Generation of orthogonal rotation matrix for Euler angles phi, teta, psi

euler_orth(phi = 0, theta = 0, psi = 0)

Arguments

phi

theta

psi

Details

Value

References

Note

See also

Examples

##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function (phi = 0, theta = 0, psi = 0) { r <- matrix(0, 3, 3) r[1, 1] <- cos(theta) * cos(psi) r[1, 2] <- -cos(phi) * sin(psi) + sin(phi) * sin(theta) * cos(psi) r[1, 3] <- sin(phi) * sin(psi) + cos(phi) * sin(theta) * cos(psi) r[2, 1] <- cos(theta) * sin(psi) r[2, 2] <- cos(phi) * cos(psi) + sin(phi) * sin(theta) * sin(psi) r[2, 3] <- -sin(phi) * cos(psi) + cos(phi) * sin(theta) * sin(psi) r[3, 1] <- -sin(theta) r[3, 2] <- sin(phi) * cos(theta) r[3, 3] <- cos(phi) * cos(theta) r }
#> function (phi = 0, theta = 0, psi = 0) #> { #> r <- matrix(0, 3, 3) #> r[1, 1] <- cos(theta) * cos(psi) #> r[1, 2] <- -cos(phi) * sin(psi) + sin(phi) * sin(theta) * #> cos(psi) #> r[1, 3] <- sin(phi) * sin(psi) + cos(phi) * sin(theta) * #> cos(psi) #> r[2, 1] <- cos(theta) * sin(psi) #> r[2, 2] <- cos(phi) * cos(psi) + sin(phi) * sin(theta) * #> sin(psi) #> r[2, 3] <- -sin(phi) * cos(psi) + cos(phi) * sin(theta) * #> sin(psi) #> r[3, 1] <- -sin(theta) #> r[3, 2] <- sin(phi) * cos(theta) #> r[3, 3] <- cos(phi) * cos(theta) #> r #> } #> <environment: 0x10e6dc708>