
SRS: A Subject Randomization System

Balasubramanian Narasimhan

Revision of Date

Contents

1 Introduction 1

2 The Basic Classes 1

3 A Simple Example 2
3.1 A Clinical Experiment . 2
3.2 The PocockSimon Randomizer . 3
3.3 Using the Randomizer . 5

4 Customizing the Randomizer 7
4.1 A different imbalance function . 7
4.2 Weighting factors differently . 8
4.3 Unequal treatment assignments . 9
4.4 A different probability assignment . 10

5 Notes 11

1 Introduction

SRS is a Subject Randomization System based on the paper by Pocock and Simon ([1]. It follows
the development in the paper rather closely. In this vignette we show how one might use the system
in designing and implementing randomizations for clinical trials.

This vignette has two parts to it. The first part goes into detail discussing some of the innards
of the package. This is most meaningful to those in our Biostatistics core who may recommend this
software for use in trials. The second part is more of a HOWTO for conducting a trial.

This package is written using S4 classes. No deep knowledge of S4 classes is assumed in what
follows.

To use the package, we first attach it.

> library(SRS)

2 The Basic Classes

There are two main classes that most users of the package will use: ClinicalExperiment and
PocockSimonRandomizer. The class ClinicalExperiment, as the name implies, encapsulates the
characteristics of a clinical experiment. An instance of this class is used to create an instance of the

1

other class PocockSimonRandomizer so that the randomizer remains associated with a particular
clinical experiment.

3 A Simple Example

3.1 A Clinical Experiment

Let us create a simple clinical experiment object after invoking the requisite package. The function
ClinicalExperiment (as distinct from the ClinicalExperiment class) is available for us.

> expt0 <- ClinicalExperiment(number.of.factors = 3,

+ number.of.factor.levels = c(2, 2, 3),

+ number.of.treatments = 3)

This create an experiment with three factors and three treatments. The first factor has 2 levels,
the second 2, and the third 3. If none of the arguments are specified, the default is to create a
two-factor, two-treatment experiment with each factor having two levels. One can name the factors
with the argument factor.names but default names such as F1, F2, . . . are provided. The levels
are currently indicated by the suffixes -1, -2, etc., that are attached to the factor names; a flexible
naming scheme for this might be introduced later.

It is useful to print the object to see what it contains.

> print(expt0)

An object of class "ClinicalExperiment"

Slot "number.of.factors":

[1] 3

Slot "factor.names":

[1] "F1" "F2" "F3"

Slot "factor.level.names":

[[1]]

[1] "1" "2"

[[2]]

[1] "1" "2"

[[3]]

[1] "1" "2" "3"

Slot "number.of.factor.levels":

[1] 2 2 3

Slot "number.of.treatments":

[1] 3

Slot "treatment.names":

[1] "Tr1" "Tr2" "Tr3"

2

Of course, in anything other than a toy setting, one actually provides some names for the factor
and factor levels. We’ll use this in what follows.

> expt <- ClinicalExperiment(number.of.factors = 3,

+ factor.names = c("Sex", "Race", "Stage"),

+ number.of.factor.levels = c(2, 2, 3),

+ factor.level.names =

+ list(c("Female", "Male"),

+ c("Caucasian", "Non-caucasian"),

+ c("I", "II", "III")),

+ number.of.treatments = 3,

+ treatment.names <- c("Placebo", "Arm1", "Arm2"))

> print(expt)

An object of class "ClinicalExperiment"

Slot "number.of.factors":

[1] 3

Slot "factor.names":

[1] "Sex" "Race" "Stage"

Slot "factor.level.names":

[[1]]

[1] "Female" "Male"

[[2]]

[1] "Caucasian" "Non-caucasian"

[[3]]

[1] "I" "II" "III"

Slot "number.of.factor.levels":

[1] 2 2 3

Slot "number.of.treatments":

[1] 3

Slot "treatment.names":

[1] "Placebo" "Arm1" "Arm2"

3.2 The PocockSimon Randomizer

Now let’s create a randomizer that will work for this experiment.

> r.obj <- new("PocockSimonRandomizer", expt, as.integer(12345))

> print(r.obj)

An object of class "PocockSimonRandomizer"

Slot "expt":

3

An object of class "ClinicalExperiment"

Slot "number.of.factors":

[1] 3

Slot "factor.names":

[1] "Sex" "Race" "Stage"

Slot "factor.level.names":

[[1]]

[1] "Female" "Male"

[[2]]

[1] "Caucasian" "Non-caucasian"

[[3]]

[1] "I" "II" "III"

Slot "number.of.factor.levels":

[1] 2 2 3

Slot "number.of.treatments":

[1] 3

Slot "treatment.names":

[1] "Placebo" "Arm1" "Arm2"

Slot "seed":

[1] 12345

Slot "stateTable":

Sex:Female Sex:Male Race:Caucasian Race:Non-caucasian Stage:I Stage:II

Placebo 0 0 0 0 0 0

Arm1 0 0 0 0 0 0

Arm2 0 0 0 0 0 0

Stage:III

Placebo 0

Arm1 0

Arm2 0

Slot "tr.assignments":

data frame with 0 columns and 0 rows

Slot "tr.ratios":

[1] 0.3333333 0.3333333 0.3333333

Slot "d.func":

4

function (x)

{

diff(range(x))

}

<environment: namespace:SRS>

Slot "g.func":

function (x)

{

sum(x)

}

<environment: namespace:SRS>

Slot "p.func":

function (overallImbalance)

{

number.of.treatments <- length(overallImbalance)

p.star <- 2/3

k <- which(overallImbalance == min(overallImbalance))

if (length(k) > 1) {

k <- sample(k, 1)

}

p.vec <- rep((1 - p.star)/(number.of.treatments - 1), number.of.treatments)

p.vec[k] <- p.star

p.vec

}

<environment: namespace:SRS>

Note that we don’t have a helper constructor function (for no particular reason) and so we
had to use the new function to create the object. (Indeed, that is what the ClinicalExperiment

function does behind the scenes.)
The output of the print above indicates that there are some default settings for the randomizer.

For example, the treatment ratios are all 1’s indicating equal treatment preference; others such as 1
2 1 could have been specified. Note the stateTable slot which will summarize the margins of the
factor distributions by treatment. Since no randomization has been done, the slot tr.assignments
is empty.

Of interest are the slots named d.func, g.func and p.func. The d.func computes imbalance
due to assigning each of the treatments, g.func computes the overall imbalance, and the p.func

computes the probabilities of assigning each treatment based on the overall imbalance. All of these
can be changed by the user. Default values for these functions are the ones described in [1].

3.3 Using the Randomizer

Now that we have defined the experiment and the randomizer, we can randomize several subjects
using these classes. First some helper functions that are useful in simulations.

> ###

> ### Generate a random Id for a subject (max 10000000)!

> ###

5

> generateId <- function(i) {

+ if (i < 0 || i > 10000) {

+ stop("generateId: Arg expected to be between 1 and 9999")

+ }

+ zero.count <- 5 - trunc(log10(i)) - 1

+ prefix <- substring(10^zero.count, 2)

+ paste("ID.", prefix, i, sep="")

+ }

> ###

> ### Generate random factors; if n is the number of factors, limits is a list

> ### of length n with each element being a vector of possible factor levels

> ###

> generateRandomFactors <- function(factor.levels) {

+ unlist(lapply(factor.levels, function(x) sample(x, 1)))

+ }

Now, we will run a 10 randomizations and print the results.

> for (i in 1:10)

+ r.obj <- randomize(r.obj, generateId(i),

+ generateRandomFactors(expt@factor.level.names))

> print(r.obj@tr.assignments)

Sex Race Stage Treatment

ID.00001 Male Non-caucasian III Arm2

ID.00002 Female Caucasian II Placebo

ID.00003 Female Caucasian III Arm1

ID.00004 Female Caucasian II Arm2

ID.00005 Female Non-caucasian II Arm1

ID.00006 Male Non-caucasian II Placebo

ID.00007 Male Non-caucasian I Arm1

ID.00008 Male Caucasian I Arm2

ID.00009 Female Non-caucasian III Placebo

ID.00010 Female Non-caucasian II Placebo

Just in case we are only interested in the last assigned treatment:

> lastRandomization(r.obj)

Sex Race Stage Treatment

ID.00010 Female Non-caucasian II Placebo

We can also look at the marginal distributions thus:

> print(r.obj@stateTable)

Sex:Female Sex:Male Race:Caucasian Race:Non-caucasian Stage:I Stage:II

Placebo 3 1 1 3 0 3

Arm1 2 1 1 2 1 1

Arm2 1 2 2 1 1 1

6

Stage:III

Placebo 1

Arm1 1

Arm2 1

4 Customizing the Randomizer

The functions for computing imbalance, overall imbalance and probabilities can all be customized.
These are best illustrated by additional examples.

4.1 A different imbalance function

Let’s move away from the default range function to say the standard deviation (sd) function.

> r.obj.2 <- new("PocockSimonRandomizer", expt, as.integer(12345),

+ d.func=sd)

> print(r.obj.2@d.func)

function (x, na.rm = FALSE)

{

if (is.matrix(x)) {

msg <- "sd(<matrix>) is deprecated.\n Use apply(*, 2, sd) instead."

warning(paste(msg, collapse = ""), call. = FALSE, domain = NA)

apply(x, 2, sd, na.rm = na.rm)

}

else if (is.vector(x))

sqrt(var(x, na.rm = na.rm))

else if (is.data.frame(x)) {

msg <- "sd(<data.frame>) is deprecated.\n Use sapply(*, sd) instead."

warning(paste(msg, collapse = ""), call. = FALSE, domain = NA)

sapply(x, sd, na.rm = na.rm)

}

else sqrt(var(as.vector(x), na.rm = na.rm))

}

<bytecode: 0x1b15740>

<environment: namespace:stats>

Now let’s run that simulation again.

> for (i in 1:10)

+ r.obj.2 <- randomize(r.obj.2, generateId(i),

+ generateRandomFactors(expt@factor.level.names))

> print(r.obj.2@tr.assignments)

Sex Race Stage Treatment

ID.00001 Male Non-caucasian III Arm2

ID.00002 Female Caucasian II Placebo

ID.00003 Female Caucasian III Arm1

ID.00004 Female Caucasian II Arm2

7

ID.00005 Female Non-caucasian II Arm1

ID.00006 Male Non-caucasian II Placebo

ID.00007 Male Non-caucasian I Arm1

ID.00008 Male Caucasian I Arm2

ID.00009 Female Non-caucasian III Placebo

ID.00010 Female Non-caucasian II Placebo

Now print the summaries.

> print(table(r.obj@tr.assignments[, "Treatment"]))

Arm1 Arm2 Placebo

3 3 4

> print(r.obj@stateTable)

Sex:Female Sex:Male Race:Caucasian Race:Non-caucasian Stage:I Stage:II

Placebo 3 1 1 3 0 3

Arm1 2 1 1 2 1 1

Arm2 1 2 2 1 1 1

Stage:III

Placebo 1

Arm1 1

Arm2 1

4.2 Weighting factors differently

Now let’s weight imbalance on factor 1 more than the others by a factor of 5. We do this by
modifying the g.func.

> ## Note: imbalances is a number of factors by number of treatments matrix

> g.func <- function(imbalances) {

+ factor.weights <- c (5, 1, 1)

+ imbalances %*% factor.weights

+ }

> r.obj.3 <- new("PocockSimonRandomizer", expt, as.integer(12345),

+ d.func=sd, g.func=g.func)

> print(r.obj.3@g.func)

function(imbalances) {

factor.weights <- c (5, 1, 1)

imbalances %*% factor.weights

}

Now the simulation.

> for (i in 1:1000)

+ r.obj.3 <- randomize(r.obj.3, generateId(i),

+ generateRandomFactors(expt@factor.level.names))

8

Let’s look at the distribution of treatments and the marginal distribution of factors.

> print(table(r.obj.3@tr.assignments[, "Treatment"]))

Arm1 Arm2 Placebo

335 333 332

> print(r.obj.3@stateTable)

Sex:Female Sex:Male Race:Caucasian Race:Non-caucasian Stage:I Stage:II

Placebo 167 165 158 174 115 103

Arm1 167 168 160 175 116 102

Arm2 167 166 159 174 116 103

Stage:III

Placebo 114

Arm1 117

Arm2 114

4.3 Unequal treatment assignments

Next, we try a simulation where we require 5:2:1 randomization. To really see the effect, we
need to change the function that computes probabilities for picking each treatment based on the
randomization. Let’s be greedy and use the following:

> p.func.greedy <- function(overallImbalance) {

+ number.of.treatments <- length(overallImbalance)

+ k <- which(overallImbalance == min(overallImbalance))

+ ## Note there could be ties here...

+ p.vec <- rep(0, number.of.treatments)

+ p.vec[k] <- 1

+ p.vec/sum(p.vec) ## will pick ties randomly

+ }

Now, a new randomizer.

> r.obj.4 <- new("PocockSimonRandomizer", expt, as.integer(12345),

+ tr.ratios=c(5,2,1), p.func=p.func.greedy)

A simulation.

> for (i in 1:1000)

+ r.obj.4 <- randomize(r.obj.4, generateId(i),

+ generateRandomFactors(expt@factor.level.names))

> print(table(r.obj.4@tr.assignments[, "Treatment"]))

Arm1 Arm2 Placebo

250 125 625

> print(r.obj.4@stateTable)

9

Sex:Female Sex:Male Race:Caucasian Race:Non-caucasian Stage:I Stage:II

Placebo 312 313 309 316 206 202

Arm1 125 125 124 126 82 81

Arm2 62 63 62 63 42 40

Stage:III

Placebo 217

Arm1 87

Arm2 43

4.4 A different probability assignment

The drawback of using the greedy function in the previous example is that there is some pre-
dictability as to what the randomizer will assign based on the current state. To throw in a bit of
uncertainty, we can define another function that favors the appropriate treatment heavily, but not
deterministically.

> p.func.not.so.greedy <- function(overallImbalance) {

+ FAVORED.PROB <- 0.75

+ number.of.treatments <- length(overallImbalance)

+ k <- which(overallImbalance == min(overallImbalance))

+ if (length(k) > 1) {

+ k <- sample(k, 1)

+ }

+ p.vec <- rep((1-FAVORED.PROB)/(number.of.treatments-1), number.of.treatments)

+ p.vec[k] <- FAVORED.PROB

+ p.vec

+ }

> r.obj.5 <- new("PocockSimonRandomizer", expt, as.integer(12345),

+ tr.ratios=c(5,2,1), p.func=p.func.not.so.greedy)

A simulation.

> for (i in 1:1000)

+ r.obj.5 <- randomize(r.obj.5, generateId(i),

+ generateRandomFactors(expt@factor.level.names))

> print(table(r.obj.5@tr.assignments[, "Treatment"]))

Arm1 Arm2 Placebo

249 131 620

> print(r.obj.5@stateTable)

Sex:Female Sex:Male Race:Caucasian Race:Non-caucasian Stage:I Stage:II

Placebo 301 319 295 325 210 192

Arm1 120 129 115 134 84 78

Arm2 64 67 71 60 45 40

Stage:III

Placebo 218

Arm1 87

Arm2 46

10

Another possibility for the probability function might be based on the actual imbalances.

> p.func.imbalance <- function(overallImbalance) {

+ p.vec <- overallImbalance/sum(overallImbalance)

+ p.vec

+ }

Of course, this assumes that the imbalances calculated are non-negative, which would be the
case with range or standard deviation. But some care must be taken to ensure this is the case for
arbitrary situations.

5 Notes

The current package can be used without recourse to a database for persistence. This would require
the initial definition of the clinical experiment as in the example(s) above along with the randomizer.
This is done once for a study on a designated computer running R to which the person assigned to
do the randomization will have primary access.

Thereafter, every time a subject is to be randomized (after all the usual procedures for regis-
tration in the study) the randomization process will require merely an id for the subject and the
levels of the prognostic factors of interest. The randomization is performed simply by running the
code snippet

r.obj <- randomize(r.obj, id, c(fac1, fac2, fac3))

lastRandomization(r.obj)

where r.obj is a randomizer created as above, and id, fac1, fac2, fac3, are the study id and
the associated factor levels of the subject to be randomized.

After each assignment, the person can save the R workspace so that the state is preserved. If
R is invoked from the same directory again, the state is restored for subsequent randomizations.
Of course, this means all the usual responsibilities for saving the workspace apply for this mode of
operation.

References

[1] Stuart˜J. Pocock and Richard Simon. Sequential treatment assignment with balancing for
prognostic factors in the controlled clinical trial. Biometrics, 31(1):103–115, 1975.

11

