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1 Introduction

The Introduction chapter does not contain any numerical examples demon-
strating survey methodology. Before reproducing the analyses of the following
chapters, we load the SDaA package

> library(SDaA)

The survey package is loaded as well as it was specified as a dependency
of the SDaA package.

2 Simple Probability Samples

3 Ratio and Regression Estimation

3.1 Ratio Estimation

> ### Example 3.2, p. 63

> agsrsDesign <- svydesign(ids=~1, weights = ~1, data = agsrs)
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> svyratio(numerator = ~acres92, denominator = ~acres87,

+ design = agsrsDesign) # proportion B hat

Ratio estimator: svyratio.survey.design2(numerator = ~acres92, denominator = ~acres87,

design = agsrsDesign)

Ratios=

acres87

acres92 0.9865652

SEs=

acres87

acres92 0.006053015

> ### Example 3.5, p. 72, table 3.3

> seedlings <- data.frame(tree = 1:10,

+ x = c(1, 0, 8, 2, 76, 60, 25, 2, 1, 31),

+ y = c(0, 0, 1, 2, 10, 15, 3, 2, 1, 27))

> names(seedlings) <- c("tree", "x", "y")

3.2 Regression Estimation

> ### Example 3.6, p. 75

> pf <- data.frame(photo = c(10, 12, 7, 13, 13, 6, 17,

+ 16, 15, 10, 14, 12, 10, 5,

+ 12, 10, 10, 9, 6, 11, 7, 9, 11, 10, 10),

+ field = c(15, 14, 9, 14, 8, 5, 18, 15, 13, 15, 11, 15, 12,

+ 8, 13, 9, 11, 12, 9, 12, 13, 11, 10, 9, 8))

3.3 Estimation in Domains

3.4 Models for Ratio and Regression Estimation

> ### Example 3.9, p. 83

> recacr87 <- agsrs$acres87

> recacr87[recacr87 > 0] <- 1/recacr87[recacr87 > 0] # cf. p. 450

> model1 <- lm(acres92 ~ 0 + acres87, weights = recacr87, data = agsrs)

> summary(model1)
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> ### part of Example 3.2, p. 64

> plot(I(acres92/10^6) ~ I(acres87/10^6),

+ xlab = "Millions of Acres Devoted to Farms (1987)",

+ ylab = "Millions of Acres Devoted to Farms (1992)", data = agsrs)

> abline(lm(I(acres92/10^6) ~ 0 + I(acres87/10^6), # through the origin

+ data = agsrs), col = "red", lwd = 2)
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Figure˜1: Figure 3.1, p. 64
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> plot(y ~ x, data = seedlings, xlab = "Seedlings Alive (March 1992)",

+ ylab = "Seedlings That Survived (February 1994)")

> # abline(lm(y ~ 0 + x, data = seedlings), lwd = 2, col = "red")

> # TODO: add proper abline
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Figure˜2: Figure 3.4, p. 73
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Call:

lm(formula = acres92 ~ 0 + acres87, data = agsrs, weights = recacr87)

Residuals:

Min 1Q Median 3Q Max

-369.88 -22.09 -5.74 10.76 311.71

Coefficients:

Estimate Std. Error t value Pr(>|t|)

acres87 0.986565 0.004844 203.7 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 46.1 on 298 degrees of freedom

Multiple R-squared: 0.9929, Adjusted R-squared: 0.9928

F-statistic: 4.149e+04 on 1 and 298 DF, p-value: < 2.2e-16

4 Stratified Sampling

5 Cluster Sampling with Equal Probabilities

5.1 Notation for Cluster Sampling

No analyses contained in this section.

5.2 One-Stage Cluster Sampling

> ### Example 5.2, p. 137 middle

> GPA <- cbind(expand.grid(1:4, 1:5),

+ gpa = c(3.08, 2.60, 3.44, 3.04, 2.36, 3.04, 3.28, 2.68, 2.00, 2.56,

+ 2.52, 1.88, 3.00, 2.88, 3.44, 3.64, 2.68, 1.92, 3.28, 3.20))

> names(GPA)[1:2] <- c("person_num", "cluster")

> GPA$pwt <- 100/5

> clusterDesign <- svydesign(ids = ~ cluster, weights = ~ pwt, data = GPA)

> svytotal(~ gpa, design = clusterDesign)
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> ### Figure 3.6, p. 85

> wtresid <- resid(model1) / sqrt(agsrs$acres87)

> plot(wtresid ~ I(agsrs$acres87/10^6),

+ xlab = "Millions of Acres Devoted to Farms (1987)",

+ ylab = "Weighted Residuals")
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> boxplot(acres92/10^6 ~ region, xlab = "Region",

+ ylab = "Millions of Acres", data = agstrat)
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Figure˜4: Figure 4.1, p. 97

total SE

gpa 1130.4 67.167

> # total SE

> # gpa 1130.4 67.167

>

> # Stata results: 1130.4 67.16666 ---> corresponds perfectly

5.3 Two-Stage Cluster Sampling

> ### Figure 5.3

> plot(volume ~ clutch, xlim = c(0,200), pch=19, data = coots,
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+ xlab = "Clutch Number", ylab = "Egg Volume")
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> ### Figure 5.3

> plot(volume ~ clutch, xlim = c(0,200), pch=19, data = coots,

+ xlab = "Clutch Number", ylab = "Egg Volume")
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6 Sampling with Unequal Probabilities

> data(statepop)

> statepop$psi <- statepop$popn / 255077536

> ### page 191, figure 6.1

> plot(phys ~ psi, data = statepop,

+ xlab = expression(paste(Psi[i], " for County")),

+ ylab = "Physicians in County (in thousands)")
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7 Complex Surveys

7.1 Estimating a Distribution Function

> ### Figure 7.1

> data(htpop)

> popecdf <- ecdf(htpop$height)

> plot(popecdf, do.points = FALSE, ylab = "F(y)",

+ xlab = "Height Value, y")
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> ### Figure 7.2

> minht <- min(htpop$height)

> breaks <- c(minht-1, seq(from = minht, to = max(htpop$height), by = 1))

> hist(htpop$height, ylab = "f(y)", breaks = breaks,

+ xlab = "Height Value, y", freq = FALSE)
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> ### Figure 7.3

> data(htsrs)

> hist(htsrs$height, ylab = "Relative Frequency",

+ xlab = "Height (cm)", freq = FALSE)
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> ### Figure 7.4

> data(htstrat)

> hist(htstrat$height, ylab = "Relative Frequency",

+ xlab = "Height (cm)", freq = FALSE)
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> ### Figure 7.5 (a)

> minht <- min(htstrat$height)

> breaks <- c(minht-1, seq(from = minht, to = max(htstrat$height), by = 1))

> hist(htstrat$height, ylab = expression(hat(f)(y)), breaks = breaks,

+ xlab = "Height Value, y", freq = FALSE)
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> ### Figure 7.5 (b)

> stratecdf <- ecdf(htstrat$height)

> plot(stratecdf, do.points = FALSE, ylab = expression(hat(F)(y)),

+ xlab = "Height Value, y")
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7.2 Plotting Data from a Complex Survey

> ### Figure 7.6

> data(syc)

> hist(syc$age, freq = FALSE, xlab = "Age")
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Note that in its current implementation, svyboxplot will only plot mini-
mum and maximum as outliers if they are situated outside the whiskers. Other
outliers are not plotted (see ?svyboxplot). This explains the minor difference
with Figure 7.8 on p. 237 of Lohr (1999).

> ### Figure 7.8

> sycdesign <- svydesign(ids= ~ psu, strata = ~ stratum,

+ data = syc, weights=~finalwt)

> # p. 235: "Each of the 11 facilities with 360 or more youth

> # formed its own stratum (strata 6-16)", so in order

> # to avoid a lonely.psu error message

> # Error in switch(lonely.psu, certainty = scale * crossprod(x), remove = scale * :

> # Stratum (6) has only one PSU at stage 1

> # we set the option to "certainty" for this example

> # to see the problem, use: by(syc$psu, syc$stratum, unique)

> oo <- options(survey.lonely.psu = "certainty")

> svyboxplot(age ~ factor(stratum), design = sycdesign) # mind the factor

> options(oo)
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This kind of plot is particularly easy to formulate in the grammar of graph-
ics, i.e. using the ggplot2 package˜:

> ### Figure 7.9

> p <- ggplot(syc, aes(x = factor(stratum), y = factor(age)))

> g <- p + stat_sum(aes(group=1, weight = finalwt, size = ..n..))

> print(g)
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Note that in its current implementation, svyboxplot will only plot mini-
mum and maximum as outliers if they are situated outside the whiskers. Other
outliers are not plotted (see ?svyboxplot). This explains the minor difference
with Figure 7.10 on p. 238 of Lohr (1999).

> ### Figure 7.10

> oo <- options(survey.lonely.psu = "certainty")

> sycstrat5 <- subset(sycdesign, stratum == 5)

> svyboxplot(age ~ factor(psu), design = sycstrat5)

> options(oo)
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> ### Figure 7.11

> sycstrat5df <- subset(syc, stratum == 5)

> p <- ggplot(sycstrat5df, aes(x = factor(psu), y = factor(age)))

> g <- p + stat_sum(aes(group=1, weight = finalwt, size = ..n..))

> print(g)
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8 Nonresponse

9 Variance Estimation in Complex Surveys

9.1 Linearization (Taylor Series) Methods

9.2 Random Group Methods

9.3 Resampling and Replication Methods

9.4 Generalized Variance Functions

9.5 Confidence Intervals

10 Categorical Data Analysis in Complex Surveys

10.1 Chi-Square Tests with Multinomial Sampling

> ### Example 10.1

> hh <- rbind(c(119, 188),

+ c(88, 105))

> rownames(hh) <- c("cableYes", "cableNo")

> colnames(hh) <- c("computerYes", "computerNo")

> addmargins(hh)

computerYes computerNo Sum

cableYes 119 188 307

cableNo 88 105 193

Sum 207 293 500

> chisq.test(hh, correct = FALSE) # OK

Pearson's Chi-squared test

data: hh

X-squared = 2.281, df = 1, p-value = 0.131
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> ### Example 10.2 (nursing students and tutors)

> nst <- rbind(c(46, 222),

+ c(41, 109),

+ c(17, 40),

+ c(8, 26))

> colnames(nst) <- c("NR", "R")

> rownames(nst) <- c("generalStudent", "generalTutor", "psychiatricStudent",

+ "psychiatricTutor")

> addmargins(nst)

NR R Sum

generalStudent 46 222 268

generalTutor 41 109 150

psychiatricStudent 17 40 57

psychiatricTutor 8 26 34

Sum 112 397 509

> chisq.test(nst, correct = FALSE) # OK

Pearson's Chi-squared test

data: nst

X-squared = 8.2176, df = 3, p-value = 0.04172

> ### Example 10.3 (Air Force Pilots)

> afp <- data.frame(nAccidents = 0:7,

+ nPilots = c(12475, 4117, 1016, 269, 53, 14, 6, 2))

> # estimate lambda

> lambdahat <- sum(afp$nAccidents * afp$nPilots / sum(afp$nPilots))

> # expected counts

> observed <- afp$nPilots

> expected <- dpois(0:7, lambda = lambdahat) * sum(afp$nPilots)

> sum((observed - expected)^2 / expected) # NOT OK

[1] 1935.127

10.2 Effects of Survey Design on Chi-Square Tests

> ### Example 10.4

> hh2 <- rbind(c(238, 376),
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+ c(176, 210))

> rownames(hh2) <- c("cableYes", "cableNo")

> colnames(hh2) <- c("computerYes", "computerNo")

> addmargins(hh2)

computerYes computerNo Sum

cableYes 238 376 614

cableNo 176 210 386

Sum 414 586 1000

> chisq.test(hh2, correct = FALSE) # OK

Pearson's Chi-squared test

data: hh2

X-squared = 4.5621, df = 1, p-value = 0.03269

10.3 Corrections to Chi-Square Tests

> ### example 10.5

11 Regression with Complex Survey Data

11.1 Model-Based Regression in Simple Random
Samples

11.2 Regression in Complex Surveys

12 Other Topics in Sampling


