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We introduce a robust method for multivariate regression based on robust estimation of the joint location
and scatter matrix of the explanatory and response variables. As a robust estimator of location and scat-
ter, we use the minimum covariance determinant (MCD) estimator of Rousseeuw. Based on simulations,
we investigate the finite-sample performance and robustness of the estimator. To increase the efficiency,
we propose a reweighted estimator selected from several possible reweighting schemes. The resulting
multivariate regression does not need much computation time and is applied to real datasets. We show
that the multivariate regression estimator has the appropriate equivariance properties, has a bounded in-
fluence function, and inherits the breakdown value of the MCD estimator. These theoretical robustness
properties confirm the good finite-sample results obtained from the simulations.

KEY WORDS: Breakdown value; Diagnostic plot; Influence function; Minimum covariance determi-
nant; Reweighting.

1. INTRODUCTION

Suppose that we have a p-variate predictor x = (x1, . . . , xp)
t

and a q-variate response y = ( y1, . . . , yq)
t . The multivariate re-

gression model is given by y = Btx + α + ε, where B is the
(p × q) slope matrix, α is the q-dimensional intercept vector,
and the errors ε = (ε1, . . . , εq)

t are iid with mean 0 and with
cov(ε) = #ε a positive definite matrix of size q. Denote the lo-
cation of the joint (x,y) variables by µ and their scatter matrix
by #. Partitioning µ and # yields the notation

µ =
(

µx
µy

)
and # =

(
#xx #xy
#yx #yy

)
.

Traditionally, µ is often estimated by the empirical mean
µ̂ and # is often estimated by the empirical covariance ma-
trix #̂. It turns out that the least squares estimators of B,
α, and #ε can be written as functions of the components of
µ̂ and #̂, namely

B̂ = #̂
−1
xx #̂xy, (1)

α̂ = µ̂y − B̂tµ̂x, (2)

and

#̂ε = #̂yy − B̂t#̂xxB̂ (3)

(see, e.g., Johnson and Wichern 1998, p. 440). Multivari-
ate regression has applications in chemometrics, engineer-
ing, econometrics, psychometrics, and other fields. Recent
work on multivariate regression has been done by Barrett and
Ling (1992), Breiman and Friedman (1997), Cook and Setodji
(2003), Davis and McKean (1993), Gleser (1992), Koenker and
Portnoy (1990), Ollila, Hettmansperger, and Oja (2002), and
Ollila, Oja, and Koivunen (2003).

It is well known that classical multiple regression is ex-
tremely sensitive to outliers in the data. This problem also holds
in the case of multivariate regression, as can be seen from the
following example.

Example 1. We consider a dataset (Lee 1992) that contains
measurements of properties of pulp fibers and the paper made
from them. The aim is to investigate relations between pulp
fiber properties and the resulting paper properties. The dataset
contains n = 62 measurements of the following four pulp fiber
characteristics: arithmetic fiber length, long fiber fraction, fine
fiber fraction, and zero span tensile. The four paper properties
that have been measured are breaking length, elastic modulus,
stress at failure, and burst strength. The dataset is available at
http://allserv.ugent.be/˜svaelst/data/pulpfiber.txt.

Our goal is to predict the q = 4 paper properties from the
p = 4 fiber characteristics. For this purpose, we first applied
classical multivariate regression to the data.

Figure 1 represents the result of the classical analysis. It plots
the Mahalanobis distances of the residuals ri = yi − B̂txi − α̂
as given by

d(ri) :=
√

rt
i(#̂ε)−1ri

versus the Mahalanobis distances of the carriers,

d(xi) :=
√

(xi − µx)
t(#̂xx)−1(xi − µx).

This diagnostic plot combines the information on regression
outliers and leverage points and is much more useful than ei-
ther distance separately. The horizontal and vertical lines are
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294 PETER J. ROUSSEEUW ET AL.

Figure 1. Plot of Mahalanobis Distances of Least Squares Residuals
versus Mahalanobis Distances of the Carriers for the Pulp Fiber Data.

the usual cutoff values,
√

χ2
p,.975 and

√
χ2

q,.975, both of which
equal 3.34 because p = q = 4 in this example. From this plot,
we see that observations 51, 52, and 56 are detected as vertical
outliers. On the other hand, some observations are identified as
leverage points (observations 60 and 61 are the largest), but they
are not considered regression outliers because they have small
residual distance.

To check the result obtained by classical multivariate regres-
sion, we start by applying univariate robust regression with the
same regressors but for each of the responses separately. Here
we use the least trimmed squares (LTS) estimator of Rousseeuw
(1984), which can be computed quickly with the FAST–LTS
algorithm of Rousseeuw and Van Driessen (2000). To obtain
reliable outlier identification, we use the reweighted LTS with
finite-sample correction factor as proposed by Pison, Van Aelst,
and Willems (2002).

Figure 2 shows the standardized residuals resulting from LTS
regression with the first response (breaking length). From this
plot, we immediately see that observations 51, 52, 56, and 61
are detected as outliers. Similarly, outliers can be identified
from standardized LTS residuals corresponding to the other
three responses. Table 1 summarizes the outliers detected by ap-
plying LTS for each of the four responses. From Table 1, we see

Figure 2. Plot of the Standardized LTS Residuals Corresponding to
the First Response (breaking length) versus the Case Number.

Table 1. Observations in the Pulp Fiber Data That Are
Detected as Outliers by Applying LTS Regression

to Each of the Four Responses Separately

Response Outliers

y1 51, 52, 56, 61
y2 61
y3 52, 56, 61
y4 51, 52, 56

that the univariate LTS regressions identify observations 51, 52,
56, and 61 as outliers. This already shows that the classical mul-
tivariate regression based on least squares in Figure 1 has been
influenced by outliers, because it did not detect observation 61
as a regression outlier. Hence, clearly the least squares multi-
variate regression has been influenced by this leverage point.
This analysis shows that we need robust estimators to investi-
gate these data. However, applying univariate LTS regressions
to each of the response variables separately does not yield a so-
lution that is equivariant under affine transformations of the re-
sponse variables. Moreover, this approach allows us to detect
outliers only in the coordinate directions of the responses, not
outliers that are masked in these directions. Therefore, we aim
to construct a robust method for multivariate regression that
allows us to detect all of the outliers and is also reasonably ef-
ficient in both the statistical and computational senses. After
developing such a robust method, we further analyze these data
in Section 5.

In the next section we introduce a robust method for multi-
variate regression based on the minimum covariance determi-
nant (MCD) estimate of the joint (x,y) variables. We study
the performance of the estimator by simulations. In Section 3
we investigate several reweighted versions of the estimator that
improve the performance of the initial estimator and select the
reweighting scheme that works best. We study the finite-sample
robustness of the optimal estimator in Section 4. In Section 5
we continue the analysis of the previous example and describe
an application to chemical engineering. In Section 6 we show
that the robust estimator has the equivariance properties that
we expect from a multivariate regression method. In Section 7
we discuss the robustness properties of the estimator and derive
studentized residual distances. We summarize our conclusions
in Section 8 and give all proofs in the Appendix.

2. MINIMUM COVARIANCE
DETERMINANT REGRESSION

We propose using robust estimators for the center µ and
scatter matrix # in expressions (1)–(3) to construct a robust
multivariate regression method that has the equivariance prop-
erties required for a multivariate regression estimator. Many
robust estimators of multivariate location and scatter have
been investigated in the literature, including M estimators
(Maronna 1976), the minimum volume ellipsoid and MCD es-
timator (Rousseeuw 1984, 1985), S estimators (Davies 1987;
Rousseeuw and Leroy 1987; Lopuhaä 1989), CM estimators
(Kent and Tyler 1996), and τ estimators (Lopuhaä 1991). More
recently, depth-based location and scatter estimators were in-
troduced (Zuo, Cui, and He 2001; Zuo and Cui 2002). Robust
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ROBUST MULTIVARIATE REGRESSION 295

estimators of location and scatter in high dimensions have been
investigated by Woodruff and Rocke (1994), Rocke (1996), and
Rocke and Woodruff (1996). In the multiple regression case,
Maronna and Morgenthaler (1986) used multivariate M esti-
mators in (1)–(3), but their method inherits the low breakdown
value of M estimators. A multivariate regression method of the
M type was proposed by Koenker and Portnoy (1990), who
noted that their method lacks affine equivariance.

We use the MCD to estimate the center and scatter matrix of
the joint (x,y) variables because the MCD is a robust estima-
tor with high breakdown value and bounded influence function
(Croux and Haesbroeck 1999). Moreover, the MCD estima-
tor is asymptotically normal (Butler, Davies, and Jhun 1993).
We call the resulting robust multivariate regression method
MCD regression.

Consider a dataset Zn = {zi; i = 1, . . . ,n} ∈ Rp+q. The MCD
looks for the subset {zi1, . . . , zih} of size h whose covariance
matrix has the smallest determinant, where $n/2% ≤ h ≤ n.
We denote γ = (n − h)/n, so 0 ≤ γ ≤ .5. The estimate for
the center is then defined as the mean tn = 1

h

∑h
j=1 zij and the

covariance estimate is given by Cn = cncγ
1
h

∑h
j=1(zij − tn) ×

(zij − tn)
t, where cγ is a consistency factor and cn is a small-

sample correction factor (see Pison et al. 2002). The MCD es-
timator has breakdown value approximately equal to γ . Two
common choices for h are h = [(n + p + q + 1)/2] ≈ n/2 so
γ ≈ .5, which yields the highest possible breakdown value,
and h ≈ 3n/4 (i.e., γ ≈ .25), which gives a better compro-
mise between efficiency and breakdown. Recently, Rousseeuw
and Van Driessen (1999) constructed a fast algorithm for com-
puting the MCD. This FAST–MCD algorithm made the MCD
very useful for analyzing large datasets, for example, with n
in the hundred thousands. Other robust methods for analyzing
large datasets have been developed and used by Knorr, Ng, and
Zamar (2001), Alqallaf, Konis, Martin, and Zamar (2002), and
Maronna and Zamar (2002).

Because computation of the MCD regression estimates in-
volves computation of the MCD of the joint (x,y) variables
followed by standard matrix operations, we obtain a computa-
tionally efficient method. Moreover, from (1)–(3), we imme-
diately see that regressions of all possible splits in x and y
variables can be carried out once the MCD of the joint (x,y)

variables has been computed. It has been shown that observa-
tions that lie far from the center can have only a small effect
on the MCD estimates. Therefore, both leverage points (which
have a large x distance) and regression outliers (which are de-
viating in y space) can have only a small effect on the MCD
regression estimates. However, it has been noted that the MCD
can have a low efficiency (Croux and Haesbroeck 1999).

To investigate the efficiency of the MCD regression, we per-
formed the following simulation study. For various sample
sizes n and for different choices of p and q, we generated m
datasets of size n from the multivariate standard Gaussian dis-
tribution N(0, Ip+q), which corresponds to putting B = 0 and
α = 0. For each dataset Z(l), l = 1, . . . ,m, we carried out MCD
regression, yielding the (p × q) slope matrix estimate B̂(l), the
intercept vector α̂(l) ∈ Rq, and the (q × q) covariance matrix
estimate #̂(l)

ε of the errors.

The Monte Carlo variance of a slope coefficient B̂jk is mea-
sured as

var(B̂jk) = n varl
(
B̂(l)

jk

)
for j = 1, . . . ,p and k = 1, . . . ,q.

(4)

The overall variance of the estimated matrix B̂ is defined as
var(B̂) = avej,k(var B̂jk). The corresponding finite-sample ef-
ficiency of the slope is then given by 1/var(B̂). Analogously,
we compute the finite-sample efficiency of the intercept vector.
To measure the accuracy of the error scatter matrix, we use the
standardized variance (Bickel and Lehmann 1976) of the ele-
ments of the error covariance matrix, defined as

Stvar
(
(#̂ε)jk

)
= n varl((#̂

(l)
ε )jk)

[avel avej((#̂
(l)
ε )jj)]2

for j = 1, . . . ,q and k = 1, . . . ,q. (5)

The overall finite-sample efficiency of the off-diagonal el-
ements is then given by 1/ avej (=k(Stvar((#̂ε)jk)). For the
diagonal elements, the finite-sample efficiency is given by
2/ avej(Stvar((#̂ε)jj)), because the Fisher information equals 2
in this case.

The top part of Table 2 shows the simulation results for p = 4
and q = 4, but the results were similar for many other choices
of p and q. The table contains sample sizes between 50 and 500.
All simulations were done with m = 1,000 replications. Given
are the finite-sample efficiencies of B̂, α̂, the diagonal elements
of #̂ε , and the off-diagonal elements of #̂ε . We see that the
finite-sample efficiencies are very low for γ = .5 and are some-
what better for γ = .25. In the next section we propose using
reweighted estimators to improve these efficiencies.

3. REWEIGHTED MULTIVARIATE REGRESSION

To increase the efficiencies obtained in the previous section,
we now consider reweighted versions of our estimator. These
reweighted estimators inherit the robustness properties of the
initial estimator while attaining a higher efficiency. We consider
three versions, one based on reweighting the location estima-
tor, one based on reweighting the regression estimator, and one
based on reweighting both.

3.1 Reweighting the Location Estimator

To increase the efficiency of the location and scatter estima-
tors, it is customary to compute one-step reweighted versions
(Rousseeuw and Leroy 1987; Lopuhaä 1999; Zuo et al. 2001;
Zuo and Cui 2002). The one-step reweighted MCD estimates
with nominal trimming portion δl are defined as

t1
n =

∑n
i=1 w(d2(zi))zi∑n
i=1 w(d2(zi))

and

(6)

C1
n = dδl

∑n
i=1 w(d2(zi))(zi − t1

n)(zi − t1
n)

t
∑n

i=1 w(d2(zi))
,

where dδl is a consistency factor. The weights are computed
as w(d2(zi)) = I(d2(zi) ≤ qδl), where qδl = χ2

p+q,1−δl
and

d(zi) = ((zi − tn)
tC−1

n (zi − tn))
1/2 is the robust distance of ob-

servation zi based on the initial MCD estimates (tn,Cn). It is
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296 PETER J. ROUSSEEUW ET AL.

Table 2. Finite-Sample Efficiencies of the Slope Matrix, Intercept Vector, and Error Covariance Matrix
of the Four Types of MCD Regression, for p = 4 and q = 4

n
γ 50 100 300 500 ∞
MCD regression: B̂, α̂, #̂ε
.50 Slope .176 .167 .166 .169 .166

Intercept .268 .290 .300 .298 .307
&diag .211 .205 .196 .190 .182
&offdiag .194 .183 .166 .172 .166

.25 Slope .371 .387 .401 .410 .403
Intercept .506 .545 .568 .543 .578
&diag .401 .431 .439 .432 .430
&offdiag .387 .415 .393 .401 .403

MCD regression with reweighted location: B̂L, α̂L, #̂L
ε

.50 Slope .200 .354 .662 .762 .851
Intercept .303 .525 .811 .838 .934
&diag .245 .391 .677 .727 .794
&offdiag .222 .384 .664 .735 .851

.25 Slope .403 .598 .772 .830 .864
Intercept .545 .747 .883 .877 .936
&diag .434 .613 .793 .798 .812
&offdiag .427 .629 .782 .813 .864

MCD regression with reweighted regression: B̂R, α̂R, #̂R
ε

.50 Slope .245 .465 .812 .902 .957
Intercept .338 .582 .862 .875 .959
&diag .251 .387 .685 .735 .858
&offdiag .232 .399 .684 .763 .880

.25 Slope .538 .758 .895 .948 .960
Intercept .622 .804 .927 .906 .961
&diag .463 .627 .820 .815 .874
&offdiag .462 .665 .812 .841 .892

MCD regression with reweighted location and regression: B̂LR , α̂LR, #̂LR
ε

.50 Slope .233 .628 .906 .955 .961
Intercept .332 .721 .928 .920 .962
&diag .252 .501 .826 .829 .881
&offdiag .233 .542 .824 .860 .900

.25 Slope .508 .801 .913 .959 .961
Intercept .614 .849 .942 .924 .962
&diag .458 .680 .864 .839 .881
&offdiag .459 .728 .854 .872 .900

NOTE: The number of replications was m = 1,000.

customary to take δl = .025 (Rousseeuw and Van Driessen
1999). The robustness properties of the one-step reweighted
MCD estimators are similar to those of the initial MCD
(Lopuhaä and Rousseeuw 1991; Lopuhaä 1999). Other meth-
ods for increasing the efficiency of the MCD location and scat-
ter include one-step M estimators and cross-checking (He and
Wang 1996).

We can now compute the multivariate regression estimates
(1), (2), and (3) based on the reweighted location and scat-
ter (t1

n,C1
n). We denote the resulting regression by B̂L, α̂L,

and #̂L
ε , where “L” indicates that the reweighting was done in

the location stage. The simulation results for the reweighted lo-
cation estimators are given in the second part of Table 2. We see
that multivariate regression estimates based on the reweighted
MCD have a much higher efficiency than those based on the
initial unweighted MCD.

3.2 Reweighting the Regression

In a regression analysis, it is natural to use weights based
on the residuals corresponding to the initial fit (Rousseeuw

and Leroy 1987). Denote the residual of the observation zi by
ri = yi − B̂txi − α̂. We now define the reweighted regression
estimators

TR
n =

(
n∑

i=1

w(d2(ri))uiut
i

)−1 n∑

i=1

w(d2(ri))yiui (7)

and

#̂
R
ε = dδr

∑n
i=1 w(d2(ri))(r R)i(r R)t

i∑n
i=1 w(d2(ri))

, (8)

where TR
n = ((B̂R)t, α̂R)t , ui = (xt

i,1)t , (r R)i = yi −
(B̂R)txi − α̂R, δr is the trimming portion, and dδr is a consis-
tency factor. Following Rousseeuw and Leroy (1987), we take
δr = .01 as our default. The superscript “R” denotes that the
weights were based on the initial regression. In particular, the
weights are computed as w(d2(ri)) = I(d2(ri) ≤ qδr), where
qδr = χ2

q,1−δr
and d(ri) = (rt

i(#̂ε)
−1ri)

1/2 is the robust dis-
tance of the ith residual. The robustness properties of these
reweighted regression estimators follow from the properties of
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ROBUST MULTIVARIATE REGRESSION 297

the initial regression estimators. Note that the weights now de-
pend only on the size of the residual distance w(d2(ri)) so in
contrast with the initial estimates, good leverage points (which
have large distance in x-space but small residual distance and
thus are not outliers for the regression model) are no longer
downweighted.

The third part of Table 2 gives the simulation results for the
reweighted regression estimators. We see that the reweighted
multivariate regression estimates have a much higher efficiency
than the initial estimates based on MCD. Moreover, the effi-
ciency of the reweighted regression estimates is also higher than
the efficiency of the estimates based on the reweighted MCD.

3.3 Reweighting Both Location and Regression

A further possibility is to use the robust distances d(r L
i ) =

((r L
i )t(#̂L

ε)
−1r L

i )1/2 in (7) and (8), where r L
i = yi − (B̂L)t ×

xi − α̂L. This yields a weighted regression estimator with
weights based on the residuals of the method in Section 3.1.
We denote the resulting estimators by TLR

n = ((B̂LR)t, α̂LR)t

and #̂LR
ε . Also here good leverage points are no longer down-

weighted. The simulation results for the reweighted location es-
timators are given in the last part of Table 2. From this table,
we see that the efficiency of location regression (LR) weight-
ing is comparable for small samples (n = 50) and clearly better
for larger samples than the efficiency of the other reweighting
schemes. Overall, we also see that γ = .25 consistently out-
performed γ = .50, with the difference being larger for small
samples. Hence, from an efficiency standpoint, LR-weighted
MCD regression with γ = .25 comes out best. We demon-
strate in Section 6 that the breakdown value of MCD regres-
sion is approximately equal to γ , so Table 2 shows that there
is a trade-off between efficiency and breakdown. In practice,
data with more than 20% of outliers rarely occur, so we rec-
ommend using the LR-weighted MCD regression with γ = .25
as the default to obtain a better efficiency. If the data are of
very low quality such that a higher level of outliers can be ex-
pected, using LR-weighted MCD regression with γ = .50 is
more appropriate.

4. FINITE–SAMPLE ROBUSTNESS

To study the finite-sample robustness, we carried out simula-
tions with datasets contaminated by different types of outliers.
A point (xi,yi) that does not follow the linear pattern of the ma-
jority of the data but whose xi is not outlying is called a vertical
outlier. A point (xi,yi) whose xi is outlying is called a leverage
point. We say that such an (xi,yi) is a bad leverage point when
it does not follow the pattern of the majority; otherwise, it is
a good leverage point (which does not harm the fit).

Because regression estimators often break down in the pres-
ence of vertical outliers or bad leverage points, we generated
datasets with both types of outliers. For sample sizes between
n = 50 and n = 500 and with p = 4 and q = 4, we generated
m = 1,000 datasets from the multivariate standard Gaussian dis-
tribution N(0, Ip+q). (This is the same situation as described
in Sec. 2.) We then replaced 10% of the data as follows.
The xi are kept, but the q response variables are distributed
as N(2

√
χ2

p+q,.99, .1). This yields vertical outliers, because only

their responses are outlying. We also replaced 10% of the data
with bad leverage points for which the p independent variables
are generated according to N(2

√
χ2

p,.99, .1) and the q dependent

variables are generated from N(2
√

χ2
q,.99, .1).

As in the previous simulations, for each dataset Z(l),
l = 1, . . . ,m, we computed the (p×q) slope matrix B̂(l), the in-
tercept vector α̂(l) ∈ Rq, and the (q × q) covariance matrix #̂(l)

ε

of the errors. To measure robustness, we used the bias and the
mean squared error (MSE). As commonly defined, the bias and
MSE of a univariate component T are given by

bias(T) = ave
l

(
T(l) − θ

)

and

MSE(T) = n ave
l

(
T(l) − θ

)2
,

with θ the true value of the parameter. The bias and MSE of the
slope are defined as

bias(B̂) =
√

ave
j,k

(
bias(B̂jk)2

)

and

MSE(B̂) = ave
j,k

(
MSE(B̂jk)

)

and similarly for the intercept α̂ and for the diagonal and off-
diagonal elements of #̂ε .

Table 3 gives the simulation results when the estimates of the
slope matrix, intercept vector, and error covariance matrix were
obtained from the LR-weighted method with γ = .25 and from
the classical multivariate least squares regression. Simulations
for other sample sizes n and different dimensions p and q gave
similar results. In Table 3 we see that in the presence of vertical
outliers and bad leverage points, both the bias and MSE ob-
tained from the LR-weighted MCD regression are much lower
than those obtained from least squares regression. The low bias
and MSE values of the LR-weighted method are in line with the
asymptotic robustness properties in Section 6.

To compare the MCD regression with the univariate robust
regressions approach used in Section 1, we used the foregoing
simulation setup but we now generated correlated multivari-
ate Gaussian responses with correlation rjk = .5, j (= k. Thus
we obtained a regression model with correlated errors. We gen-
erated 10% of vertical outliers and 10% of bad leverage points
as before.

The results for the LR-weighted MCD regression (γ = .25)
in Table 4 are comparable with the results in Table 3, as ex-
pected from the equivariance of the estimator. Table 4 shows
that the LR-weighted MCD regression in general outperforms
the coordinatewise LTS regressions both in bias and MSE.
The differences are largest for the slope estimates. Note that
Table 4 does not contain results for the off-diagonal elements
of the error covariance matrix, because these elements are not
estimated in the univariate LTS approach. Hence, another ad-
vantage of the multivariate MCD regression method is that it
gives a robust estimate of the full error covariance matrix.

Based on the performance results in the previous section
and the robustness results here, we recommend using the
LR-weighted method with γ = .25 in practice to identify all
outliers and robustly estimate the full error covariance matrix.
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298 PETER J. ROUSSEEUW ET AL.

Table 3. Bias and MSE of the Slope Matrix, Intercept Vector, and Error Covariance Matrix Obtained by
the LR-Weighted MCD Regression With γ = .25 and Multivariate Least Squares Regression

n
50 100 500

Bias MSE Bias MSE Bias MSE

LR-weighted MCD regression (γ = .25)
Slope .0066 1.637 .0038 1.462 .0013 1.307
Intercept .0104 1.501 .0036 1.415 .0021 1.336
&diag .1349 3.326 .0704 3.240 .0104 2.845
&offdiag .0050 1.245 .0049 1.319 .0021 1.369

Least squares regression
Slope .2068 10.883 .2071 12.233 .2064 28.806
Intercept 1.0225 54.275 1.0214 105.876 1.0243 525.924
&diag 6.5387 2,156.323 6.8122 4,655.881 7.0394 24,788.392
&offdiag 6.8076 2,332.350 7.0464 4,977.298 7.2440 26,246.846

NOTE: The data contained 20% of outliers. The number of replications was m = 1,000.

5. EXAMPLES

Example 1 (Continued). We now continue the analysis of
Example 1 in Section 1 by applying the LR-weighted robust
multivariate regression method with γ = .25 to these data.
Figure 3 shows the diagnostic plot corresponding to the ro-
bust analysis. This plot is a generalization of the diagnos-
tic plot for multiple regression due to Rousseeuw and van
Zomeren (1990). In this display the robust distances of the
q-dimensional residuals d(r LR

i ) = ((r LR
i )t(#̂LR

ε )−1r LR
i )1/2 are

plotted versus the robust distances of the p-dimensional xi given
by d(xi) = ((xi − (t1

n)x)
t((C1

n)xx)
−1(xi − (t1

n)x))
1/2. The plot

enables us to classify the data points into regular observations,
vertical outliers, good leverage points, and bad leverage points.
Moreover, it allows us to see whether a point is an extreme out-
lier or merely a borderline case. Being a graphical tool, this plot
also allows us to discover unexpected structure in the data. Note
that all of the estimates on which the plot is based are byprod-
ucts of the robust multivariate regression algorithm, so the plot
requires very little computation time.

From Figure 3, we see that 13 observations have resid-
uals with robust distance above the horizontal cutoff line
at

√
χ2

4,.975 = 3.34 and thus are detected as regression outliers.
Eight of these points also have a large x-distance and thus are
bad leverage points. Note that classical multivariate regression
detected only three of these outliers (51, 52, and 56) and con-
sidered four of the outliers (46, 58, 60, and 61) to be good

Table 4. Bias and MSE of the Slope Matrix, Intercept Vector and Error
Variances Obtained by the LR-Weighted MCD Regression With γ = .25

and Univariate LTS Regressions

n
50 100 500

Bias MSE Bias MSE Bias MSE

LR-weighted MCD regression (γ = .25)
Slope .0044 1.644 .0043 1.483 .0017 1.319
Intercept .0069 1.512 .0017 1.364 .0021 1.313
&diag .1316 3.357 .0676 3.200 .0097 2.900

Combination of univariate LTS regressions
Slope .2360 4.630 .2403 7.270 .2406 30.214
Intercept .0264 2.144 .0342 1.880 .0331 2.272
&diag .0976 4.166 .0868 6.158 .1004 9.044

NOTE: The data contained 20% of outliers. The number of replications was m = 1,000.

leverage points. Moreover, by applying LTS for each of the re-
sponses separately, we detected only one additional outlier (61)
but nine other outliers remained hidden, among which the bad
leverage points 59, 60, and 62 are the most severe.

By exploring the origin of the collected data, we found out
that all but the last four pulp samples (observations 59–62)
were produced from fir wood. Moreover, most of the outly-
ing samples were obtained using different pulping processes.
For example, observation 62 is the only sample from a chemi-
thermomechanical pulping process, observations 60 and 61
are the only samples from a solvent pulping process, and ob-
servations 51, 52, and 56 are obtained from a kraft pulping
process. Finally, the smaller outliers (22, 46–48, and 58) all
were Douglas fir samples.

Example 2. This example describes an actual dataset ob-
tained from Shell’s polymer laboratory in Ottignies, Belgium
(courtesy of Dr. Christian Ritter). For reasons of confidentiality,
all variables have been standardized, and their exact meanings
are not given. The dataset comprises of n = 217 observations
with p = 4 predictor variables and q = 3 response variables.
The predictor variables describe the chemical characteristics of
a piece of foam, and the response variables measure its physical

Figure 3. Plot of Robust Distances of Residuals versus Robust Dis-
tances of the Carriers for the Pulp Fiber Data.
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ROBUST MULTIVARIATE REGRESSION 299

properties, such as tensile strength. Foam product specifications
are expressed in terms of physical properties. Production units
around the world have to meet the prescribed physical require-
ments. The physical properties are determined by the chemical
composition used in the production process. However, differ-
ent chemical compositions will lead to foams that meet all re-
quired specifications. Moreover, depending on the location of
the production unit, there is a strong variation in the price of the
necessary chemicals. Therefore, the goal is to establish a rela-
tionship between the chemical inputs and the resulting physical
properties, which then can be used to determine the cheapest
chemical composition resulting in foams that meet all physi-
cal requirements. We used multivariate regression to determine
the relationship between the chemical inputs and the physical
properties. A few cases with missing values had been omitted
in advance. After an initial exploratory study of the seven vari-
ables, including their Q–Q plots, we applied Box–Cox transfor-
mations to them. We then ran a robust multivariate regression
using the LR-weighted method with γ = .25. This computation
took only 43 seconds on a Sun SparcStation 20/514.

Figure 4 shows the diagnostic plot of the Shell foam data (ro-
bust distances of the residuals r LR

i versus the robust distances of
the xi). Observations 215 and 110 lie far from both the horizon-
tal cutoff line at

√
χ2

3,.975 = 3.06 and the vertical cutoff line at√
χ2

4,.975 = 3.34. These two observations can thus be classified
as bad leverage points. Several observations lie substantially
above the horizontal cutoff but not to the right of the vertical
cutoff, which means that they are vertical outliers (i.e., their
residuals are outlying but their x-values are not).

When this list of special points was presented to the scien-
tists who had made the measurements, we learned that eight
observations in Figure 4 were produced with a different produc-
tion technique and hence belong to a different population with
other characteristics. These include the observations 210, 212,
and 215. We therefore remove these eight observations from the
data and retain only observations from the intended population.

Running the method again yielded the diagnostic plot shown
in Figure 5. Observation 110 is still a bad leverage point,
and several of the vertical outliers also remain. No chemi-
cal/physical mechanism was found to explain why these points

Figure 4. Diagnostic Plot of Robust Residuals versus Robust Dis-
tances of the Carriers for the Foam Data.

Figure 5. Diagnostic Plot of Robust Residuals versus Robust Dis-
tances for the Corrected Foam Data.

are outliers, leaving open the possibility of some large mea-
surement errors. But the detection of these substantial outliers
at least gives us the option to choose whether or not to allow
them to affect the final result.

6. EQUIVARIANCE AND
ROBUSTNESS PROPERTIES

The theorems in this section demonstrate that the pro-
posed LR-weighted method based on MCD has the natural
equivariance properties of multivariate regression estimators
and is robust. They generalize the regression, scale, and affine
equivariance (see Rousseeuw and Leroy 1987, p. 116) and ro-
bustness of multiple regression estimators. All proofs are given
in the Appendix.

Denote Tn(X,Y) = (B̂t, α̂)t , where the matrix X is (n × p)
and Y is (n×q). The estimator Tn is called regression equivari-
ant if

Tn(X,Y + XD + 1nwt) = Tn(X,Y) + (Dt,w)t, (9)

where D is any (p × q) matrix, w is any (q × 1) vector, and
1n = (1,1, . . . ,1)t ∈ Rn. Regression equivariance means that
if we add a linear function of the explanatory variables to the
responses, then the coefficients of this linear function are also
added to the estimator.

The estimator Tn is said to be y-affine equivariant if

Tn(X,YC + 1ndt) = Tn(X,Y)C + (Ot
pq,d)t, (10)

where C is any nonsingular (q × q) matrix, d is any (q × 1)
vector, and Opq is the (p × q) matrix consisting of 0’s.
If the response variables are transformed linearly, then y-af-
fine equivariance implies that the estimator T transforms
accordingly.

We say that the estimator Tn is x-affine equivariant if

Tn(XAt + 1nvt,Y) = (B̂tA−1, α̂ − B̂tA−1v)t (11)

for any nonsingular (p × p) matrix A and any column vector
v ∈ Rp×1. If the explanatory variables are transformed linearly,
then x-affine equivariance says that the estimator Tn transforms
correctly.
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300 PETER J. ROUSSEEUW ET AL.

Theorem 1. The LR-weighted multivariate MCD regres-
sion estimator Tn = ((B̂LR)t, α̂LR)t is regression, y-affine, and
x-affine equivariant.

We also study the theoretical robustness properties of the
estimator in terms of its breakdown value and its influence func-
tion, which also yields its asymptotic variance. These theoreti-
cal properties will confirm the finite-sample results obtained in
Sections 3.3 and 4.

The finite-sample breakdown value (Donoho and Huber
1983) of a regression estimator Tn at a dataset Zn = (X,Y) ∈
Rn×( p+q) is defined as the smallest fraction of observations
of Zn that need to be replaced to carry Tn beyond all bounds.
Formally, this is expressed as

ε∗
n(Tn,Zn) = min

1≤m≤n

{
m
n

: sup
Z′

n

‖Tn(Zn) − Tn(Z′
n)‖ = ∞

}
,

(12)

where the supremum is over all possible collections Z′
n that

differ from Zn in at most m points. The following theo-
rem shows that the LR-weighted MCD regression estima-
tor Tn = ((B̂LR

n )t, α̂LR
n )t inherits the breakdown value of the

initial MCD location and scatter estimators applied to the
(p + q)-dimensional dataset Zn. Note that the breakdown value
of a covariance estimator is the smallest fraction of outliers that
can make the largest eigenvalue arbitrarily large or the smallest
eigenvalue arbitrarily small.

Theorem 2. Let Zn be a set of n ≥ p + q + 1 observations
and let t1

n and C1
n be the reweighted MCD estimators of lo-

cation and scatter with min{ε∗
n(t

1
n,Zn), ε

∗
n(C1

n,Zn)} = $nγ %/n,
where γ = (n − h)/n ≤ (n − (p + q))/(2n). Then the multi-
variate regression estimator Tn = ((B̂LR

n )t, α̂LR
n )t also satisfies

ε∗
n(Tn,Zn) = $nγ %/n.

The influence function of an estimator T at a distribution H
measures the effect on T of an infinitesimal contamination
at a single point (Hampel, Ronchetti, Rousseeuw, and Stahel
1986). If we denote the point mass at z = (xt,yt)t by (z and
write Hε = (1 − ε)H + ε(z, then the influence function is
given by

IF(z,T,H) = lim
ε↓0

T(Hε) − T(H)

ε
= ∂

∂ε
T(Hε)

∣∣∣∣
ε=0

. (13)

The following theorem gives the influence functions of
the LR-weighted MCD regression estimators at the stan-
dard Gaussian distribution. The influence function at general
Gaussian distributions then follows from the equivariance prop-
erties in Section 6.

Theorem 3. The influence functions of B̂LR, α̂LR, and #̂LR
ε at

the standard Gaussian distribution H = N(0, Ip+q) are given by

IF(z, B̂LR
jk ,H)

=
[
c1I(‖z‖2 ≤ qγ ) + c2I

(
‖z‖2 ≤ qδl

)

+ c3I
(
‖y‖2 ≤ qδr

)]
xjyk,

IF(z, α̂LR
j ,H)

= [
c4I(‖z‖2 ≤ qγ ) + c5I

(‖z‖2 ≤ qδl

) + c3I
(‖y‖2 ≤ qδr

)]
yj,

IF
(
z, (#̂LR

ε )jk,H
)

= [
c6I(‖z‖2 ≤ qγ ) + c7I

(‖z‖2 ≤ qδl

)

+ c3I
(‖y‖2 ≤ qδr

)]
yjyk,

and

IF
(
z, (#̂LR

ε )jj,H
)

=
[
c8I(‖z‖2 ≤ qγ ) + c9I

(
‖z‖2 ≤ qδl

)
+ c3I

(
‖y‖2 ≤ qδr

)]
y2

j

+ g1(‖z‖,‖y‖)I(‖z‖2 ≤ qγ ) + g2(‖y‖)I(‖z‖2 ≤ qδl

)

+ c10I
(
‖y‖2 ≤ qδr

)
+ c11.

Here qγ = χ2
p+q,1−γ . The constants c1, . . . , c11 and the func-

tions g1 and g2 are given in the Appendix. Note that the in-
fluence functions of the slope and intercept become 0 as soon
as ‖y‖ becomes large, so vertical outliers as well as bad lever-
age points have no effect on the regression estimates. For the
covariance of the errors, the influence on the off-diagonal ele-
ments becomes 0, and the influence on the diagonal elements
becomes constant for observations with large ‖y‖ so the ef-
fect of outliers and leverage points is bounded. On the other
hand, good leverage points (which have large ‖x‖ but small ‖y‖
and thus are not outliers for the regression model) are not
downweighted.

Figure 6 shows the influence functions of the LR-weighted
MCD regression estimators with γ = .25 at the bivariate
Gaussian distribution H = N2(0, I) ( p = q = 1). The influence
functions of the slope β̂LR = B̂LR and the intercept α̂LR are
shown in Figures 6(a) and 6(b). The influence function of the
error scale (σ̂ LR)2 = #̂LR

ε is shown in Figure 6(c).
From the influence function, we can compute the asymptotic

variance of the elements of the slope matrix B̂LR at the standard
Gaussian distribution as

ASV(B̂LR
ij ,H) = EH[IF(z, B̂LR

jk ,H)2] (14)

(see Hampel et al. 1986), and similarly for α̂ and #̂ε . It can
be easily shown that the asymptotic variances of the slope and
intercept elements of the least squares estimator equal 1. For
the least squares estimator of the error covariance, it holds that
the asymptotic variance equals 1 for the off-diagonal elements
and 2 for the diagonal elements. Therefore, the asymptotic rel-
ative efficiency (ARE) of the slope B̂LR relative to the least
squares slope B̂LS is given by

ARE(B̂LR,H) = 1

ASV(B̂LR
ij ,H)

(15)

and similarly for the intercept α̂LR and off-diagonal elements
of #̂LR

ε . The ARE of the diagonal elements of #̂LR
ε equals

ARE
((

(#̂ε)
LR)

jj,H
)
= 2

ASV((#̂LR
ε )jj)

. (16)

For p = 4 and q = 4, the ARE of slope, intercept, and diagonal
and off-diagonal elements of the error covariance are given in
Table 2 under n = ∞. For the initial MCD regression and the
L- and R-weighted methods, the efficiencies can be obtained
from additional results in the Appendix. It is reassuring to note
that the finite-sample efficiencies correspond quite well to the
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ROBUST MULTIVARIATE REGRESSION 301

(a)

(b)

(c)

Figure 6. Influence Functions at the Bivariate Gaussian Distribution
of (a) Slope, (b) Intercept, and (c) Error Scale of LR-Weighted MCD
Regression.

asymptotic efficiencies. The difference is often negligible al-
ready for n = 500.

To obtain outlier diagnostics that take into account the resid-
ual error and the location of the observation in x-space, we now
introduce studentized robust residual distances. These stu-
dentized residual distances generalize the studentized resid-
uals for univariate robust regression (McKean, Sheather, and
Hettmansperger 1990, 1993) to multivariate regression. They
also extend the studentized residual distances for multivari-

ate least squares regression (Caroni 1987) to robust multivari-
ate regression.

Consider the asymptotic representation of the estimator given
by the influence function,

Tn = θ + 1
n

n∑

j=1

IF(zj,Tn,G) + o(n−1/2),

where θ = (Bt,α)t and G is the joint distribution of z = (xt,yt)t .
We then obtain the first-order approximation for the residuals

ri
.= εi −

1
n

n∑

j=1

[
IF(zj, B̂LR,G)txi + IF(zj, α̂

LR,G)
]
, (17)

from which the covariance matrix cov(ri) can be derived as out-
lined in the Appendix. Studentized residual distances are now
defined as

sdi =
√

rt
i

(
ĉov(ri)

)−1ri.

Here ĉov(ri) is the estimated covariance matrix for residual ri
obtained by replacing the unknown error covariance matrix #ε

with an estimate #̂ε . If the estimate #̂ε is derived from the fit-
ted model based on all data points, then we obtain internally
studentized residual distances. If #̂ε comes from the model
using all data points except zi when computing sdi, then we ob-
tain externally studentized residual distances. For large outly-
ing points, there will be little difference between internally and
externally studentized residual distances, because large outliers
have only small influence on the LR-weighted MCD regression
estimates, but for intermediate points externally studentized
residuals will be larger than internally studentized residuals.
To identify outliers, we compare the squared studentized resid-
uals with quantiles of the χ2

q distribution. Figure 7 shows the
externally studentized residuals for the pulp fiber and foam
datasets analyzed earlier. The horizontal line in both plots is
the square root of the 97.5% quantile of the corresponding chi-
squared distribution. The labeled points in Figure 7 even lie
above the 99.5% quantile of the chi-squared distribution. These
outliers have also been labeled in the diagnostic plots (Figs.
3 and 4) in Section 5.

7. CONCLUSIONS

Least squares multivariate regression is sensitive to outliers
in the dataset. Therefore, alternative methods that can detect
and resist outliers are needed so that reliable results can be ob-
tained also in the presence of outliers. Substantial work has
been done to develop influence measures for multivariate re-
gression (Hossain and Naik 1989; Barrett and Ling 1992; Hadi,
Jones, and Ling 1995; Kim 1995; Seaver, Blankenship, and
Triantis 1998). Much less has been done so far to develop
robust estimators with bounded influence and/or high break-
down value. Singer and Sen (1985) and Koenker and Portnoy
(1990) proposed robust methods based on M estimators. Meth-
ods based on affine equivariant sign and ranks were recently
proposed by Ollila et al. (2002, 2003); however, these methods
still have zero breakdown value.

We have shown that substituting robust estimates of loca-
tion and scatter in the classical expressions for the slope, in-
tercept and error scale yields a robust multivariate regression
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302 PETER J. ROUSSEEUW ET AL.

(a) (b)

Figure 7. Externally Studentized Robust Residuals for (a) the Pulp Fiber Data and (b) the Foam Data. The horizontal line is the 97.5% quantile
of the χ2

q distribution.

method. By inserting the MCD estimator of location and scat-
ter, we obtain a positive-breakdown and bounded-influence
method, albeit with a rather low efficiency. To improve the effi-
ciency, we have studied several types of reweighting schemes.
We found that the best result is obtained by using the MCD-ba-
sed robust distances to form a reweighted estimator of location
and scatter, which then yields the initial regression. The robust
residuals from this initial regression then give us the weights for
the final regression. We call this the LR-weighted MCD regres-
sion. This approach gave the best finite-sample performance in
our simulations and also yielded the highest asymptotic effi-
ciency. Moreover, simulations with contaminated datasets indi-
cated that its robustness properties also hold at finite samples.
These simulations also showed that the LR-weighted MCD re-
gression clearly outperforms classical least squares regression
as well as univariate LTS regression applied to each of the re-
sponses separately. We illustrated the proposed method on two
real data applications, where a new diagnostic plot turned out
to be a very useful graphical tool to detect special points.
Formal outlier diagnostics have been constructed based on stu-
dentized robust residual distances. MCD regression also is an
essential part of robust principal component regression (Hubert
and Verboven 2003) and robust partial least squares regres-
sion (Hubert and Vanden Branden 2003) procedures that are
used to analyze high-dimensional data from spectra with sev-
eral responses.

APPENDIX: PROOFS

To prove Theorem 1, we need the following lemma.

Lemma A.1. From the affine equivariance of the reweighted
MCD location and scatter estimators (t1

n,C1
n), it follows that

the L-weighted MCD regression estimator TL
n = ((B̂L)t, α̂L)t is

regression, y-affine, and x-affine equivariant.

Proof of Lemma A.1. Affine equivariance of (t1
n,C1

n) means
that for any nonsingular (p + q) × (p + q) matrix M and any
vector a ∈ Rp+q, it holds that t1

n(ZMt +1nat) = Mt1
n(Z)+a and

C1
n(ZMt + 1nat) = MC1

nMt . To prove regression equivariance,
we take

M =
(

Ip 0
Dt Iq

)
and a =

(
0
w

)
.

Then ZMt + 1nat = (X,Y)Mt + 1nat = (X,Y + XD + 1nwt)

and

(t1
n)x(ZMt + 1nat) = (t1

n)x(Z),

(t1
n)y(ZMt + 1nat) = (t1

n)y(Z) + Dt(t1
n)x(Z) + w,

(C1
n)xx(ZMt + 1nat) = (C1

n)xx(Z),

and

(C1
n)xy(ZMt + 1nat) = (C1

n)xx(Z)D + (C1
n)xy(Z).

Therefore, we obtain

B̂L(ZMt + 1nat) = (C1
n)

−1
xx (ZMt + 1nat)(C1

n)xy(ZMt + 1nat)

= D + (C1
n)

−1
xx (Z)(C1

n)xy(Z)

= D + B̂L(Z)

and

α̂L(ZMt + 1nat) = (t1
n)y(ZMt + 1nat)

− B̂L(ZMt + 1nat)(t1
n)x(ZMt + 1nat)

= (t1
n)y(Z) + Dt(t1

n)x(Z) + w

− (
D + B̂L(Z)t)(t1

n)x(Z)

= (t1
n)y(Z) − B̂L(Z)t(t1

n)x(Z) + w

= α̂L(Z) + w,

which is the desired result. To prove y-affine equivariance,
we put

M =
(

Ip 0
0 Ct

)
and a =

(
0
d

)
.
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ROBUST MULTIVARIATE REGRESSION 303

Finally, to prove x-affine equivariance, we put

M =
(

A 0
0 Iq

)
and a =

(
v
0

)
.

Proof of Theorem 1

From Lemma A.1, we already have that the equivariance
properties hold for the regression estimator based on reweighted
MCD. It immediately follows that the reweighted regression es-
timator is also regression, x-affine, and y-affine equivariant, be-
cause the weights d(r L

i ) are invariant under these transforma-
tions, which can be proved similarly as in Lemma A.1.

Lemma A.2. Let Zn be a set of n ≥ p + q + 1 observations
and let t1

n and C1
n be the reweighted MCD estimators of lo-

cation and scatter with min{ε∗
n(t1

n,Zn), ε
∗
n(C1

n,Zn)} = $nγ %/n,
where γ = (n − h)/n ≤ (n − (p + q))/(2n). Then the estimator
TL

n = ((B̂L
n )t, α̂L

n)t also satisfies ε∗
n(TL

n ,Zn) = $nr%/n.

Proof of Lemma A.2. Because the estimator TL
n is regres-

sion, y-affine, and x-affine equivariant (Lemma A.1), we may
assume without loss of generality that t1

n(Zn) = 0. Let Z̃n be
a dataset obtained by replacing m < $nγ %/n points from the
original dataset Zn by arbitrary values. We first show that the
slope B̂L(Z̃n) remains bounded. Denote the eigenvalues of
(C1

n)xx(Z̃n) by λ1((C1
n)xx(Z̃n)) ≤ · · · ≤ λp((C1

n)xx(Z̃n)). Note
that ‖B̂L(Z̃n)‖ = ‖(C1

n)
−1
xx (Z̃n)(C1

n)xy(Z̃n)‖ ≤ ‖(C1
n)

−1
xx (Z̃n)‖×

‖(C1
n)xy(Z̃n)‖. Now we have that

‖(C1
n)

−1
xx (Z̃n)‖ = sup

‖x‖(=0

‖(C1
n)

−1
xx (Z̃n)x‖
‖x‖

=
(

inf
‖x‖(=0

‖(C1
n)xx(Z̃n)x‖

‖x‖

)−1

= 1

λ1((C1
n)xx(Z̃n))

,

which is bounded because the covariance matrix C1
n(Z̃n) does

not break down for m < $nγ %/n. Denote λ1(Z̃n) ≤ · · · ≤
λp+q(Z̃n) as the eigenvalues of C1

n(Z̃n); then we have that
‖(C1

n)xy(Z̃n)‖ ≤ ‖C1
n(Z̃n)‖ ≤ λp+q(Z̃n), which is also bound-

ed for m < $nγ %/n. For the intercept, it clearly holds
that ‖α̂L(Z̃n)‖ = ‖(tn)y(Z̃n) − (B̂L)t(Z̃n)(tn)x(Z̃n)‖ ≤
‖(tn)y(Z̃n)‖ + ‖(B̂L)t(Z̃n)‖‖(tn)x(Z̃n)‖ is bounded for m <

$nγ %/n because ‖(B̂)L(Z̃n)‖ and ‖tn(Z̃n)‖ are bounded.

Proof of Theorem 2

Lemma A.2 shows that the L-weighted MCD regression esti-
mator TL

n inherits the breakdown value of the reweighted MCD
estimators. It now easily follows (under certain regularity con-
ditions of the design matrix) that the reweighted regression esti-
mator TLR

n inherits the breakdown value of the initial regression
estimator TL

n .

Lemma A.3. Denote by t and C the functionals correspond-
ing to the reweighted MCD location and scatter estimators; then
the influence functions of B̂L, α̂L, and #̂L

ε satisfy

IF(z, B̂L,H) = IF(z,C1
xy,H), (A.1)

IF(z, α̂L,H) = IF(z, t1
y,H), (A.2)

and

IF(z, #̂L
ε ,H) = IF(z,C1

yy,H). (A.3)

Proof of Lemma A.3. First, we derive the influence func-
tion of the slope B̂L. Because B̂L(Hε) = (C1

xx)
−1(Hε)C1

xy(Hε),
we obtain that

IF(z, B̂L,H) = ∂

∂ε

(
(C1

xx)
−1(Hε)C1

xy(Hε)
)∣∣∣∣

ε=0

= IF
(
z, (C1

xx)
−1,H

)
C1

xy(H)

+ (C1
xx)

−1(H)IF(z,C1
xy,H)

= IF(z,C1
xy,H),

because consistency of C1 yields C1(H) = Ip+q. Similarly, with
α̂L(Hε) = t1

y(Hε) − (B̂L)t(Hε)t1
x(Hε), we have that

IF(z, α̂L,H) = ∂

∂ε

(
t1
y(Hε) − (B̂L)t(Hε)t1

x(Hε)
)∣∣∣∣

ε=0

= IF(z, t1
y,H) − IF(z, B̂L,H)tt1

x(H)

− (B̂L)t(H)IF(z, t1
x,H)

= IF(z, t1
y,H),

because t1(H) = 0 and B̂L(H) = 0. Finally, #̂L
ε(Hε) =

C1
yy(Hε) − (B̂L)t(Hε)C1

xx(Hε)(B̂L)(Hε) yields

IF(z,#̂L
ε ,H) = ∂

∂ε

(
C1

yy(Hε) − (B̂L)t(Hε)C1
xx(Hε)B̂L(Hε)

)∣∣∣∣
ε=0

= IF(z,C1
yy,H) − IF(z, B̂L,H)tC1

xx(H)B̂L(H)

− (B̂L)t(H)IF(z,C1
xx,H)B̂L(H)

− (B̂L)t(H)C1
xx(H)IF(z, B̂L,H)

= IF(z,C1
yy,H),

because B̂L(H) = 0.

Proof of Theorem 3

Combining Lemma A.3 with the results of Croux and
Haesbroeck (1999), we obtain that the influence functions
of B̂L, α̂L, and #̂L

ε equal

IF(z, B̂L
jk,H) =

[
a2

c2
I(‖z‖2 ≤ qγ ) + 1

d1
I
(
‖z‖2 ≤ qδl

)]
xjyk,

IF
(
z, (α̂L)j,H

) =
[(

1 − d1

1 − δl

)
1
c1

I(‖z‖2 ≤ qγ )

+ 1
1 − δl

I
(
‖z‖2 ≤ qδl

)]
yj,

IF
(
z, (#̂L

ε)jk,H
)
=

[
a2

c2
I(‖z‖2 ≤ qγ ) + 1

d1
I
(
‖z‖2 ≤ qδl

)]
yjyk,
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and

IF
(
z, (#̂L

ε)jj,H
)

=
[

a2

c2
I(‖z‖2 ≤ qγ ) + 1

d1
I
(‖z‖2 ≤ qδl

)]
y2

j

+ a2

2c2
‖y‖2I(‖z‖2 ≤ qγ ) − 1

+ p + q + 2
2

a2

c2[a3 − (p + q)a4]

×
[

a4‖z‖2I(‖z‖2 ≤ qγ )

+ a3

p + q
qγ

(
1 − γ − I(‖z‖2 ≤ qγ )

) − 1
]
.

Denote the incomplete gamma function by ,(u; v) = ,(u)−1 ×∫ v
0 tu−1e−t dt. Then the constants a1, a2, a3, and a4 are given

by a1 = 1/d1, a2 = (d1 − d2)/d1, a3 = c2/c1, and a4 = 1
2 −

1
2c1

[c2 − qγ

p+q (c1 + γ − 1)], where c1 = ,( p+q
2 + 1; qγ

2 ), c2 =
,(

p+q
2 +2; qγ

2 ), d1 = ,(
p+q

2 +1; qδl
2 ), and d2 = ,(

p+q
2 +2; qδl

2 ).
It can be easily shown that the influence functions of

reweighted regression estimators defined by (7) and (8) are
connected to the influence functions of the initial regression
estimators B̂L, α̂L, and #̂L

ε through

IF(z, B̂LR,H)

=
(

1 − dR
1

1 − δr

)
IF(z, B̂L,H) + I(‖y‖2 ≤ qδr)

1 − δr
xyt,

IF(z, α̂LR,H)

=
(

1 − dR
1

1 − δr

)
IF(z, α̂L,H) + I(‖y‖2 ≤ qδr)

1 − δr
y,

and

IF(z, #̂LR
ε ,H)

= dR
1 − dR

2

dR
1

(
IF

(
z, (#̂L

ε),H
)
+ 1

2
tr
(
IF(z, #̂L

ε,H)
)
Iq

)

+ I(‖y‖2 ≤ qδr)

dR
1

yyt − Iq.

The constants dR
1 and dR

2 are given by dR
1 = ,( q

2 + 1; qδr
2 ) and

dR
2 = ,( q

2 + 2; qδr
2 ). Note that the foregoing results extend the

expressions for the influence functions of reweighted multivari-
ate location and scatter functionals given by Lopuhaä (1999).

Studentized Residual Distances. First, note that for any
(xt,yt)t such that

x = #
1/2
xx u + µx

and

y = Btx + α + #
1/2
ε ε

with (ut,εt)t ∼ H, that is, the standard Gaussian distribution,
it follows from Theorem 3 and the equivariance properties in

Theorem 1 that the influence function of B̂LR and α̂LR at the
joint distribution G of (xt,yt)t can be written as

IF(z, B̂LR,G) =
((

1 − dR
1

1 − δr

)

×
[

a2

c2
I
(
d2(z) ≤ qγ

)
+ 1

d1
I
(
d2(z) ≤ qδl

)]

+ I(d2(r) ≤ qδr)

1 − δr

)
#−1

xx (x − µx)r
t

and

IF(z, α̂LR,G) =
((

1 − dR
1

1 − δr

)

×
[(

1 − d1

1 − δl

)
1
c1

I
(
d2(z) ≤ qγ

)

+ 1
1 − δl

I
(
d2(z) ≤ qδl

)]

+ I(d2(r) ≤ qδr)

1 − δr

)
r − IF(z, B̂LR,G)tµx,

where d2(z) and d2(r) are the squared robust distances of the
point z and its corresponding residual. Substituting the fore-
going expressions for the influence functions in the right side
of (17), the following approximation for the covariance matrix
of residual ri can be obtained:

cov(ri)
.=

(
1 − 2

n

[
fi(zi) + dR

1

1 − δr

(
d2(xi) + 1

)]

+ 1
n2

n∑

j=1

[
f 2
i (zj)

dR
1

(1 − δr)2 (dji + 1)2

+ 2dR
1

1 − δr
fi(zj)(dji + 1)

])
#ε,

where dji = (xj − µx)
t#−1

xx (xi − µx) and fi(zj) = (1 − dR
1

1−δr
) ×

[ a2
c2

I(d2(z) ≤ qγ ) + 1
d1

I(d2(z) ≤ qδl)]dji + (1 − dR
1

1−δr
)[(1 −

d1
1−δl

) 1
c1

I(d2(z) ≤ qγ ) + 1
1−δl

I(d2(z) ≤ qδl)].

[Received June 2000. Revised September 2003.]
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