
Fitob R Package: Manual & Tutorial

Janos Benk, benkjanos@gmail.com

2012.11.14

Contents

1 Introduction 1
1.1 Mathematical and Numerical Background 2

2 User Interface 4
2.1 Inputing a Financial Contract . 5

2.1.1 User Defined Models . 6
2.2 XML File Description . 6

3 Examples 8
3.1 European Put Option in 1D . 8
3.2 American Put Option 1D and 3D 9

3.2.1 1D . 9
3.2.2 3D . 10

3.3 Asian Option in 1D . 11
3.4 A User Defined Model in 2D . 12
3.5 Guaranteed Minimum Income Benefit (GMIB) 14
3.6 Setting up your own example . 16

4 Refrences 16

1 Introduction

What is Fitob? The main focus of the R Package Fitob is the PDE-based
financial derivative pricing, where Fitob is able to solve not just the Black-
Scholes PDE in a multidimensional setting, but also the more general Fokker-
Planck (convection-diffusion) PDE. Fitob provides a general scripting interface
that can describe almost any financial contract in an efficient and unique way.

Since Fitob provides an efficient convection-diffusion PDE solver in a multi-
dimensional setting1, it could be applied in other applications as well. (e.g.,
multi-dimensional distribution computations)

If the reader is already familiar with the theoretical background of the PDE-
based option pricing, it is recommended to start with either the User Interface
or Examples Sections.

11D-6D or even 12D

1

1.1 Mathematical and Numerical Background

In this section, we present the mathematical formulation of our general problem,
which is to price a given financial contract based on the underlying PDE in a
multidimensional setting. We emphasis here that, although, this was the main
focus of our application, our can be applied in general to the time evolution of
a given initial state under the influence of any multi-dimensional distribution
(Fokker-Planck PDE).

The assumption is that the risk factors are modeled by stochastic differential
equations (SDEs) that also define the distribution. In general fitob considers
the following form of SDEs for S = {Si|i = 1, . . . , D} risk factors

dSi = µ
′

i(S, t)dt+ σi(S, t)dWi, (1)

where µ
′

i(S, t) is a general drift coefficient and σi(S, t) is the volatility. dWi

represents the stochastic increments which are assumed to be normally dis-
tributed. Furthermore the stochastic increments are allowed to be correlated
dWidWj = ρi,j dt.

These factors influence a given function P (S, t), where only the initial value
P (S, 0) of this function is known. The task is to find find the value P (S, T)
at given end time T, knowing that this function is transformed by the Fokker-
Planck PDE. The boundary conditions (BCs) of this initial value problem (IVP)
can also be different, but for the sake of simplicity we state this PDE with
Dirichlet BCs.

In financial pricing, the time axis is reversed, since usually the payout of a
given contract in the future is known P (S, T), but not the current price P (S, 0).
Furthermore, the SDEs usually satisfy the non-arbitrage criterion, such that
they can be transformed to different distribution measure where all SDEs have
the risk-free interest rate drift. However this is not a necessary condition for
a well-posed problem, and the PDE can be computed with with incomplete or
even arbitrage markets.

∂P

∂t
+

D∑
i=1

µi(S, t)
∂P

∂Si
− r(S, t)P

1

2

D∑
i=1

D∑
j=1

σi(S, t)σj(S, t)ρi,j
∂2P

∂Si∂Sj
= 0, (2)

where S are the underlying risk factors that directly or indirectly impact the
price. λi(S, t) are the market price of risks that for tradable assets are set
such that r(S, t) = µi(S, t) = µ

′

i(S, t) − λi(S, t), and for non-tradable assets is
usually set to zero. It is important to mention here that this PDE for financial
applications is solved backwards in time, since the payout is known, only the
underlying’s future value is unknown. Hence, the PDE is solved backwards in
time.

The computational domain for this PDE can be estimated from the initial
values of the risk factors and the SDEs, as it is described in [1] and illustrated
on Figure 1.

During the maturity of a contract various transactions and decisions (such as
early exercise) may take place. These operations, in a PDE-based evaluation,
are either transformations on the P value or on one of the axis Si [1]. The

2

Figure 1: Generating the computational domain from an SDE (left) and a
resulting regular computational grid.

main advantage of the PDE-based evaluation is that the expected value of the
payoff is accessible at any given time t, and it is P (S, t). This value can be
directly used for early exercise decisions. For other type of transactions, such
as the average value computations for Asian options, the axis of the grid is
transformed according to the transfer function (See Examples).

To handle the multi-dimensional space and the PDE-solving we employ com-
bination technique based sparse grids (see Figure 2) and efficient multigrid
solvers. The combination of these methods allow for computations in 1D-6D 2.
For more details we refer to [2].

Figure 2: Two variants of the combination technique based sparse grid. (left)
The Standard Combination Technique (S-CT) copes well with the curse of di-
mensionality, but fails for non-smooth functions. The Truncated Combination
Technique (T-CT) can also handle severe discontinuities in higher dimensions
[1,2].

2Or even higher in later publications

3

2 User Interface

Pricing a financial contract using the PDE-approach represents a complex nu-
merical problem, where many different user interaction is required. The user
has to provide several informations, which can be categorized in two groups.

1. Financial contract: This group contains informations that is strictly
related to the structure of the financial contract. Since the structure of
a financial contracts/derivatives might be complex, we use a script base
description. In this script, each basic operations such as, waiting, transac-
tions or exercise rights. More details are in Section 3. These informations
are contained in a separate file.

2. Numerical and modeling informations: We separate between the in-
formations regarding the financial contract and the modeling of the risk
factors. The modeling informations, that is mainly the representation of
the Eq. 1, is stored in an XML file. In addition to the modeling informa-
tions, we also store the numerical configurations (e.g., tolerance, type and
level of the combination technique) in this XML file. These informations
are described in Section 2.2.

Actually these informations are contained in the script and XML files. However,
these could be argument of the Fitob R functions.

Following the above mentioned logic one can call the pricing functions of
Fitob with two arguments, where the arguments represent the file names of
these informations. In order to compute the price of an option one should type:

> resultPrice <- fitobPrice("XMLFile", "ScriptFile");

and the resultPrice is the resulting value. TheXMLFile contains the modeling
and numerical settings, whereas the ScriptF ile contains the script describing
the option.

The result of the evaluation could be not just a single value but also a regular
D-dimensional grid, that contains the price of the option in the near vicinity of
the strike. Furthermore, this regular grid could also be used very efficiently for
hedging purposes. This functionality is done by the function:

> resultObject <- fitobPriceMesh("XMLFile", "ScriptFile", level);

where XMLFile is the XML file containing the modeling and numerical set-
tings, ScriptF ile contains the script of the contract, and level is an integer
value defining the resolution of the resulting regular grid.3 resultObject repre-
sents the resulting list object that contains the regular mesh. This object can
be plotted in 1D and 2D with the provided function.

> fitobMeshPlot(resultObject);

This list contains: 1) the actual price, 2) dimension of the problem 3) number
of the points in the regular grid 4) array with 2D·level values of the regular grid
5) number of points on all axis D · 2level 6) a D × 2level array containing the
values of the axis 7) list of strings containing the name of the axis.

For concrete problems we refer to the Example Section 3. In the following
two subsections we provide a short manual of the XML file configuration and
the scripting interface.

3It will have 2level points in each dimensions so in all together 2D·level points.

4

2.1 Inputing a Financial Contract

Each financial contract can be represented as a sequence of basic operations
and each operator represents a specific effect on the computational grid. This
concept is also found in other commercial toolboxes, but here we use simple
approach. These operations are contained in a model building block:

model Option1D;

import S1;

export P;

...

end;

where Option1D is the name of the contract. The only underlying here is S1
expressed by the keyword import. export suggest that P is the output price of
this financial contract. In the place of ... the operators follow that describe the
contract:

• Waiting time: This represents the waiting time between various actions,
where the SDEs follow stochastic paths. This waiting is represented by

Theta dt

where dt represents the time interval.

• Transactions: This represents the transfer of values, where the target
of the transaction might be either the option price or one of the under-
lying axis. Such transaction is expressed in the script as an assignment
expression, e.g., for 1D European Call option’s payoff

• Early exercise rights: There is a special construct to implement con-
straint conditions that must hold and is done by the loop (inf) construct.
In the body of this loop operator the conditions are enforced at each taken
discrete time steps.

P = MAX(S-K,0);

In this way, a discrete dividend payments of 4 can also be simulated as
S = S − 4;.

• Control Operators: These operators can either help the efficient de-
scription of the financial contract or describe decisions,

if (P < MAX(S-K,0))

P = S - K;

end

or describing a for loop

loop (N)

Theta (T/N);

end;

For concrete examples we refer to Section 3

5

2.1.1 User Defined Models

In the script file one has the option to define user-specific models, by defining
the three coefficients in an expression. To illustrate we consider that we have
an underlying S1 that we defined previously as a normal Brownian motion and
is defined as an import variable.

import S1;

One could simply redefine this variable as dS1 = 0.05 S1 dt+ 0.4 S1 dW1 by the
following construct in the script:

S1 = MODEL(0.05*S2,0.05*S2,0.4*S2);

where the general form is Si = MODEL(µi, µ
′

i, σi), and these coefficients can

be defined arbitrarily. Usually it holds µi = µ
′

i. For a concrete example please
see Section 3.

2.2 XML File Description

Since there are various numerical and modeling settings, Fitob uses a XML
file to store them. Later on it would be useful to use some of the configura-
tions as R function arguments. In the following, we enlist the most important
configurations that the R users should be aware of by using R. In the section
< multigrid− solver > there are the following options important:

• < mindtvalue = ”0.0001”/ > the minimal time step during solving, this
is the initial time step for the adaptive time step control.

• < maxdtvalue = ”0.01”/ > the maximal time step size. For American
style contracts it is important to set this time step to a relative low level,
since the continuous early exercise rights are checked at these small dis-
crete time steps.

• < timeStepControlvalue = ”1e − 4”/ > This is the tolerance for the
adaptive time step control routine.

The < gridproperties > section contains information mainly about the
computational grid, and the most important ones are the following:

• < GRID TY PEvalue = ”fullgrid WB”/ > specifies the type of the
computational mesh. We recommend for 1D the fullgrid WB option
which is a regular grid without boundary points. This grid can also
be employed for higher dimensions, but the curse of dimensionality is
present. For most of the multi-dimensional problems we recommend the
extrap truncated combigrid WB grid, that is described, including its con-
figurations, in [2].

• < MAX LEV ELvalue = ”8”/ > specifies the level of the grid. Higher
levels imply higher computational costs.

As next the < domain > section follows, that describes the initial values
of the underlying’s SDEs. Beside the initial value, one can specify an initial
domain, where at the end the price of the financial contract will be defined. For
each risk factor we have a separate line:

6

<variable name="S1" min="0.7" max="1.3" evaluation="1"/>

that specifies for the underlying S1 the initial value of the SDE 1.0 and the
initial domain [0.7, 1.3].

The next section < thetaoperator > contains SDE specific information. Here
one should specify the model of the risk factors, where one can choose among
the build-in methods. However the Fitob user can overwrite this model by
defining a user-specific model (See Examples). The model parameters need to
be specified 4.

<DIFFUSION_VARIABLES>

<variable name="S" type="GB" drift="0.05" convec="0.05" sigma="0.4"/>

<DIFFUSION_VARIABLES\>

The lines above defines one geometrical Brownian (type=”GB”) Si, i = 1

dSi = µ
′

iS dt+ σiS dWi,

where mui is the convec parameter and the mu
′

i is the drift value, whereas
σi is specified by sigma. (see Eq. (2) and Eq. (1)). In the same way one can
specify a Heston and a CIR model,

<variable name="V1" type="Heston-CIR" k="1e-4" theta="0.16" sigma="0.04"/>

<variable name="S1" type="Heston" drift="0.05" convec="0.05" />

dS(t) = µ S(t) dt+
√
v(t)dW (1)

dv(t) = κ(ṽ − v(t))dt+ σ
√
v(t)dW (2).

(3)

where the fields represent the corresponding parameter from the model Eq 3.
The second equation in Eq 3 can be used separately as an interest rate model.
A fourth type of model is the normal Brownian model (type=”NB”) with the
same parameters as the (type=”GB”). The number of built-in model can rather
easily extended, however for the Fitob R package users we recommend to define
such specific models in the script (see Section 2.1.1).

The interest rate can be set as constant with the line

<RISK_FREE_RATE value="0.05" variable_coupled=""/>

or can be coupled to a risk factor by setting the field variable coupled to the
name of this interest rate model (see Examples).

The correlation matrix can be given by the following format:

<CORRELATIONS>

<correlation value="1.0,0.0"/>

<correlation value="0.0,1.0"/>

</CORRELATIONS>

In the last section, one can specify a so called standard deviation factor for
each model that steers the domain estimation of the computations, we recom-
mend to use values 3-5 for the computations 5

<STANDARD_DEVIATION_FACTOR value="3"/>

4These options can also be overwritten in the script file by a user defined model.
53 for lower accuracy 5 for higher accuracy and for higher levels

7

3 Examples

In the following section we illustrate the capabilities of the Fitob R package vari-
ous computational finance examples.6 The example files, which are presented in
this section, are all found in the data subdirectory in the downloadable package.
Before using the fitob’s functions, please use the R command require(fitob).
Furthermore, in the examples, this tutorial assumes that the XMl and the script
files are located (copied) into the actual R directory7.

3.1 European Put Option in 1D

We start with a simple 1D example, where the underlying stock price is modeled
by a geometrical Brownian motion with a drift rate of 5% and a volatility of
40%. In the XML configuration file we set the initial domain to

<variable name="S" min="90" max="110" evaluation="100"/>

end we choose the following parameters configurations: S = 100, µ = r = 0.05,
σ = 0.4 expressed in XML configuration file:

<DIFFUSION_VARIABLES>

<variable name="S" type="GB" drift="0.05" convec="0.05" sigma="0.4"/>

</DIFFUSION_VARIABLES>

<RISK_FREE_RATE value="0.05" variable_coupled=""/>

Furthermore we use a regular mesh with level 8 (28·1 points) that is specified in
the XML file:

<MAX_LEVEL value="8"/>

This European Put option is described by a short script, where K represents
the strike price and the maturity is one year:

model European1D

import S;

export P;

Theta 1.0;

P = MAX(100-S,0);

end;

Using the defined inputs the user can now price this simple European option.
Assuming that the user started R in the directory where the files euro1D.xml
and euro1DScript are located you can call the pricing function as:

> require(fitob);

> price <- fitobPrice("euro1D.xml","euro1DScript");

If you want the get the price on the initial domain then you should use the other
pricing function.

6Since Fitob is a general multi-dimensional convection-diffusion PDE solver could also be
used for other purposes other than finance.

7where R has been started

8

> resObj <- fitobPriceMesh("euro1D.xml" , "euro1DScript",6);

We request to use level 6 for the regular resulting grid, and the list object resObj
contains all the results that can be visualized as:

> fitobMeshPlot(resObj);

and the resulting GNU plot is shown in Figure 3.

Figure 3: Resulting price curve for the 1D European Put Option.

The computed price of the option (variable price in R) is 13.14455 and the
analytical solution is 13.14589.

3.2 American Put Option 1D and 3D

3.2.1 1D

In this example we extend the previous example with early exercise rights.
There is a special construct to implement constraint conditions that must hold
and is done by the loop (inf) construct. In the body of this loop operator the
conditions are enforced discrete time steps, therefore we set the maximum time
step in this case to 1e− 3 that means a continuous exercise interval of at least
six hours for a maturity of one year. 8 and we use a smaller initial and time
step 1e−4. Furthermore we demonstrate the usage of the loop construct, where
we split up the Theta 1.0 operator into N parts.

model americD1;

import S;

export P;

loop (inf)

P = MAX(100-S,P);

end;

8Close to the maturity it will be less than 10 minutes

9

N = 2;

loop (N)

Theta 1/N;

end;

P = MAX(100-S,0);

end;

Except the mentioned settings we use the presented configurations from the
previous example.

Calling the Fitob functions the routine computes the price in about one
second,

> require(fitob);

> pr <- fitobPrice("american1D.xml" , "american1DScript");

or using the script that outputs a regular mesh:

> lisMy <- fitobPriceMesh("american1D.xml" , "american1DScript", 6);

> fitobMeshPlot(lisMy)

The resulting price is 13.66277 (see Figure 4), where the reference value is
13.666. 9

Figure 4: Resulting price curve of the 1D American Put Option

3.2.2 3D

For this example, we use the following settings: Si = 100, µi = r = 0.05,
σi = 0.4 and ρ = [1.0, 0.3, 0.5; 0.3, 1.0,−0.3; 0.5,−0.3, 1.0]. These settings are
specified in the XML file as:

<DIFFUSION_VARIABLES>

<variable name="S1" type="GB" drift="0.05" convec="0.05" sigma="0.4"/>

9The reference value is provided by a Least-Square Monte-Carlo Method with high accuracy
and high computational cost.

10

<variable name="S2" type="GB" drift="0.05" convec="0.05" sigma="0.4"/>

<variable name="S3" type="GB" drift="0.05" convec="0.05" sigma="0.4"/>

</DIFFUSION_VARIABLES>

<RISK_FREE_RATE value="0.05" variable_coupled=""/>

<CORRELATIONS>

<correlation value="1.0,0.3,0.5"/>

<correlation value="0.3,1.0,-0.3"/>

<correlation value="0.5,-0.3,1.0"/>

</CORRELATIONS>

The level of the grid is specified in the ¡MAX LEVEL value=”5”/¿. The script
is similar to the 1D case, but we have 3 underlyings:

model American3D

import S1;

import S2;

import S3;

export P;

K = 300;

loop (inf)

P = MAX(K-(S1+S2+S3),P);

end;

Theta 1.0;

P = MAX(K-(S1+S2+S3),0);

end;

A convergence analysis of the Fitob’s approach is presented in [1,2], where
the reference value (also validated by Least-Square Monte-Carlo) is 26.21. We
use the pricing script (for 3D there is no visualization)

> require(fitob);

> pr <- fitobPrice("american3D.xml" , "american3D_Script");

For MAX LEVEL value=”4” Fitob prices in around 3 seconds and gives the
price 25.77, and for MAX LEVEL value=”5” after ∼ 20 seconds the resulting
price is 25.96. But for MAX LEVEL value=”6” the resulting price was 26.18
after ∼ 180 seconds.

3.3 Asian Option in 1D

The next example demonstrates the axis transformations, that was mentioned
for transaction. This Asian option builds the average value of the stock price
over one year, where it takes samples on monthly basis. This average is stored
in the A variable that becomes the additional dimension of this problem, beside
the underlying S, which is a geometrical Brownian motion. The describing
script has the form of:

model asian;

import S;

export P;

11

K = 1;

A = S;

N = 12;

loop (N)

Theta 1/N;

A = (A*K+S)/(K+1);

K = K+1;

end;

P = MAX(100-A,0);

end;

where K is a simple counter, A the mentioned average value, and N the sample
frequency in one year. The script computes the accumulated average by the
formula A = (A ∗K +S)/(K + 1);. The drift rate and the interest rate is set to
5%, whereas the volatility of S is now 40%:

<DIFFUSION_VARIABLES>

<variable name="S" type="GB" drift="0.05" convec="0.05" sigma="0.4"/>

</DIFFUSION_VARIABLES>

<RISK_FREE_RATE value="0.05" variable_coupled=""/>

This examples uses a sparse grid to price the product with level 6:

<GRID_TYPE value="extrap_truncated_combigrid_WB"/>

<MAX_LEVEL value="6"/>

After the user calls the pricing methods (assuming that ”asian1D.xml” and
”asian1DScript“ are in the actual directory)

> require(fitob);

> pr <- fitobPrice("asian1D.xml" , "asian1DScript");

or

> liM <- fitobPriceMesh("asian1D.xml" , "asian1DScript",6);

> fitobMeshPlot(liM)

The resulting price after ∼ 5 seconds is 7.558 that also fits the value of Monte-
Carlo simulation.

3.4 A User Defined Model in 2D

This sections demonstrates the generality of Fitob in defining a user-specific
model. We consider a simple FX rate model with simple mean-reverting stochas-
tic volatility model:

dV = a(b− V)dt+ σdW1

dFX = µdt+ V dW2

where a = 0.001, b = 0.1, σ = 0.2, µ = 0.02, and ρ1,2 = −0.2. We set a small
drift for the FX rate and the mean value of the FX’s volatility is 0.1. In order
to define such model in the Fitob R package, the first step is to define the initial
domain and factors in the XML (FX.XML) file such as:

12

Figure 5: Resulting price curve of the 1D Asian Option

<domain>

<variable name="V" min="0.12" max="0.2" evaluation="0.16"/>

<variable name="FX" min="0.7" max="1.3" evaluation="1"/>

</domain>

<DIFFUSION_VARIABLES>

<variable name="V" type="NB" drift="0.05" convec="0.05" sigma="0.4"/>

<variable name="FX" type="NB" drift="0.05" convec="0.05" sigma="0.4"/>

</DIFFUSION_VARIABLES>

<RISK_FREE_RATE value="0.05" variable_coupled=""/>

<CORRELATIONS>

<correlation value="1.0,-0.2"/>

<correlation value="-0.2,1.0"/>

</CORRELATIONS>

The script defines these factors as normal Brownian motions, however these
options are overwritten in the script file (FX Script) by the lines

V = MODEL(0.001*(0.1-V),0.001*(0.1-V),0.2);

FX = MODEL(0.02*FX,0.02*FX,V*FX);

that specify exactly the mathematical model described in the SDE. TheMODEL
pragma has three arguments µ, µ

′
and σ (see Eq. (2) and Eq. (1)). In this con-

crete case, we set for both factors µ = µ
′
. We mention here that one could

easily define also a user specific interest model and use in the PDE. Assuming
that V would be a short rate one would just need to specify in the XML file

<RISK_FREE_RATE value="0.05" variable_coupled="V"/>

and it could use V instead of 5% as short rate.
Using this model we price an European Call option on a FX strike rate. The

script for this purpose is simple, and also includes the presented user-specific
model declarations. The maturity of the option is T = 1.0 year.

model MyModelD2;

13

import V;

import FX;

export P;

V = MODEL(0.001*(0.1-V),0.001*(0.1-V),0.2);

FX = MODEL(0.02*FX,0.02*FX,V*FX);

T = 1.0;

K = 1.0;

Theta T;

P = MAX(FX-K, 0.0);

end;

Using the presented pricing R scripts the price is calculated as

> require(fitob);

> priceObj <- fitobPriceMesh("FX.xml" , "FX_Script",6);

> priceObj[1]

> fitobMeshPlot(priceObj);

The resulting surface plot (price surface for different FX rate and volatility V)
is shown in Fig. 6. One can observe that the price, as expected, varies more
along the FX axis as along the volatility axis V . The price at the initial values
is 0.08384.

Figure 6: Surface plot of the price for the FX option. The price is more depen-
dent on the FX than on the underlying volatility.

3.5 Guaranteed Minimum Income Benefit (GMIB)

As next we consider a product with considerably longer maturity, namely one
GMIB. To keep things simple 10, we consider that the underlying S of this
variable annuity follows a Geometrical Brownian path, and the interest rate is
modeled by a CIR process.

dS = 0.02 S dt+ 0.3 S dW1

10Complex products could be set-up in the same way as well, see [1]

14

dr = 3.0(0.05− r) dt+ σ dW2

that is correlated with r as ρ1,2 = 0.2. The model in S is specified in the
GIMB Script file as:

S = MODEL(0.0,0.02*S,0.3*S);

and r is defined as CIR model in the GMIB.xml file

<variable name="r" min="0.005" max="0.12" evaluation="0.01"/>

The flow of this contract is simple. In the initial state a face value 1.0 is
invested in the risk-averse asset. After 10 years a constant payment of CI = 0.15
is payed out for 10 years, that represents a simplified view of a general GMIB.
At the beginning of the payment period, the invested value is transfered to a risk
less bank account. Therefore, in the second loop, we only sum up the payments
P whereas the discounting by the short rate r takes place implicitly by the PDE
(Eq. 2). The key point in the script is the line P = MAX(S − P, 0);, where we
state that the price of the product is the difference of the invested face value S
and the discounted payments P . This value is saturated at 0, since the constant
payments need to be made in all cases.

model GMIB;

import S;

import r;

export P;

S = MODEL(0.0,0.02*S,0.3*S);

CI = 0.15;

N1 = 10;

N2 = 10;

loop (N1)

Theta 1.0;

end;

P = MAX(S-P,0);

P = P+CI;

loop (N2)

Theta 1.0;

P = P+CI;

end;

P = 0;

end;

This product can be priced with the script in less than 10 seconds and the price
of this product is liMy[[1]] + 1.0 = 1.254544. The pricing with the Fitob R
package is called as:

> require(fitob);

> liMy <- fitobPriceMesh("GMIB.xml" , "GMIB_Script",5);

> fitobMeshPlot(liMy);

The resulting price surface on Fig. 7 shows a greater variance along the S axis.
The variance along the r axis is also measurable.

15

Figure 7: The price surface of the presented GMIB. The price is varies more in
the direction of S, although in the r direction the change is also measurable.

3.6 Setting up your own example

Recommendations:

1. Start from an existing working example and change it incrementally.

2. If the fitob call fails (error handling is under constructions) than this might
be cased by some black spaces in the script file.

3. If you have any problems, do not hesitate to write to benkjanos@gmail.com

4 Refrences

[1] J.Benk, D. Plueger: Hybrid Parallel Solutions of the Black-Scholes PDE with
the Truncated Combination Technique. In Proceedings of the HPCS conference,
2012 Madrid.

[2] J. Benk, H.-J. Bungartz, A.-E. Nagy und S. Schraufstetter: Variants of
the Combination Technique for Multi-Dimensional Option Pricing. In Progress
in Industrial Mathematics at ECMI 2010, Oktober 2010.

16

