caspr: Cellular Automata for Spatial

Pressure in R
Florian D. Schneider
2015-10-30

Contents

General information
Contributors
Version and package home
Install package

License

Package description
Landscape objects Lo
Model objects
Running models: function ca()
function ca_array()

function ca_animate()

Model descriptions
Mussel bed modelo
Forest Gap modelo
Predator-prey modelo
Grazing model

Conway’s Game of Life

NN NN NN

w

General information

The caspr package is running spatial disturbance models in a cellular automata
framework. This is part of a collaborative project between the group of Sonia
Kéfi (Institut de Sciences d’Evolution, CNRS, IRD, Université Montpellier,
France) and Vishwesha Guttal (Center for Ecological Sciences, Indian Institute
of Science, Bangalore, India).

Contributors

Alain Danet, Alex Genin, Vishwesha Guttal, Sonia Kefi, Sabiha Majumder,
Sumithra Sankaran, Florian Schneider (Maintainer)

Version and package home

The package is developed and distributed on Github. Source code is found at
https://github.com/fdschneider/caspr. Current release is v0.2.0. Please report
bugs on the package issue tracker and contribute fixes or new model definitions
via pull requests!

Install package

The package can be installed directly from GitHub using the devtools package.

install.packages("devtools")
devtools::install_github("fdschneider/caspr")

Then, to load the package in your current session, type

library(caspr)

License

The MIT License (MIT)
Copyright (c) 2015 the authors

http://sonia.kefi.fr/
http://sonia.kefi.fr/
https://teelabiisc.wordpress.com/
mailto:florian.schneider@univ-montp2.fr
https://github.com/fdschneider/caspr
https://github.com/fdschneider/caspr
https://github.com/fdschneider/caspr/releases/tag/v0.2.0
https://github.com/fdschneider/caspr/issues

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Package description

The R-package is build around objects of a particular class ca_model (S3
objects in R) that contain all the model specific information, like the original
publication, the update functions, and the cell states. These objects can
be handled by a function called ca() which runs the cellular automata over
time. Other functions allow the plotting of single snapshots or timeseries, the
generation of initial lattices/grids/landscapes, the calculation of spatial and
temporal indicators as provided by the package ‘spatialwarnings’.

In the following the objects and functions are described in a (somewhat) logical
sequence of usage.

Landscape objects

Cellular automata are lattice- or grid-based systems, where neighboring cells on
the lattice are affecting each others transition rules. Those lattices are termed
‘landscapes’ within the framework of ‘caspr’ and are stored in objects of class
"landscape".

https://github.com/fdschneider/spatial_warnings

Generate landscape objects

Landscape objects are created using the function init_landscape() , e.g.

1 <- init_landscape(c("1", "0"), ¢(0.2,0.8), width = 100)

Landscapes are squared by default, but a height argument can be specified
optionally. However, doing so might disqualify the output to be spatially
analysed!!!

A landscape object is a list 1 of class "landscape" that contains

e 1$dim : a named vector of the default form c(width = 50, height =
50)

o 1$cells : a factorial vector of length prod(1$dims) that contains the
state that each cell of the landscape matrix is in (row-wise from top to
bottom).

Transfer to Matrix

The vectorial storage of the grid is allowing for a more efficient memory use
and evaluation than with matrices, using map vectors that are provided as
global variables by executing mapping(1$dims[1], 1$dims([2]).

For compatibility the landscape object can be translated into a matrix using
as.matrix(1l). Any matrix L of factorial content can be reverted into a
landscape object using as.landscape(L, states). Ensure that the factors
occuring in the matrix match the factor levels provided in the argument states,
which is used to set the order of the states in the resulting landscape object
(order is important in the further process!).

Binary matrix for spatial analysis

The function as.binary_matrix() provides compatibility with the package
‘spatialwarnings’ for spatial analysis of spatial patterns. By default the function
assumes the primary cell state to be transferred into binary value TRUE, while
all other states are set to FALSE. The parameter is specifies the state or a
vector of states that should be set to TRUE in the resulting binary matrix.

library(spatialwarnings)

L <- as.binary_matrix(1l)
L_gap <- as.binary_matrix(l, is = c("0","-"))

spatialwarnings(L)

Plot and summarize output

Specific method for functions plot, summary and print do exist, which means
the following calls will produce an optimized output:

1
summary (1)
plot (1)

Also, a method for ggplot2 function fortify() exists which allows you to plot
landscape objects via

require(ggplot2)

ggplot (fortify(l)) +
geom_raster (aes(x,y,fill=state)) +
scale_fill_manual(values=grazing$cols)

Model objects

A model object is a list model of class "ca_model" that contains

e model$name: the name of the model

o model$ref: the original reference

o model$states: the potential cell states. Order does matter: The first
entry is considered a ‘primary’ or ‘focus’ cell state in downstream functions
(e.g. for plotting of timeseries).

o model$cols: colors for cell states

e model$interact : an interaction matrix, defaults to 4-cell neighborhood.
This affects behaviour of the count () function, if this is required in the
update function.

» model$parms: a set of default parameters that also serves as a template
to check for completeness of custom parameters.

o model$update: the update function, which takes a landscape object
x_old and returns a landscape object x_new, representing the updating
of one single timestep (e.g. one year, one season).

Other functions or static parameters can be provided as further objects to the
list. But those listed above are mandatory. In the current version of caspr,
the objects of class ca_model are not created by a function, but provided
manually as custom R objects. If you add a model then start development
from model_template.R! Before running ca(l, yourmodel) you should test
the update function for valid output and optimize for evaluation speed!

A method print.ca_model exists which allows to review a model’s specifica-
tions simply by calling the model object in R, e.g. grazing returns.

##

Spatial Grazing Model

#w --—-

##

Possible cell states: +, 0, -

##

Required parameters and default values:
del = 0.9

b=20.5

#it c_=20.2
m0 = 0.05
#it g=20.2

r =0.01
f=0.9

d =0.1

p=1

#i#

Original reference: Schneider and Kefi 2015, in review

It is envisioned to provide a function that helps generating the backbone of a
new model object.

Running models: function ca()

The function ca(x, model, parms) runs a cellular automata simulation start-
ing from the landscape object provided in x and using the update function
provided by model with the parameter set parms (a list of parameters). Before
running the model, the function validates the parameter set provided against
the template stored in model$parms.

Further parameters are available to adjust the timespan run and the snapshots
of the landscape saved.

1 <- init_landscape(c("+", "O", "-"), ¢(0.2,0.7,0.1))
p <- list(d = 0.4, r = 0.2, delta = 0.4)
r <- ca(l, musselbed, p)

By default, simulations run for 200 timesteps and then terminate. This can be
modified by setting the t_max parameter to a lower or higher value.

r <- ca(l, musselbed, p, t_max = 500)

After simulation, the function returns an object of class ca_results. The
result object r would have the structure:

e r¥model: the ca_model object used to run the simulation, including the
provided parameter set.

e r$time: a vector of the distinct timesteps of the simulation

o r$issteady: Binary vector reporting for each timestep if the criterion for
steady state was fulfilled. The criterion can be customized by adjusting
parameter steady (see below).

e r$cover: a data frame reporting the global cover with one column for
each state of the model and one row for each timestep. Thus, r$cover[1]
returns the timeseries of the primary cell state.

o r$local: a data frame reporting the average local cover of the cell states,
i.e. the average probability that a state ¢ is found in the neighborhood
given that the focal cell is in state ¢ Thus, r$local[1] returns the
timeseries of the primary cell state.

o r$snaps: a vector of times at which snapshots were taken.

e r$landscapes: a list of landscape objects for the given snapshots.

Thus the result of a simulation contains two major types of output:

1. the full timeseries of cover of each state (r$cover), as well as a timeseries
of the average local cover (r$local).

2. selected snapshots of the full landscape (r$landscapes). By default each
timestep is stored (see below).

define frequency of snapshots

The output object contains a list object r$landscapes which contains indi-
vidual snapshots of the landscapes, by default taken each full timestep. The
parameter saveeach reduces the frequency of snapshots to be saved in the
output object. This is usefull to reduce size of the output objects or to produce
time-lapse videos with the ca_animate() function.

The following would only save the initial and final landscape.

r <- ca(l, musselbed, p, t _max = 500, saveeach = 500)

define auto-stop function

Alternatively to running the simulations until t_max is reached, the function
ca() can automatically terminate the simulation if steady state is reached.
The switch stopifsteady = TRUE activates this option and applies the default
criterion for steady state, which is comparing the mean cover of the primary
cell state in two subsequent periods of time. The simulation terminates if the
difference in means is below a threshold value.

(This method is still problematic and needs to be refined!)

realised timesteps

The update functions of the models are defined to represent a full timestep.
What that means depends on the model specifications. It can be one year, a
day or any particular timespan that the model parameters refer to. However,
the computational implementation of one update cycle is model specific.

For instance the predator—prey model applies an asynchronous updating,
i.e. within each annual timestep, width X height random cells are updated,

allowing for repeated draws. Each cell has the fair chance to be updated, but
no guarantee. Thus, no substeps in that sense are implemented, but they could
be.

The grazing model has synchronous updating and each timestep is implemented
as subs substeps. Within each substep, only a fraction of the annual transition
probability is applied. The default value here is set in the model specifications,
but it can be provided by the ca() function as an argument that is handed
over to the update function call. For instance, you can run the grazing model
with 12 instead of the default 10 substeps by calling:

ca(l , model = grazing, parms = p, subs = 12)

In any case only the full annual timestep is returned to the ca() function.

function ca_array()

The package includes a wrapper function ca_array() that runs repeated model
simulations along a gradient of one parameter value or an array of parameter
values. This function makes use of a parallel backend, e.g. provided by the
foreach package. The initial landscape is drawn for each replicate using the
numerical vector of initial cover provided in init.

Make sure to adapt the type of parallel backend to your computer infrastructure
(see package vignette of the foreach -package).

provides parallel backend
library(foreach)
library(doSNOW)

cl <- makeCluster(rep("localhost", 10), type = "SOCK")

p <- list(
r = 0.4, # recolonisation of empty sites dependent on local density
d = seq(0,1,0.1), # wave disturbance
delta = 0.01, # intrinsic disturbance rate
replicates = 1:5
)
r <- ca_array(musselbed, init = ¢(0.7,0.15,0.15), parms = p)

https://cran.r-project.org/web/packages/foreach/vignettes/foreach.pdf

stopCluster(cl)

The function returns a dataframe with global and local cover for each state for
each parameter value or combination of parameter values given in parms.

Parameters specifying the behaviour of each model run can be provided as
optional parameters and will be handed to function ca() (e.g. t_max or a
custom stability criterion).

Save output to files

Optionally, the individual model run outputs will be saved to “Rd’ files if
parameter save = TRUE is set. The filename parameter can be used to specify
a relative path and filename root, which will be extended by an individual
counter.

r <- ca_array(musselbed, init = ¢(0.7,0.15,0.15), parms = p,
save = TRUE, filename = "output/musselbed")

Note: If running in parallel on a cluster, output files will be saved in the
workers home directory!

Random number seeds

The function ca_array() sets the seed for random number generation for each
iteration in the parameter array. The seeds of each initial run will be reported
in the output table. To make things reproducible, it initiates the seeds of the
array using a random number generator that is seeded to a value provided in
the parameter salt. Thus, two runs of ca_array() that are supposed to differ
from one another run must receive their own grain of salt.

rl <- ca_array(musselbed, init
r2 <- ca_array(musselbed, init

function ca_animate()

To visualize simulation runs the function ca_animate () provides a wrapper that
generates an animated gif (default) or video of the landscapes development over

10

c(0.7,0.15,0.15), parms = p, salt
c(0.7,0.15,0.15), parms = p, salt

378539)
745283)

time. The function requires the ‘animation’ package, which uses ‘ImageMagick’
to convert the multiples into an animated gif or ‘ffmpg’ to convert into a video.
Make sure that ImageMagick and/or fimpg are installed and properly found
by the animation package functions (see 7saveGIF). The animated gifs are tiny
and represent one landscape cell per pixel. Use an image viewer that scales
images without aliasing to view the animated gif at larger size.

The type of video generated can be specified by the type argument which can
be mp4, wmv or avi. So far, mp4 produces the nicest output.

1 <- init_landscape(musselbed$states, cover = c(0.3,0.2,0.5), width = 100)
r <- ca(l, musselbed, t_max = 40)

ca_animate(r, filename = "musselbed")
ca_animate(r, filename = "musselbed", type = "mp4")

Note that the parameter saveeach in ca() can be used to produce timelapse
effects.

r <- ca(l, musselbed, t max = 200, saveeach = 3)
ca_animate(r, filename = "musselbed", speed = 0.8)

Additionally, the speed of the output video or animation can be adjusted by
setting the relative speed parameters (defaults to speed = 1).

By default, output is saved in current working directory. The parameter
directory allows specifying any relative or absolute target path.

Model descriptions

A set of spatially-explicit cellular automata is provided with caspr. They have
in common that a spatially explicit stress is acting on the focal cell state, for
instance by increasing mortality if predators or gaps in the canopy are present
or by reducing mortality by associational growth.

We also added Conway’s Game of Life as a test case for animation functions —
and for fun.

11

http://yihui.name/animation/
http://imagemagick.org/

Mussel bed model

The model represents the spatial dynamics in mussel cover of rock substrate in
intertidal systems. The stochastic wave disturbances will most likely remove
mussels that are located next to a gap because of the losened byssal threads in
their proximity. This causes a dynamic gap growth.

The model describes the process by simplifying the system into three potential
cell states: occupied by mussel (“+”), empty but undisturbed (“07), and
disturbed, bare rock with loose byssal threads (“-”).

Mussel growth on empty cells is defined by parameter » multiplied by the local
density of mussels in the direct 4-cell neighborhood.

Any cell occupied by mussels has an intrinsic chance of § to be disturbed from
intrinsic cause, e.g. natural death or predation. Additionally, wave disturbance
will remove mussels and leave only bare rock, i.e. disturbed sites, with proba-
bility d if at least one disturbed cell is in the direct 4-cell neighborhood. This
causes disturbances to cascade through colonies of mussels.

Disturbed sites will recover into empty sites with a constant rate of 1 per year,
i.e. on average a disturbed site becomes recolonisable within one year after the
disturbance happened.

Example

create initial landscape:

<- init_landscape(c("+","0","-"), ¢c(0.6,0.2,0.2), width = 50)
set parameters:

<- list(delta = 0.01, d = 09, r = 0.4)

run simulation:

<- ca(l, musselbed, p, t_max = 100)

H %7 #% H %

Original reference

Guichard, F., Halpin, P.M., Allison, G.W., Lubchenco, J. & Menge, B.A. (2003).
Mussel disturbance dynamics: signatures of oceanographic forcing from local
interactions. The American Naturalist, 161, 889-904. doi: 10.1086/375300

12

http://dx.doi.org/10.1086/375300

Forest Gap model

Dynamic model for forest pattern after recurring wind disturbance with two
cell states: empty ("0") and vegetated ("+").

This model can use either an explicit height for trees, in which case states can
be anywhere in a range [S,,in...Spax] (Solé et al., 1995), or use only two states,
vegetated (non-gap) and empty (gap) (Kubo et al., 1996). Here we focus on
the version that uses only two states: gap ("0") and non-gap ("+"). Without
spatial spreading of disturbance (all cells are independent), a cell transitions
from empty to vegetated with a birth probability b and fromvegetated to empty
with death probability d.

However, gap expansion occurs in nature as trees having empty (non-vegetated)
surroundings are more likely to fall due to disturbance (e.g. wind blows). Let
p(0) be the proportion of neighbouring sites that are gaps. We can implement
this expansion effect by substituting the death rate

d= d() + (5]?0 .
Since 0 < p(0) < 1, delta represents the maximal added death rate due to gap
expansion (i.e. the spatial component intensity).

The authors consider two cases: one in which the recovery of trees is propor-
tional to the global density of vegetated sites, and one where the recovery is
proportional to the local density of vegetation. We use only the first case as it
the only one producing bistability.

The birth rate b is substituted with

b:ap-‘ra

where p, represents the global density of non-gap sites and « is a positive
constant. This can produce alternative stable states over a range of § values
within 0.15-0.2 (« is fixed to 0.20 and d to 0.01).

In their original simulations, the authors of the model (Kubo et al. 1996) use
a 100 x 100-torus-type lattice (with random initial covers?).

13

Example

create initial landscape:

1 <- init_landscape(c("+","0"), c(0.6,0.4), width = 100)
set parameters:

p <- list(alpha = 0.2, delta = 0.2, d = 0.01)

run simulation:

r <- ca(l, model = forestgap, parms = p, t_max = 50)

r

plot(r)

Original reference

Kubo, T. et al. (1996) Forest spatial dynamics with gap expansion: to-
tal gap area and gap size distribution. J. Theor. Biol. 180, 229-246, doi:
10.1006/;jtbi.1996.0099

Predator-prey model

A spatially explicit predator prey model with three potential cell states: Oc-
cupied by prey (fish, "f"), occupied by predators (sharks, "s") and empty
("om).

The particular neighbourhood considered in the simulations consists of the
four nearest sites. Prey growth occurs as a contact process: a prey chooses a
neighbouring site at random and gives birth to another prey if this site is empty
at a birth rate 8. Predators hunt for prey by inspecting their neighbourhood
for the presence of prey at rate 5, = 1. If prey are present in the nearest
neighborhood, the predator selects one at random and eats it, moving to this
neighbouring site. Only predators that find a prey can reproduce, and do so
with a specified probability, ;. The offspring is placed in the original site of the
predator. Predators that do not find prey are susceptible to starvation and die
with a probability 6. Random movement occurs through mixing: neighbouring
sites exchange state at a constant rate v.

14

http://dx.doi.org/10.1006/jtbi.1996.0099
http://dx.doi.org/10.1006/jtbi.1996.0099

Example

H B %0 $# H #

##
##
##
#i#
#i#
##
##
##
##
#i#
#i#
##
##
##
#it
#i#

create tnitial landscape:

<- init_landscape(c("f","s","0"), ¢(0.3,0.2,0.5), width = 100)
set parameters:

<- list(betaf = 0.01, betas = 0.1, delta =0.2)

run stmulation:

<- ca(l, model = predprey, parms = p, t_max = 50)

Model run of Predator-prey Gap Model over 50 timesteps.
average cover:
f s 0
0.052 0 0.948
for more details call 'summary(x)' or 'plot(x)'!
access simulation results:
'x$model$parms' : simulation parameters
'x$time' : a vector of timesteps
'x$cover' : a dataframe of the states' timeseries
'x$ini landscape' : the initial landscape object
'x$snaps' : an index table of saved snapshots
'x$landscapes[[i]]' : extract snapshot from list of snapshots
t=0 t=10 t=20 t=30 t=40
. *,
* . A
. é& Lo
SR S

15

Original reference

Pascual, M., Roy, M., Guichard, F., & Flierl, G. (2002). Cluster size dis-
tributions: signatures of self-organization in spatial ecologies. Philosophical
Transactions of the Royal Society of London. Series B, Biological Sciences,
357(1421), 657-666. doi: 10.1098 /rsth.2001.0983

Grazing model

The model builds upon a published model by Kefi et al. (2007). Spatial models
of vegetation cover so far have considered grazing mortality a rather constant
pressure, affecting all plants equally, regardless of their position in space. In
the known models it usually adds as a constant to the individual plant risk
(Kefi et al. 2007). However, grazing has a strong spatial component: Many
plants in rangelands invest in protective structures such as thorns or spines,
or develop growth forms that reduce their vulnerability to grazing. Therefore,
plants growing next to each other benefit from the protection of their neighbors.

Such associational resistance is widely acknowledged in vegetation ecology
but hardly integrated in models as a cause for spatially heterogenous grazing
pressure. It also renders the plant mortality density dependent, which has
important impacts on the bistability of the system.

The model investigates how the assumption of spatially heterogeneous pres-
sure alters the bistability properties and the response of spatial indicators of
catastrophic shifts.

The model knows three different cell states: occupied by vegetation "+",
empty but fertile "0" and degraded "-". Transitions between cell states are
only possible between vegetated and empty (by the processes of plant ‘death’
and ‘recolonization’) and between empty and degraded (by ‘degradation’ and
‘regeneration’).

To account for the spatially heterogeneous impacts of grazing due to associa-
tional resistance, we assumed that a plant’s vulnerability to grazers decreases
with the proportion of occupied neighbors, g . The individual probability of
dying is therefore defined as

Wi4,0y = Mo + Go (1 - Q+\+)

where the additional mortality due to grazing is maximized to gy if a plant

16

https://doi.org/10.1098/rstb.2001.0983

has no vegetated neighbor (i.e., ¢4j+ = 0) and gradually reduces to 0 with an
increasing fraction of occupied neighbors, g ;.

Example

create initial landscape:

1 <- init_landscape(c("+","0","-"), c(0.6,0.2,0.2), width = 50)
set parameters:

p <- list(del = 0.1, # global proportion of seed dispersal

0.1,
4, # environmental quality

b =)
c_=0.2, # global competition
mO0 = 0.05, # intrinsic plant mortality
g = 0.25, # grazing rate
r = 0.01, # entrinsic regeneration rate
f =0.9, # local facilitation
d=20.1, #
p =1 # intensity of assoctational protection
)
r <- ca(l, model = grazing, parms = p, t_max = 100) # run simulation
r
##

Model run of Spatial Grazing Model over 100 timesteps.
##
average cover:

+ 0 -
0.008 0.137 0.855
#i#

for more details call 'summary(x)' or 'plot(x)'!
access simulation results:

'x$model$parms' : simulation parameters

'x$time' : a vector of timesteps

'x$cover' : a dataframe of the states' timeseries

#it 'x$ini_landscape' : the initial landscape object

'x$snaps' : an index table of saved snapshots

'x$landscapes[[i]]' : extract snapshot from list of snapshots
##

##

17

t=5 t=25 t=50 t=75 t=100

Original reference

This model is unpublished yet, but inherits most assumptions from:

Kéfi, S., Rietkerk, M., van Baalen, M. & Loreau, M. (2007). Local facilitation,
bistability and transitions in arid ecosystems. Theoretical Population Biology,
71, 367-379. doi: 10.1016/j.tpb.2006.09.003

Conway’s Game of Life

This is an implementation of the most popular cellular automata model ‘Life’.
We added it to caspr for testing purposes.

The possible cell states are alive, "1", and dead, "0". The transition rules are
deterministic:

o Any live cell with fewer than two live neighbours dies, as if caused by
under-population.

o Any live cell with two or three live neighbours lives on to the next
generation.

o Any live cell with more than three live neighbours dies, as if by over-
crowding.

o Any dead cell with exactly three live neighbours becomes a live cell, as if
by reproduction.

Example

18

http://dx.doi.org/10.1016/j.tpb.2006.09.003

1 <- init_landscape(c("1","0"), c(0.35,0.65), 150)
r <- ca(l, life, t _max = 100)
ca_animate(r, filename = "life")

Original reference

A detailled description can be found on Wikipedia. The first publication is:

Gardner, Martin (1970). Mathematical Games — The fantastic combinations of
John Conway’s new solitaire game “life”. Scientific American 223. pp. 120-123.
ISBN 0-89454-001-7.

19

https://en.wikipedia.org/wiki/Conway's_Game_of_Life

	General information
	Contributors
	Version and package home
	Install package
	License

	Package description
	Landscape objects
	Model objects
	Running models: function ca()
	function ca_array()
	function ca_animate()

	Model descriptions
	Mussel bed model
	Forest Gap model
	Predator-prey model
	Grazing model
	Conway's Game of Life

