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In this vignette, we use the breakpointError to derive an optimal penalty for breakpoint detection in
signals of varying sampling density. First, we will present an empirical analysis of several simulated signals
using the breakpointError. Then, we will discuss the relationship of our results to relevant theoretical results.
This analysis was originally presented by Hocking [2012, Chapter 4].

In recent years, several authors have developed a theory of minimal penalties that can be used to accu-
rately recover a signal from noisy observations [Arlot and Massart, 2009, Lebarbier, 2005]. These methods
can be used offline to analyze some assumptions about the signal and the noise of the data. Typically, these
results guarantee recovery of the correct signal with high probability. However, in this vignette we are more
interested in accurate recovery of the breakpoints than the signal itself. So here we use the breakpointError
to directly attack the problem of breakpoint detection rather than signal recovery.

In real array CGH data, the sampling density of probes along the genome is not uniform across samples.
In fact, we see a sampling density between 40 and 4400 kilobases per probe in the neuroblastoma data set
data(neuroblastoma,package="neuroblastoma").

So to construct a penalty that can best adapt to this variation, we analyze the following simulation. We
create a latent piecewise constant signal . € RP over D = 600000 base pairs, shown as the blue line in the
figure below. We define a signal sample size d; € {200,...,8000} for every noisy signal i € {1,...,n = 4}.
Let y; € R% be noisy signal i, sampled at positions p; € X%, with p;; < --- < Di,d,- We sample every probe
j from the y;; ~ N(pp,;,1) distribution. These samples are shown as the black points in the figure below.
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We would like to learn some model complexity parameter A on the first noisy signal, and use it for accurate
breakpoint detection on the second noisy signal. In other words, we are looking for a model selection criterion
which is invariant to sampling density.



1 Empirical analysis of simulations

To determine an optimal penalty for breakpoint detection in simulated data, we proceed as follows. For every
signal i, we use pruned dynamic programming to calculate the maximum likelihood estimator §¥ € R, for

several model sizes k € {1,..., kmax = 8} [Rigaill, 2010]. Then, we define the model selection criteria
k'(A) = arg min Akd§* + ||y; — 9713 (1)
k
Each of these is a function k¢ : Rt — {1,..., knax } that takes a model complexity tradeoff parameter A and

returns the optimal number of segments for signal i. The goal is to find a penalty exponent a € R that lets
us generalize A between different signals i.

Naively, one may expect that the best exponent is o = 1, since that corresponds to an error term with
the average residual:

ki(\) = arg in Ak + [[y; — i 113/ di- (2)
However, we will show that this penalty is not optimal, by analyzing the breakpointError.

To quantify the accuracy of a segmentation for signal i, let e;(k) be the breakpointError of the model
with k& segments. In the figure below, we plot e; for the 2 simulated signals ¢ shown previously.
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Now, let us define the penalized model breakpoint error E* : Rt — R as
EF(N) = e [k (V)] - (3)

In the figure below, we plot these functions for the two signals ¢ shown previously, and for several penalty
exponents «.
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The dots in the figure show the optimal A found by minimizing the penalized model breakpoint detection
error:

A = argmin EX()) (4)
AERT
This figure suggests that o ~ 1/2 defines a penalty with aligned error curves, which will result in 5\?
values that can be generalized between profiles.



Now, we are ready to define 2 quantities that will be able to help us choose an optimal penalty exponent c.
First, let us consider the training error over the entire database:

() = 3B (N, )

and we define the minimal value of this function as
E*(a) = m}%n E“(\). (6)

In the figure below, we plot these training error functions E® (black) and their minimal values E* (red) for
several values of a.
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It is clear that the minimum training error is found for some penalty exponent o near 1/2, and we would
like to find the precise « that results in the lowest possible minimum E*(«).
We also consider the test error over all pairs of signals when training on one and testing on another:

TestErr(a) = Z E} (5\‘;‘) (7)
i#]

In the figure below, we plot E* and TestErr for a grid of « values.
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It is clear that an optimal penalty is given by & = 1/2. This corresponds to the following model selection
criterion which is invariant to sampling density:

k!72() = g min Mo/, + |1y — 9813 ®)



2 Discussion of related theoretical results

As explained by Arlot and Celisse [2010], a model selection procedure can be either efficient or consistent. An
efficient procedure for model estimation accurately recovers the latent signal, whereas a consistent procedure
for model identification accurately recovers the breakpoints. Since we consider the breakpoint detection
error, we are attempting to construct a consistent penalty, not an efficient penalty.

In general terms, the fact that we find a nonzero exponent « for our df penalty term agrees with other
results. In particular, Arlot [2008] proposed an optimal procedure to select model complexity parameters in
cross-validation by normalizing by the sample size d;.

The v/d; term that we find here using simulations is in agreement with Fischer [2011], who use finite
sample model selection theory to find a v/d; term in a penalty optimal for clustering.

When theoretically deriving an efficient penalty for change-point model estimation in the non-asymptotic
setting, Lebarbier [2005] obtained a logd; term. This contrasts our result, which examines the identification
problem using the breakpoint error and obtains a v/d; term. But in fact this is in agreement with classical
results that AIC underpenalizes with respect to the BIC, as shown in the table below.

Estimation Penalty | Identification Penalty
Model Term Model Term
AIC 2 BIC log d;
Lebarbier log d; This work Vd;

Comparing our results with Lebarbier, in the context of classical results involving AIC and BIC. The BIC
is designed for model identification and penalizes more than the AIC. Likewise, our penalty examines model

identification using the breakpoint detection error, and penalizes more than the efficient penalty proposed
by Lebarbier.
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