EQL1 method corrects estimate of the intercept term
(from a median of 1.1087 down to 0.9679, with a true simulated value of 0) and as consequence the
estimate of the variance component is also improved (from a median of 0.8172 to 0.9095, with a true
simulated value of 1).

Fitting a spatial Markov Random Field model using the CAR family

In spatial data analysis, Generalized Linear Mixed Models (GLMM) with spatially correlated random
effects are commonly used (Cressie, 1993). A spatial GLMM with random effects being distributed as
the Gaussian Markov Random Field (GMRF) is presented as follows

E[zs|us] = µs

g(µs) = ηs = XT
s β + Zsus

s = 1, 2, ..., n (17)
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zs|us ∼ Exponential Family (18)

with zs|us ⊥ zt|ut, ∀s 6= t and

u = (u1, u2, . . . , un)
T ∼ N(0, Σ = τ(I− ρD)−1) (19)

where s represents a location identified by the coordinates (x(s), y(s)), β is a vector of fixed effects,
Xs is the vector observed covariates at location s and us being the location specific random effects.
The D matrix in Equation 19 is generally a function of the location coordinates (or a neighbourhood
matrix for areas) and are known (see e.g. Clayton and Kaldor, 1987). The two parametersτ and ρ are
estimated.

A well-known data set is the Scottish Lip Cancer data (Clayton and Kaldor, 1987), which is
available in the hglm package. An example is given as follows.

data(cancer)
logE <- log(E)
X11 <- model.matrix(~Paff)
m41 <- hglm(X = X11, y = O, Z = diag(length(O)), family = poisson(), rand.family = CAR(D = nbr),

offset = logE, conv = 1e-09, maxit = 200, fix.disp = 1, method = "EQL1")
summary(m41)

## Call:
## hglm.default(X = X11, y = O, Z = diag(length(O)), family = poisson(),
## rand.family = CAR(D = nbr), method = "EQL1", conv = 1e-09,
## maxit = 200, fix.disp = 1, offset = logE)
##
## ----------
## MEAN MODEL
## ----------
##
## Summary of the fixed effects estimates:
##
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 0.23370 0.20804 1.123 0.27197
## Paff 0.03770 0.01221 3.087 0.00489 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Note: P-values are based on 25 degrees of freedom
##
## Summary of the random effects estimates:
##
## Estimate Std. Error
## [1,] 0.6715 1.0488
## [2,] 0.5845 0.3833
## [3,] 0.4373 0.5219
## ...
## NOTE: to show all the random effects, use print(summary(hglm.object), print.ranef = TRUE).
##
## ----------------
## DISPERSION MODEL
## ----------------
##
## NOTE: h-likelihood estimates through EQL can be biased.
##
## Dispersion parameter for the mean model:
## [1] 1
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##
## Model estimates for the dispersion term:
##
## Link = log
##
## Effects:
## [1] 1
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## Dispersion parameter for the random effects:
## [1] 599.5
##
## Dispersion model for the random effects:
##
## Link = log
##
## Effects:
## .|Random1
## Estimate Std. Error
## 1/CAR.tau 6.396 1.7002
## -CAR.rho/CAR.tau -1.112 0.2983
## CAR.tau (estimated spatial variance component): 0.1563
## CAR.rho (estimated spatial correlation): 0.1739
##
## Dispersion = 1 is used in Gamma model on deviances to calculate the standard error(s).
##
## EQL1 estimation converged in 11 iterations.

hglm provides efficient estimation procedure of the GMRF models, which enables fitting moder-
ately sized CAR model on an ordinary computer (see also the comparison with spaMM in section
2.18).

It should be noted that there are concerns or drawbacks of CAR/SAR models, listed as follows,
which require further investigation in spatial statistics. However, these would not preclude the use of
such models in practice.

1. How to construct D matrix? Should it be a neighborhood matrix or some other type of weight
matrix (LeSage and Pace, 2009; Wall, 2004; Ord, 1975). The choices are often made subjectively.

2. What to do with the locations on the edges so that the global dependence structure is uniquely
represented by the model defined for the sample locations (Cressie, 1993)? So far there is no
clear answer to this question.

3. Should one let (I− ρD) to be non-singular in CAR models? If one wants it to be non-singular
then restrictions on ρ are needed to make the covariance matrix positive definite. This in turn
might put a certain restriction on the correlation structure (unwanted) between locations (Wall,
2004).

4. How to compare ρ and τ parameters between CAR and SAR models (Cressie, 1993; Wall, 2004)?
Again, there is no straight answer to this question, either.

Though CAR and SAR structures have their own drawbacks (see Cressie, 1993; Wall, 2004), they
are very frequently used and widely suggested in standard text books on spatial data analysis (see
e.g. Cressie, 1993; LeSage and Pace, 2009; Hodges, 2013). For CAR models, ρdi,j represents partial
correlation, i.e. Cor(ui, uj|u−(i,j))u−(i,j) = ρdi,j where u− (i, j) represents a vector all the u’s but the
i’th and j’th.
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Fitting several random effects from different families

Suppose we wish to fit a spatial random effect and an i.i.d. Gaussian random effect. The following
example shows how this is possible (from version 2.0).

set.seed(123)
V <- matrix(rnorm(20000), 100, 200)
Sigma <- tcrossprod(V)
rho <- 0.5
tau <- 1.5
D <- (diag(100) - solve(Sigma/tau))/rho
require(mvtnorm)
u1 <- as.numeric(rmvnorm(1, sigma = Sigma))
Z1 <- diag(100)
z2 <- factor(rep(LETTERS[1:20], rep(5, 20)))
Z2 <- model.matrix(~0 + z2)
u2 <- rnorm(20, 0, sqrt(2))
x1 <- rnorm(100)
x2 <- rnorm(100)
y <- 1 + 2 * x1 + 3 * x2 + Z1 %*% u1 + Z2 %*% u2 + rnorm(100, 0, 1)
carnorm <- hglm(X = cbind(rep(1, 100), x1, x2), y = y, Z = cbind(Z1, Z2), rand.family = list(CAR(D = D),

gaussian()), RandC = c(100, 20))
print(carnorm)

## Call:
## hglm.default(X = cbind(rep(1, 100), x1, x2), y = y, Z = cbind(Z1,
## Z2), rand.family = list(CAR(D = D), gaussian()), RandC = c(100,
## 20))
##
## ---------------------------
## Estimates of the mean model
## ---------------------------
##
## Fixed effects:
## x1 x2
## 0.751 2.292 4.361
##
## Random effects:
##
## -4.880 -1.546 -29.415
## ...
##
## 33.32 -15.67
## NOTE: to show all the random effects estimates, use print(hglm.object, print.ranef = TRUE).
##
## Random effects:
## z2A z2B z2C
## -2.095 0.837 1.776
## ...
## z2S z2T
## 0.002018 0.455228
## NOTE: to show all the random effects estimates, use print(hglm.object, print.ranef = TRUE).
##
## Dispersion parameter for the mean model: 8.462
##
## Dispersion parameter for the random effects: 2.674 1.222
##
## Estimation converged in 45 iterations
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Likelihood-ratio test for dispersion parameters

From version 2.0, hglm package provides the lrt function for performing likelihood-ratio test (LRT)
for the estimated random effects variance components or dispersion parameters. The test statistic
follows Self and Liang (1987)’s mixture χ2 distribution since the tested parameters are bounded above
zero. The function is able to test a single random effects model against the null model without random
effects, or compare two estimated HGLMs to test the parameters that they differ. See the examples as
follows.

set.seed(911)
x1 <- rnorm(100)
x2 <- rnorm(100)
x3 <- rnorm(100)
z1 <- factor(rep(LETTERS[1:10], rep(10, 10)))
z2 <- factor(rep(letters[1:5], rep(20, 5)))
Z1 <- model.matrix(~0 + z1)
Z2 <- model.matrix(~0 + z2)
u1 <- rnorm(10, 0, sqrt(2))
u2 <- rnorm(5, 0, sqrt(3))
y <- 1 + 2 * x1 + 3 * x2 + Z1 %*% u1 + Z2 %*% u2 + rnorm(100, 0, sqrt(exp(x3)))
dd <- data.frame(x1 = x1, x2 = x2, x3 = x3, z1 = z1, z2 = z2, y = y)
m20 <- hglm(X = cbind(rep(1, 100), x1, x2), y = y, Z = Z1, calc.like = TRUE)
lrt(m20)

##
## Likelihood-ratio test
##
## data: m20
## LRT statistic = 74.38, p-value < 2.2e-16

m21 <- hglm(X = cbind(rep(1, 100), x1, x2), y = y, Z = cbind(Z1, Z2), RandC = c(10,
5), calc.like = TRUE)

lrt(m20, m21)

##
## Likelihood-ratio test
##
## data: m20 v.s. m21
## LRT statistic = 0.8245, p-value = 0.1819

Summary

The hierarchical generalized linear model approach gives new possibilities to fit generalized linear
models with random effects. The hglm package extends existing GLMM fitting algorithms to include
fixed effects in a model for the residual variance, fit models where the random effect distribution is
not necessarily Gaussian and estimate variance components for correlated random effects. For such
models there are important applications in, for instance: genetics (Noh et al., 2006), survival analysis
(Ha and Lee, 2005), count data (Lee et al., 2006) and dichotomous responses (Noh and Lee, 2007). We
therefore expect that this new package will be of use for applied statisticians in several different fields.
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Discussions on h-likelihood theory

For the users not previously acquainted with h-likelihood theory, we summarize here the discussions
in Lee and Nelder (1996), Lee et al. (2007), Lee and Nelder (2006) and the collection of discussion
papers in Statistical Science vol. 24 no. 3 (Lee and Nelder, 2009a; Meng, 2009; Louis, 2009; Molenberghs
et al., 2009; Lee and Nelder, 2009b). We try to keep this summary objective to reflect the most important
parts of the discussions. Thereafter, we give our view of which parts of the discussion that has not
been settled yet and may have consequences on the hglm package.

Summary of discussions by Clayton, Kuha and Firth following Lee and Nelder (1996) and
the Discussion section in Lee et al. (2007)

In the Discussions following Lee and Nelder (1996), it is claimed that: i) the h-likelihood is not a true
likelihood, ii) if there is little information on each of the random effects we can expect the estimates
to be biased, and iii) the h-likelihood could be interpreted in a Bayesian viewpoint as a posterior
distribution with uniform priors so that we can only expect the estimates to be satisfactory if there is
plenty of information on each of the random effects.

In Lee et al. (2007) the authors address these criticisms. Specifically they address the following
three points:

i) The h-likelihood is not a valid likelihood.

ii) The h-likelihood is not invariant to non-linear transformation of the random effects.

iii) There are problems in the analysis of binary matched pairs data.

The authors claim that the h-likelihood is a valid likelihood. Unlike the classical likelihood, however,
which contain the two objects: data (observed random variables) and unknown fixed parameters, the
h-likelihood also contains a third object, unobserved random variables. Based on Bjornstad (1996)
extended likelihood principle we should expect a joint likelihood, including both fixed and random
parameters, to carry all the information about these parameters. (For an excellent review on the
extended likelihood principle, see Pawitan (2001)). In Lee and Nelder (2005) the authors explained
why they consider the h-likelihood to be a joint likelihood appropriate for statistical inference of
HGLMs.

Concerning the h-likelihood and invariance, here it is important to note that the h-likelihood is not
a general joint likelihood. In the h-likelihood it is imposed that a proper scale for the random effects is
chosen, and consequently the problem of invariance may be an issue for a general joint likelihood but
not for the h-likelihood.

One might expect that the h-likelihood has similar problems as the Penalized Quasi-Likelihood
(PQL) method (Breslow and Clayton, 1993) for analysis of binary matched pairs (i.e. the extreme
case of having few observations for each of the random effects). The authors show however that the
estimation method they call HL(2) gives estimates very close to the marginal likelihood estimates
obtained by numerical integration. The method HL(2) is a higher order approximation to the h-
likelihood. Hence, there does not seem to be a major problem with the h-likelihood itself but rather
there is an issue of choosing a computational method that produces correct h-likelihood results.

This is not the only paper where binary outcomes with little information on each of the random
effects have been investigated for the h-likelihood. Noh et al. (2006) showed that the bias in variance
component estimates were very small, compared to PQL, for binary outcomes in related individuals
of small families. To obtain good estimates for the h-likelihood an appropriate computational method
was developed (similar to the HL(2) method in Noh and Lee (2007)).
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Summary of Firth’s discussion in Lee and Nelder (2006)

i) The choice of the function for the random effects cannot be made on grounds of additivity, i.e. the
transformation v(u) that makes fixed and random effects additive. Two simple examples are
given.

ii) The h-likelihood may lead to inconsistent estimators and it is not reasonable for Lee and Nelder to
claim that the h-likelihood gives a general method for generalized linear models with random
effects.

iii) The problem of bias should not be specific for binary outcomes but rather be a general problem
for situations where there is little information on each of the random effects.

The authors reply that it should be noted that although the choice of link function for the random
effects is difficult in the examples given by Firth, the adjusted profile h-likelihood still gives satisfactory
estimates for the fixed parameters.

Discussion in papers of Statistical Science vol. 24 no. 3

Lee and Nelder (2009a) base their argumentation on the extended likelihood principle (Bjornstad, 1996)
to explain why the h-likelihood should be used for inference of models with unobservable random
effects. The idea of the h-likelihood is that the marginal likelihood should be used for estimating fixed
effects, the h-likelihood should be maximized to estimate random effects and the adjusted profile
likelihood for the estimation of dispersion parameters. When the marginal likelihood is difficult to
compute, the adjusted profile h-likelihood (with profiling over the random effects) is proposed as an
alternative.

They criticize the use of estimation methods that are not included in a probabilistic framework,
such as GEE and empirical Bayes methods. It is emphasized that the h-likelihood inference can be
made without the necessity of inventing priors, as opposed to Bayesian methods.

By using the example of Bayarri et al. (1988), they illustrate the importance of choosing the scale
for the random effects so that the maximization of the h-likelihood gives the MLE for the fixed effects.
In this example the outcome y follows an exponential distribution conditional on a random effect
u, where u is also exponentially distributed. The point of this example is that useless estimators
are derived if the joint likelihood is maximized. However, Lee and Nelder (2009a) claim that the
h-likelihood is defined for the specific scale v = log u, which is shown to produce sensible estimates of
the fixed parameter and the random effects. They admit that “the choice of the scale in defining the h-
likelihood is important to guarantee the meaningfulness of the mode estimation”. Furthermore: “The
(weak) canonical scale in HGLMs leads to an invariance of a certain extended likelihood. However, in
general the validity of such a scale has not been established.”

Louis (2009) considers the paper by Lee and Nelder as a piece of “over promotion” and “more of
an opinion-piece than a scientific comparison of approaches”. He agrees that h-likelihood estimation
can be valid and efficient under some settings but it is not globally valid.

Molenberghs et al. (2009) review different estimation methods for models with random effects
and to them it is clear that no method can “claim uniform superiority over all others”. They also
emphasis the importance of assessing a suite of models to judge, through sensitivity analysis, how key
inferences are vulnerable to model choice, which was neglected in Lee and Nelder (2009a).

Meng (2009) derives the necessary constraints for the scale of the random effects to be used in the
h-likelihood. The similarity (and differences) to Bayesian analysis with uniform priors is pointed out,
and concludes that the h-likelihood is just an approximation to the Bayesian posterior for the special
case of having uniform priors.

In response, Lee and Nelder (2009b) note that both Louis and Meng say that the extended likelihood
such as the h-likelihood does carry information about the unobservables but that the Bayesian
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approach is best suited for the inference. In contrast to the many possible priors in the Bayesian
framework, the authors say that “in our system there is only one corresponding prior likelihood”, i.e.
a uniform prior. Furthermore, the adjusted profile h-likelihood is not merely a Laplace approximation
to the marginal posterior distribution in a Bayesian framework, because “it can also eliminate fixed
unknowns”, and the authors argue that the adjusted profile h-likelihood is quite different from the
Bayesian marginal posterior.

Summary of points not settled yet and possible consequences

The conclusion that can be drawn from the studies performed by Lee, Nelder and co-workers over the
past 15 years is that we can expect the h-likelihood to give good estimates, but the computational pro-
cedure to get good approximations for the maximum h-likelihood estimates might be computationally
demanding for data such as binary matched pairs. Uncertainty measures, such as standard errors,
have been shown to be possible to derive from the curvature of the h-likelihood for many applications
of HGLMs, but the general validity of using the h-likelihood for inference is still being argued by
several authors.

In the hglm package, we have implemented the Extended Quasi-Likelihood (EQL) procedure,
which is the one described in the book by Lee et al. (2006), where the estimates are obtained by fitting
an interconnected set of GLMs in a very elegant way. The dispersion components are estimated by
correcting for the leverages in the mean part of the model, which is a result of applying an adjusted
profile likelihood function to the EQL.

The EQL method can give biased results, which we clearly state in the output of the package, but
this is not a problem of the h-likelihood itself but rather that the EQL method may sometimes give
estimates that are substantially different from the maximum h-likelihood estimates.

The most important point from the above discussions is that a proper scale for the random effects
is required by the h-likelihood to avoid problems of invariance. For many of the commonly used
HGLM this is not an issue, but the user of the hglm package should be aware of this potential problem.

Comparison with estimates using GenStat

In the hglm package, interconnected GLMs are used to fit HGLMs. The algorithm was implemented
using the glm function in the R stats package and by following Table 7.1 and Table 7.3 in Lee et al.
(2006). An important part of the implementation was to define a separate GLM function for HGLMs
with gamma distributed random effects (as explained in Table 7.1 and Example 6.3 in Lee et al. (2006)),
and also to compute the deviance components for beta distributed random effects according to Table
7.1 in Lee et al. (2006). For a linear mixed model, this algorithm gives REML estimates, and for general
HGLMs it gives EQL estimates. The standard errors are the ones produced by the interconnected
GLM functions at convergence.

The estimates produced by the hglm function are very similar to the ones using the EQL method
implemented in GenStat. For a binomial-beta model using the seed germination data presented in Lee
and Nelder (1996) with fixed binomial dispersion parameter, the estimates of fixed effects (Table 4)
differed by less than 2× 10−3 to the EQL estimates in GenStat, and the dispersion parameter differed
by less than 1%.

For a Poisson-gamma model using the pump failure data presented in Lee and Nelder (1996), the
estimates (Table 5) differed by less than 1× 10−3. By comparing to the HL(0,0) estimates, we can see
that here the EQL method seems to give a poor approximation for the dispersion parameter.

For a gamma-normal model using the semiconductor data presented on page 218 of Lee et al.
(2006), the estimates of fixed effects (Table 6) differed by less than 4× 10−3 to the EQL estimates in
GenStat, and the dispersion parameter differed by less than 1%.
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Table 4: Comparison of estimates for a binomial-beta model using the seed germination data presented
in Lee and Nelder (1996).

GenStat: GenStat: hglm
HL(0,0)a EQL EQL

Intercept -0.543 -0.542 -0.542
Seed 0.080 0.077 0.075
Extract 1.337 1.339 1.339
Interaction -0.822 -0.825 -0.826

Dispersion parameter for the random effects:
log α 3.096 3.022 3.003
a Same estimates as in Lee and Nelder (1996)

Table 5: Comparison of estimates for a Poisson-gamma model using the pump failure data presented
in Lee and Nelder (1996).

GenStat: GenStat: hglm
HL(0,0)a EQL EQL

Intercept -1.599 -1.590 -1.590
Group(2) 1.668 1.665 1.665

Dispersion parameter for the random effects:
log α -0.165 0.046 0.046
a Same estimates as in Lee and Nelder (1996)

Table 6: Comparison of estimates for a gamma-normal model using the semiconductor data presented
in Lee et al. (2006).

GenStat: GenStat: hglm
HL(0,0)a EQL EQL

Mean model
Intercept -4.711 -4.712 -4.711
x1 0.209 0.210 0.209
x3 0.328 0.329 0.329
x5 -1.174 -0.173 -0.173
x6 -0.357 -0.357 -0.357

Dispersion model
Intercept -2.610 -2.588 -2.591
x2 -0.673 -0.686 -0.682
x3 -0.492 -0.503 -0.499

Dispersion parameter for the random effects:
log λ -3.014 -3.028 -3.004
a Same estimates as on page 218 of Lee et al. (2006)
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Comparison with estimates using HGLMMM

We compare our EQL1 implementation to that in the CRAN-archived version of HGLMMM where the
HL(1,1) estimator by Noh and Lee (2007) was correctly implemented. We conducted the following
simulation procedure to compare the fixed effect (intercept) estimate and the residual variance
component estimate. The results are also visualized in Figures 10 and 11.

It can be seen that the method option EQL1 in hglm, based on Lee and Lee (2012), produces variance
component estimates nearly the same as the Laplace approximation implemented in HGLMMM.
Nevertheless, our implementation does generate more bias compared to the HL(1,1) estimates from
HGLMMM for this particular example.

n <- 100 # No. of observations
p <- 100 # No. of levels in the random effect
Z <- diag(p)
sigma2u <- 1 # Variance of the random effects
mu <- 0 # Simulated intercept term
n.rep <- 100 # Number of simulation replicates
set.seed(123)
results <- matrix(NA, n.rep, 3)
for (i.rep in 1:n.rep) {

u <- rnorm(p, 0, sqrt(sigma2u))
eta <- mu + Z %*% u
y <- rpois(n, exp(eta))
hglm1 <- try(hglm(y = y, X = matrix(1, n, 1), Z = Z, family = poisson(link = log),

fix.disp = 1, maxit = 100, method = "EQL1"), silent = TRUE)
if (class(hglm1) == "hglm") {

if (hglm1$Converge == "converged") {
results[i.rep, 3] <- as.numeric(hglm1$Converge == "converged")
results[i.rep, 1] <- hglm1$fixef
results[i.rep, 2] <- hglm1$varRanef

}
}

}
colnames(results) <- c("Intercept", "Variance component", "Converged")
summary(results)

## Intercept Variance component Converged
## Min. :-0.55754 Min. :0.5208 Min. :1
## 1st Qu.:-0.11984 1st Qu.:0.8149 1st Qu.:1
## Median :-0.02618 Median :1.0151 Median :1
## Mean :-0.03903 Mean :1.0077 Mean :1
## 3rd Qu.: 0.05147 3rd Qu.:1.1676 3rd Qu.:1
## Max. : 0.26672 Max. :1.7106 Max. :1
## NA's :4 NA's :4 NA's :4

require(HGLMMM)
n <- 100 # No. of observations
p <- 100 # No. of levels in the random effect
Z <- diag(p)
sigma2u <- 1 # Variance of the random effects
mu <- 0 # Simulated intercept term
n.rep <- 100 # Number of simulation replicates
set.seed(123)
results2 <- matrix(NA, n.rep, 3)
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for (i.rep in 1:n.rep) {
u <- rnorm(p, 0, sqrt(sigma2u))
eta <- mu + Z %*% u
y <- rpois(n, exp(eta))
RSC <- data.frame(int = rep(1, p))
Subject <- factor(1:n)
simPoisson <- as.data.frame(cbind(y, Subject))
modG <- HGLMfit(DistResp = "Poisson", DistRand = c("Normal"), Link = "Log",

LapFix = TRUE, ODEst = FALSE, ODEstVal = c(0), formulaMain = y ~ 1 +
(1 | Subject), formulaRand = list(one = ~1), formulaOD = ~1, DataMain = simPoisson,

DataRand = list(RSC), Offset = NULL, INFO = TRUE, DEBUG = FALSE)
results2[i.rep, 1] <- modG$Results$Beta
results2[i.rep, 2] <- exp(modG$Results$Dispersion)
results2[i.rep, 3] <- as.numeric(abs(modG$Results$GradientDisp) < 1e-04)

}
colnames(results2) <- c("Intercept", "Variance component", "Converged")
NAs <- is.na(results[, 1])
summary(results2[!NAs, ])

## Intercept Variance component Converged
## Min. :-0.52296 Min. :0.4441 Min. :1
## 1st Qu.:-0.10423 1st Qu.:0.7587 1st Qu.:1
## Median :-0.01926 Median :0.9611 Median :1
## Mean :-0.02783 Mean :0.9747 Mean :1
## 3rd Qu.: 0.06554 3rd Qu.:1.1609 3rd Qu.:1
## Max. : 0.27849 Max. :1.7533 Max. :1

NAs <- is.na(results[, 1])
summary(results2[!NAs, ])
plot(results[!NAs, 1], results2[!NAs, 1], main = "Estimated Intercept", xlab = "hglm",

ylab = "HGLMMM")
abline(0, 1)
plot(results[!NAs, 2], results2[!NAs, 2], main = "Estimated Variances", xlab = "hglm",

ylab = "HGLMMM")
abline(0, 1)

Comparison with estimates using spaMM

For fitting the CAR() family in hglm, i.e. Gaussian Markov Random Field (GMRF) models, an al-
ternative package spaMM can also be used. The following codes perform a simulation study to
compare the estimates and execution time using the two different packages. The simulation results
are displayed in Figures 12 and 13 (codes for plotting not shown).

It can be seen that the inter-connected GLM algorithm of hglm fits GMRF models much faster
than spaMM which uses a numerical optimization algorithm. The estimated parameters were very
similar from the EQL method of hglm and the "EQL-" method of spaMM, with correlation coefficients
between the two methods 1.0000, 0.9998, 0.9997 and 0.9999 for the residual variance, ρ, τ and the
intercept, respectively.

require(hglm)
require(spaMM)

data(ohio)
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Figure 10: Comparison of the intercept estimates using hglm and HGLMMM.
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Figure 11: Comparison of the residual variance estimates from hglm and HGLMMM.
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Figure 12: Comparison of the execution time for fitting CAR models using hglm and spaMM.

thglm0 <- tspaMM0 <- rhohglm0 <- phihglm0 <- tauhglm0 <- betahglm0 <- rhospaMM0 <- phispaMM0 <- tauspaMM0 <- betaspaMM0 <- data.frame(n50 = rep(0,
10), n100 = rep(0, 10), n200 = rep(0, 10), n300 = rep(0, 10), n400 = rep(0,
10), n500 = rep(0, 10))

n <- c(50, seq(100, 500, 100))

run1 <- function(subMedian, subD) {
t1 <- system.time(hg0 <- hglm(fixed = MedianScore ~ 1, random = ~1 | district,

rand.family = CAR(D = subD), data = subMedian))[3]
eigD <- eigen(subD)
t3 <- system.time(sp0 <- corrHLfit(MedianScore ~ 1 + adjacency(1 | district),

data = subMedian, HLmethod = "EQL-", adjMatrix = subD, lower = list(rho = 1/min(eigD$values)),
upper = list(rho = 1/max(eigD$values))))[3]

return(list(t1 = t1, t3 = t3, hg0 = hg0, sp0 = sp0))
}

for (k in 1:length(n)) {
set.seed(911)
for (i in 1:10) {

lv <- sample(levels(ohioMedian$district[1:500]), n[k])
idx <- which(ohioMedian$district %in% lv)
subdistrict <- factor(as.character(ohioMedian$district)[idx])

subMedian <- data.frame(MedianScore = ohioMedian$MedianScore[idx], district = subdistrict)
subD <- ohioDistrictDistMat[levels(subdistrict), levels(subdistrict)]
res <- try(run1(subMedian, subD), silent = TRUE)
while (inherits(res, "try-error")) {

lv <- sample(levels(ohioMedian$district[1:500]), n[k])
idx <- which(ohioMedian$district %in% lv)
subdistrict <- factor(as.character(ohioMedian$district)[idx])
subMedian <- data.frame(MedianScore = ohioMedian$MedianScore[idx],
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Figure 13: Comparison of the CAR models estimated (A) spatial partial correlation parameters, (B)
spatial variance components, (C) fixed effects, and (D) residual variance estimates from hglm (EQL1)
and spaMM (HL(1,1)).
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district = subdistrict)
subD <- ohioDistrictDistMat[levels(subdistrict), levels(subdistrict)]
res <- try(run1(subMedian, subD))

}
thglm0[i, k] <- res$t1
tspaMM0[i, k] <- res$t3
rhohglm0[i, k] <- res$hg0$CAR.rho
phihglm0[i, k] <- res$hg0$varFix
tauhglm0[i, k] <- res$hg0$CAR.tau
betahglm0[i, k] <- res$hg0$fixef
rhospaMM0[i, k] <- res$sp0$corrPars$rho
phispaMM0[i, k] <- res$sp0$phi
tauspaMM0[i, k] <- res$sp0$lambda
betaspaMM0[i, k] <- res$sp0$fixef

}
}
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