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1 Introduction

In systems biology as well as in biomarker discovery reverse phase protein arrays (RP-
PAs) have emerged as a useful tool for the large-scale analysis of protein expression
and protein activation (Paweletz et al., 2001). The method follows the basic principle of
printing large numbers of raw protein extracts in parallel on a solid phase carrier to form
a single array. Multiple slides are printed in parallel and each (sub)array is probed with
a different monospecific antibody. To quantify protein expression or protein activation
detectable signals are generated via fluorescence, dye precipitation, or chemilumines-
cence.
RPPanalyzer is a compact tool, developed to perform the basic data analysis on RPPA
data and to visualize the resulting biological information. It will help you with the eval-
uation of standard RPPA experiments. This vignette is a step by step instruction how
to use the RPPanalyzer especially written for people that are usually working in the lab
and are not familiar using R. Figure 1 shows an overview of the data analysis steps.

2 Data preparation

To avoid errors during data analysis it is very important to prepare the input data
exactly in the format as described in the following sections. It is not necessary to adjust
the benchwork to the software but to describe exactly what you have done in the lab.
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Figure 1: Recommended workflow for the analysis or reverse phase protein array data
using the RPPanalyzer package
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2.1 Sample description

Every information concerning the samples has to be stored in a tab delimited text file
and named sampledescription.txt (use spreadsheet software like MS Excel or OOo
Spreadsheet to generate the table). The sampledescription file contains eight mandatory
columns that are required to identify the samples (described in detail below) and optional
columns holding any information describing the samples in more detail. To select sample
groups for separate analysis it is of advantage to store every type of information in a
separate column. To access example files load the RPPanalyzer package:

> library(RPPanalyzer)

An example sampledescription file describing a serially diluted sample set is included.

> ## define path to example files

> dataDir <- system.file("extdata",package="RPPanalyzer")

> ## change working directory

> setwd(dataDir)

> ## store example sample description in a variable

> sampledescription <- read.delim("sampledescription.txt")

> ## show sample description header

> head(sampledescription)

2.1.1 Columns plate, row and column

These columns describe the location of the samples in the spotting source well plate.
The column plate contains the number of the source well plate stored as an integer (1,
2, 3, ...). The Column row contains capital letters (e.g. A-P) and the column column
integers (e.g. 1-24) to identify the position within one source well plate.

2.1.2 Column sample type

The column sample type holds information about the type of the appropriate sample.
Entries ‘measurement’ indicate an experimental measurement whereas ‘control’ denotes
spots for investigation of antibody binding dynamics. Accordingly ‘neg control’ is re-
served for control spots (e.g. BSA) which can be used to investigate unspecific binding.
Finally, ‘blank’ indicates empty spots (e.g. only buffer).

2.1.3 Column sample

Provide an identifier for your samples in this column. It is of advantage to keep this
term unique in case of clinical samples, for cell culture experiments put in the name of
the cell line and add more columns describing every experimental parameter.
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2.1.4 Columns concentration, dilution and dilSeriesID

The column concentration provides numeric data with information of the sample con-
centration. In case of serially diluted samples describe the dilution steps (starting with
a 1 for the highest concentration) in column dilution. The column dilSeriesID contains
the values that should be used for dilution intercept correction via correctDilinterc,
e.g. cell line names. Its values must be matchable in ‘control’ and ‘measurement’. NA
values denote that control values should not be used. In case of more than one unique
value of this parameter, it will also be used as predictor variable in the linear model of
correctDilinterc (exportNo=4).

2.2 Slide description

Write all information describing the slides and arrays in a tab delimited text file and
name it slidedescription.txt. Seven obligatory columns have to be provided and any
optional column can be added.

> ## change directory to example files

> dataDir <- system.file("extdata",package="RPPanalyzer")

> setwd(dataDir)

> ## store example slide description in a variable

> slidedescription <- read.delim("slidedescription.txt")

> ## show slide description header

> head(slidedescription)

2.2.1 Column gpr

To find the GenePix result files (gpr files) in the current folder, the terms stored in
the column gpr are used as identifier. That means you have to use exactly identical
terms for the names of the gpr files and in the gpr column. If you print multiple arrays
on one slide describe the arrays using the same order like on the slide. That means
start with describing the uppermost array, than the array below in the next row of the
slidedescription file and so on.

2.2.2 Columns pad, slide, incubation run and spotting run

The column pad holds the number of the pad or array on the slides. The column slide
holds the number of the slide. Arrays that were analyzed in parallel are identified via
the incubation run column. Make sure that you have exact one blank array (incubated
with 2nd antibodies only) for each incubation run. The column spotting run specifies
the arrays that were printed in parallel. You have to provide at least one array with
normalizer signals per print run for the normalization method housekeeping . In case of
normalizing using a protein dye (method proteinDye), a whole slide has to be provided.
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2.2.3 Columns target and AB ID

In order to be able to assign the right proteins to the arrays the column target holds
the protein name and AB ID the corresponding antibody ID. Please use only regular
characters (letters, digits, ‘ ’, and ‘-’).

2.3 Image analysis result files

So far the software is restricted to read GenePix result files (gpr files). For spot identi-
fication grid in the image analysis software (here GenePix) use the GenePix array list
(gal file) that is produced by the spotting device (e.g. Aushon 2470 or ArrayJet).

3 Data pre-processing

Among all possible correction and normalization methods prior to the actual data anal-
ysis, we recommend the correction based on serially diluted samples via correctDilin-

terc, combined with normalization according to total protein concentration via FCF.
These important pre-processing steps are implemented in the dataPreproc function. It
imports the raw data, corrects and normalizes it and generates plots for quality checks.
The function returns a list with four different elements. The first element contains four
raw data elements, i.e. foreground and background expression matrices as well as data
frames holding the array and sample description. The second element is analogously
built up but with foreground expression data corrected to dilution intercepts via the
correctDilinterc function. Therefore the default input parameter correct must stay
‘both’. In case of ‘none’, the measurements stay as in rawdat. In case of ‘noFCF’, the
FCF measurements stay as in rawdat.
In case of resulting negative values the absolute minimum plus one is added. The third
element is also structured like the first two but holds dilution intercept corrected and
FCF normalized foreground data. The last element defines the directory for storing the
generated outputs. All output files are stored in a folder labelled with the date of anal-
ysis at the input files location. This also holds for the raw data, exported to a text file
in table format.
The integrated functions, which can also be applied separately, are explained in the fol-
lowing subsections. For the usage of the dataPreproc function we refer to the help page
which can be accessed with

> ?dataPreproc

> ## change directory to example files

> dataDir <- system.file("extdata",package="RPPanalyzer")

> setwd(dataDir)

> ## pre-process data

> preprocessedData <- dataPreproc(dataDir=dataDir,blocks=12,

+ spot="aushon",exportNo=2,correct="both")
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3.1 Read data

Change to the directory where your data files are stored. This can be done using the R
working menu (File > change directory...) or by using the command setwd. For usage
within dataPreproc, this is defined in the parameter dataDir .

> setwd(dataDir)

The data analysis starts with reading the data from the current working directory. The
argument blocksperarray gives the number of blocks that are printed in one array. For
usage within dataPreproc, this is defined in the parameter blocks . This number is
used to separate multiple arrays on one slide that are incubated individually. With the
argument spotter the package takes in account the difference in the column ID which is
used to identify the samples. To get information about the manually flagged spots, set
the printFlags argument to ‘TRUE’ to export these flags to CSV file. For usage within
dataPreproc, the spotter information has to be provided in the parameter spot .

> dataDir <- system.file("extdata",package="RPPanalyzer")

> setwd(dataDir)

> rawdata <- read.Data(blocksperarray=12,spotter="aushon",

+ printFlags=FALSE)

After reading the RPPA data, an R-object (list with four elements) is created. The
first element holds a matrix with the foreground (expression) intensity data, the second
a matrix with background intensities. The columns of the matrix are representing the
individual arrays described by the third element of the data list, a data frame holding the
array information. The rows of the matrix are described by the fourth element holding
the sample information.

3.2 Export data as text file

It is possible to export the RPPA data set as tab delimited text file at any point during
data analysis for further inspection using spreadsheet software. The data will be stored in
two files, representing the expression and background or expression and error, depending
on the analysis step. The rows of the table will be annotated with sample information,
the columns with array information.

> write.Data(rawdata,FileNameExtension="test_data")

The text files will be stored in the current working directory. For usage within dataPre-

proc, the tables are stored in the related analysis output folder.

3.3 Correct for background intensities

To correct for background signals, we recommend to apply the correctDilinterc func-
tion either directly or within the data pre-processing function dataPreproc.
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It derives intercepts of dilution series in dependence of dilSeriesID , defined in the sam-
pledescription file, as well as slide, pad , incubation run and spotting run, defined in the
data frame holding the array information.
To apply this function, a dilution series of a representative sample has to be spotted
on each slide in addition to the samples of interest. The latter are defined as ‘measure-
ment’ in the sampledescription.txt, while the serially diluted samples are defined as
‘control’. To link a sample of interest to the respective control dilution series, the same
identifier has to be entered in the column dilSeriesID of the sampledescription.txt.
A smoothing spline is used to extrapolate to zero. Nonparametric bootstrap is used
to estimate uncertainty of the intercept estimate. Linear models are applied to the
intercepts as response variables in dependence of diverse predictors, namely simply a
constant, the antibody, antibody + slide or antibody + slide + sample (dilSeriesID).
Via Analysis of Variances (ANOVA) it is tested which model fits best. The estimated
uncertainties of the intercepts are used as weights.
The user should use the provided bar plot (‘anovaIntercepts Output.pdf’) of the residual
sum of squares (RSS) to choose the model with the smallest RSS, favouring less com-
plexity. For example, if the bars of model ‘antibody + slide’ and ‘antibody + slide +
sample’ are the smallest and equally high, model ‘antibody + slide’ should be preferred,
as the sample does not provide additional information. The chosen model then is used
to predict the intercepts which are subtracted from the original foreground expression.
For usage within dataPreproc, the model information has to be provided in the pa-
rameter exportNo. The default is set to three, i.e. ‘antibody + slide’. The function
additionally generates plots of the dilution series and related intercept estimations (‘get-
Intercepts Output.pdf’)

> ## import raw data

> fgRaw.tmp <- read.delim("test_dataexpression.txt",stringsAsFactors=FALSE,

+ row.names=NULL,header=TRUE)

> fgRaw <- read.delim("test_dataexpression.txt",

+ skip=max(which(fgRaw.tmp[,1]==""))+1,

+ stringsAsFactors=FALSE,row.names=NULL,header=TRUE)

> ## remove NAs

> fgNAVec <- which(is.na(fgRaw[,"ID"]))

> if(length(fgNAVec) > 0){

+ fgRaw <- fgRaw[-fgNAVec,]

+ }

> colnames(fgRaw) <- sub("X","",gsub("\\.","-",colnames(fgRaw)))

> ## correct data for BG noise

> correctedData <- correctDilinterc(

+ dilseries=fgRaw[which(fgRaw$sample_type=="control" &

+ !is.na(fgRaw$dilSeriesID)),],

+ arraydesc=rawdata$arraydescription,

+ timeseries=fgRaw[which(fgRaw$sample_type=="measurement"),],exportNo=2)

> ## correct negative values

> if(min(correctedData[,colnames(rawdata$arraydescription)]) < 0){
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+ correctedData[,colnames(rawdata$arraydescription)] <-

+ correctedData[,colnames(rawdata$arraydescription)] +

+ abs(min(correctedData[,colnames(rawdata$arraydescription)]))+1

+ }

Further information on correction for background intensities is provided in later sections.

3.4 Data normalization with total protein dye

Within dataPreproc, the background corrected signal intensities are normalized spot-
wise to the total protein concentration using the Fast Green FCF method (Loebke et al.,
2007).
In short, replicate slides for one print run in an experiment are stained with the total
protein dye ‘Fast Green FCF’ to determine the total protein concentration of each indi-
vidual lysate spot. In case of multiple arrays on one slide, the normalization is working
array (pad) wise. That means each array is normalized by the corresponding array on
the normalizer slide. The normalization method proteinDye of normalizeRPPA requires
one normalizer slide per print run which will be identified as ‘protein’ in the target col-
umn of the slidedescription file.
A correction factor is determined for each individual spot that reflects the deviation of
the protein concentration determined from the median of all FCF-spots. The target
protein specific signal intensities are then corrected for technical variance by division by
the correction factors. Afterwards the corrected spot intensities can be multiplied by the
median of the corresponding normalizer subarray to scale the data back to the native
range. The function normalizeRPPA within dataPreproc uses the method proteinDye
and returns normalized values in native scale (instead of log2), setting the vals attribute
to ‘native’. Further information on normalization methods is provided in later sections.

3.5 Quality control plots

Signal validity and antibody dynamics can be checked by comparing the target specific
signals to the corresponding blank value of the serially diluted control samples (column
sample type in the sampledescription file). For this function it is necessary to have
one blank array (incubated only with secondary antibodies) for each incubation run
(column incubation run in the slidedescription file). We included an additional data set
containing an experiment with siRNA transfected cell lines to demonstrate the plotting
routines.

> ## load data set

> dataDir <- system.file("data",package="RPPanalyzer")

> setwd(dataDir)

> load("HKdata.RData")

> data(HKdata)

> plotQC(HKdata,file="control_samples.pdf",arrays2rm=c("protein"))
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Within dataPreproc, this function is applied to the raw signal intensities.
Additionally you can plot the blank signals against the target signal of the measurements
(column sample type in the sampledescription file).

> plotMeasurementsQC(HKdata,file="control_measurements.pdf",

+ arrays2rm=c("protein"))

Within dataPreproc, this function is applied to the background corrected and FCF
normalized signal intensities.
To check the data distribution for each measured target you can generate a PDF file
with a quantile-quantile plot. This can be done before and after normalization of the
data.

> plotqq(HKdata,fileName="qqplot_measurements.pdf")

Within dataPreproc, this function is applied to the background corrected and FCF
normalized signal intensities.

4 Additional correction, quantification and normal-

ization methods

In this section we introduce further data processing functions, apart from the recom-
mended ones integrated in dataPreproc. Those may be appropriate in special situations.

4.1 Correct for background intensities

To correct for background signals, you can use all methods from the backgroundCorrect
functions of the limma package (Smyth, 2005) or use the method addmin which subtracts
the local background and adds a small constant value to avoid negative signals.

> dataBGcorrected <- correctBG(HKdata,method="normexp")

4.2 Quantify concentration

In case of serially diluted samples you have to calculate the (relative) concentration of
the samples. You can use either a linear model (function calcLinear) or a logistic three
parameter model (function calcLogistic). We recommend to use the Serial Dilution
Curve algorithm (Zhang et al., 2009) which is the most recent development and produces
very robust concentration values (function calcSdc). Another possibility of quantifica-
tion is the SuperCurve package (Coombes et al., 2009) which can be accessed using the
wrapper function calcSuperCurve. This function is not part of the RPPanalyzer pack-
age, but can be found in the appendix of this vignette. To use the calcSuperCurve

function you have to download and install the package from the MD Anderson Bioinfor-
matics home page (http://bioinformatics.mdanderson.org/Software/OOMPA/).
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> ## To run the serial dilution curve algorithm it is neccessary

> ## to aggregate replicate spots first.

> dataDir <- system.file("data",package="RPPanalyzer")

> setwd(dataDir)

> load("ser.dil.samples.RData")

> data(ser.dil.samples)

> ser.dil_median <- sample.median(ser.dil.samples)

> ## calculate concentration (for the attributes see help pages)

> c_Values <- calcSdc(ser.dil_median,D0=2,sel=c("measurement"),

+ dilution="dilution")

For the arguments of the calcSdc function we refer to the help page which can be
accessed with

> ?calcSdc

4.3 Data normalization

Normalization is a crucial step in RPPA data analysis to ensure sample comparability
and to yield high quality data. The reference value to normalize RPPA is the total
protein amount per spot. There are different possibilities to generate this reference
value that will be described in detail below. The following signal normalization steps
can be applied directly to background corrected data if the samples are spotted in only
one concentration. For serially diluted samples the normalization step is performed on
the quantified data. Otherwise the information of the signal dynamics in one dilution
series is lost.

4.3.1 Total protein dyes

The most common method to normalize RPPA data is to stain one slide representative
for one print run with a total protein dye like Fast Green FCF (also integrated in
dataPreproc), Sypro Ruby or colloidal Gold (see also Spurrier et al. (2008)).
After calculating the log2 intensities, the normalizer value can simply be subtracted from
the target signal to obtain the relative protein expression. In case of multiple arrays on
one slide the normalization is working array wise (pad wise). That means each array
is normalized by the corresponding array on the normalizer slide. The normalization
method proteinDye requires one normalizer slide per print run which will be identified
as ‘protein’ in the target column of the slidedescription file. If you want to obtain values
in native scale (instead of log2 scale) you have to change the vals attribute to ‘native’.

> ## load data set

> dataDir <- system.file("data",package="RPPanalyzer")

> setwd(dataDir)

> load("HKdata.RData")

> data(HKdata)

> ## normalize
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> norm_values_pd <- normalizeRPPA(HKdata,method="proteinDye",

+ vals="logged")

4.3.2 Housekeeping proteins

Proteins that are expected to be expressed at a constant level, not effected by the ex-
perimental conditions, can be used as housekeeping proteins for normalization. This
method is established for quantitative Western blots and can be utilized to normalize
RPPA. To obtain the normalizer value, the mean of all arrays identified with the ‘nor-
malizer’ attribute (column target in the slidedescription file) is calculated within one
print run.

> norm_values_hk <- normalizeRPPA(HKdata,method="housekeeping",

+ normalizer="housekeeping",vals="logged")

In case of a fluorescent readout it is possible to incubate antibodies against housekeeping
proteins after the target specific antibodies and label them for detection at a different
wavelength. Using this approach it is possible to generate the normalizer signal from the
same spot as the target specific signal. This enables to correct for spotting imprecisions
that could not be identified on just one (or a few) representative slides per print run.

> norm_values_hk_sbs <- normalizeRPPA(HKdata,method="spotbyspot",

+ normalizer="housekeeping",vals="logged")

4.3.3 Median normalization

Assuming that all proteins measured in the RPPA experiment are reflecting the total
protein amount this can be used as a normalizer value. The median value of all protein
signals of each spot or sample is calculated and used as normalizer signal.

> norm_values_row <- normalizeRPPA(HKdata,method="row")

4.3.4 Protein quantification assays

The method extValue provides the possibility to utilize protein concentration values
determined with protein quantification assays (e.g. Bradford, BCA) as normalizer value.
The protein concentration has to be provided in a column in the sample description file
and will be accessed with the attribute useCol . This method needs very precise spotting
device since the value does not include spotting imprecisions.

> norm_values_eV <- normalizeRPPA(HKdata,method="extValue",

+ useCol="concentration",vals="logged")

> ## all normalization methods were performed on a sample set that was

> ## spotted in replicates (not serially diluted).

> ## In this case you can aggregate the replicate spots after the

> ## normalization:

> norm_data <- sample.median(norm_values_pd)
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5 Array and data selection

To select a sample group of interest for further analysis it is possible to access the samples
using any column (attribute params) of the sampledecription and define the samples of
interest (attribute sel).

> selectedSamples <- select.sample.group(norm_data,

+ params=list("replicate"=c("1")))

Furthermore, it is possible to exclude arrays from further analysis which you have iden-
tified as not valid or not necessary. They will be identified using the target information
in the slidedescription file.

> selectedData <- remove.arrays(selectedSamples,param="target",

+ arrays2rm=c("protein","blank","housekeeping"))

6 Visualizations

RPPanalyzer provides several standard visualization tools to get an overview of the
biological relevance of the data set.

6.1 Time courses

RPPAs allow the measurement of the phosporylation status of proteins. Therefore they
capacitate, in contrast to mRNA based techniques, to investigate signaling pathways
in a time resolved manner. Such time course experiments can be visualized with the
plotTimeCourse or plotTimeCourseII function.
The plotTimeCourse function will generate a PDF in the current working directory. The
argument tc.identifier combines the sample attributes which will identify the individual
time course experiments whereas the plot.split argument will be used to define which
time course experiments will be plotted in one graph. The argument plotformat defines
the way the data will be plotted: ‘rawdata’ will plot the time points connected with
dashed lines, ‘splines’ will plot a smoothed spline calculated using the package gam
(Hastie, 2009). To plot both set plotformat to ‘both’.

> ## load a time course data set

> dataDir <- system.file("data",package="RPPanalyzer")

> setwd(dataDir)

> load("dataII.RData")

> data(dataII)

> ## plot time course data

> plotTimeCourse(dataII,tc.identifier=c("sample","stimulation",

+ "inhibition","stim_concentration"),

+ plot.split="experiment",file="Timeplot.pdf",

+ arrays2rm=c("protein","Blank"),plotformat="spline")
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The plotTimeCourseII function visualizes time courses after data transformation by
the getErrorModel and averageData functions, which estimate noise in the data and
average replicates.

> ## pre-process the data

> dataDir <- system.file("extdata",package="RPPanalyzer")

> setwd(dataDir)

> res <- dataPreproc(dataDir=dataDir,blocks=12,spot="aushon",exportNo=2)

> ## remove arrays

> normdat_rm <- remove.arrays(res$normdat,param="target",

+ arrays2rm=c("protein","blank"))

> ## select samples and export data

> sel_sampels_A549 <- select.sample.group(normdat_rm,

+ params=list("cell_line"="A549"),

+ combine=F)

> write.Data(sel_sampels_A549,FileNameExtension="HGF_sample_data_A549")

> ## read selected data

> dataexpression_1 <- read.table("HGF_sample_data_A549expression.txt")

> ## use getErrorModel function

> dataexpression_2 <- getErrorModel(dataexpression_1,verbose=FALSE)

> ## use averageData function

> dataexpression_3 <- averageData(dataexpression_2,

+ scaling=c("slide","replicate"),

+ distinguish=c("cell_line","treatment"))

> ## plot time course data

> plotTimeCourseII(dataexpression_3,

+ filename="timecourse_HGF_sample_data_A549.pdf",

+ legpos="top",xname="time [min]",yname="signal [a.u.]",

+ linecolor=c("red","green","blue","black","orange","grey"))

6.2 Boxplots

The (differential) expression of proteins between distinct groups can be visualized in
boxplots, including related p-values. Therefore, the function rppa2boxplot offers two
possible testing scenarios. You can compare expression values to a reference group (con-
trol), if provided, via a Wilcoxon rank sum test. Otherwise a test on general differences
is performed via a Kruskal-Wallis rank sum test. For simple boxplots of groups without
any statistical testing, the function simpleBoxplot can be applied. A PDF is generated
in all cases and saved in the current working directory.

> ## load data set

> dataDir <- system.file("data",package="RPPanalyzer")

> setwd(dataDir)

> load("dataIII.RData")

> data(dataIII)
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> ## aggregate replicates

> dataIII_median <- sample.median(dataIII)

> ## draw simple boxplot and generate PDF

> simpleBoxplot(x=dataIII_median,param="rank",

+ orderGrp=c("vx","zx","yzr","rxi"),

+ file="simpleBoxplot.pdf")

> ## draw boxplot, test for (differential) expression in comparison to

> ## control group "vx", and generate PDF

> rppa2boxplot(x=dataIII_median,param="rank",control="vx",

+ orderGrp=c("vx","zx","yzr","rxi"),

+ file="wilcoxonBoxplot.pdf")

> ## draw boxplot, test for general differences in group expressions,

> ## and generate PDF

> rppa2boxplot(x=dataIII_median,param="rank",control=NULL,

+ orderGrp=c("vx","zx","yzr","rxi"),

+ file="kruskalBoxplot.pdf")

6.3 Correlation plots

If you want to correlate the protein expression or phosphorylation status to numeric sam-
ple attributes, you can use the test.correlation function (a wrapper for cor.test).
Define the correlation method with the method.cor argument and the method to correct
the p-values for multiple testing in method.padj . A PDF will be generated in the current
working directory.

> ## load data set

> dataDir <- system.file("data",package="RPPanalyzer")

> setwd(dataDir)

> load("dataIII.RData")

> data(dataIII)

> ## normalize data

> n.data <- normalizeRPPA(dataIII,method="row")

> ## aggregate replicates

> cl.data <- sample.median(n.data)

> ## test correlation

> test.correlation(cl.data,param="concentration",method.cor="kendall",

+ method.padj="BH",file="correlation_plot.pdf")

6.4 Heatmaps

A common method to present high dimensional biological data are heatmaps. The
RPPanalyzer provides a function to plot heatmaps annotated with any sample attribute
in order to check if the sample attribute corresponds to the clustering. Thereby the
parameter sampledescription defines which information is used for grouping the samples.
To ensure a stable and meaningful clustering, removing control arrays and arrays of bad
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quality by remove.arrays is a recommended preceding step. It is also recommended to
apply the logList function to the data before plotting to logarithmize (log2) the first
two RPPA list elements, i.e. foreground and background signal intensities.

> ## load data set

> dataDir <- system.file("data",package="RPPanalyzer")

> setwd(dataDir)

> load("dataIII.RData")

> data(dataIII)

> ## aggregate replicates

> dataIII_median <- sample.median(dataIII)

> ## plot heatmap

> rppaList2Heatmap(dataIII_median)

7 Appendix

This appendix contains the source code to the Super Curve functionality. If one wants
to use this, just paste the functions below into your R-script, load the RPPanalyzer
package and go on.

#'
#' calcSuperCurve.R

#'
#' Uses the package SuperCurve to perform the quantification

#'

#'
#' calcSuperCurve

#' uses the package SuperCurve for quantification

#'
calcSuperCurve <- function(x,model="cobs", method="nlrq", sample.id=c("sample","sample.n"),sel=c("measurement","control"),

dilution="dilution", block.design, plot=T) {

# at first use create.ID.col to create unique identifiers

xi <- create.ID.col(x,sample.id=sample.id)

# get only the real measurements, don't fit blank spots and buffer

xi <- select.sample.group(xi,params=list("sample_type"=sel))

# get the unique IDs

id <- unique(as.character(xi[[4]]$identifier))

# create a matrix of the fittet relative expression values

# since we do a fit for every array the no. of columns is equal to
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# the no. of columns of the raw expression matrix

# the no. of rows is equal to the length of unique(id)

vals <- matrix(NA, ncol=ncol(xi[[1]]), nrow=length(id))

colnames(vals) <- colnames(xi[[1]])

rownames(vals) <- id

# iterate over all arrays and get an individual fit

# this is the main loop

for(i in 1:ncol(xi[[1]])) {

cat("Fit SuperCurve model for array:", xi[[3]]["target",i], "\n")

cat("SuperCurve model:", model, "\n")

cat("SuperCurve fit method:", method, "\n")

# create an RPPA object

rppa <- createRPPAObject(xi, i, block.design)

# create an RPPA Design Object

rppaDesign <- createRPPDesignObject(rppa, xi, dilution)

# do the fit

fit <- RPPAFit(rppa=rppa, design=rppaDesign, measure="Mean.Net",

model=model, method=method)

#fit <- try(do.call("RPPAFit", args=list(rppa=rppa, design=rppaDesign,

#measure="Mean.net", model=model, method=method)))

#if(inherits(fit,"try-error")) {

#stop("This function requires the package SuperCurve.

#Please install it

#from 'http://bioinformatics.mdanderson.org/Software/OOMPA/'.")

#}

# plot the fit if wanted

if(plot) {

main=c(paste("Target:",xi[[3]]["target",i]),

paste("Antibody:", xi[[3]]["AB_ID",i]), paste("Model:", model))

plot(fit, main=main)

}
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# order the results according to our sampledescription

conc <- as.numeric(fit@concentrations)

m <- match(rownames(vals), names(fit@concentrations), nomatch=0)

if(any(m==0)) {

stop("For some samples there was no model fit. Something went wrong!")

}

conc <- conc[m]

vals[,i] <- conc

cat("Finished!\n\n")

}

# get only these entries from each dilution series with the highest concentration

# we will need the sampledescription of this

tempDat <- pick.high.conc(xi,sample.id = sample.id)

# pick the lines of the sample description matching to our fitted values

m <- match(rownames(vals), tempDat[[4]]$identifier)

# discarding columns like concentration, dilution, Block, etc.

# these information don't make sense any longer

n <- colnames(tempDat[[4]]) %in% c("concentration", "dilution",

"Block", "Column", "Row")

sampleDesc <- tempDat[[4]][m,!n]

# set rownames of vals to the sample IDs

rownames(vals) <- sampleDesc$ID

# assemble new RPPA data list for return

ret <- tempDat

ret[[1]] <- vals

ret[[2]] <- vals

ret[[4]] <- sampleDesc

# set new names

namesRet <- names(ret)

namesRet[1] <- "expression"

namesRet[2] <- "dummy"

names(ret) <- namesRet

# return the result

return(ret)
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}

#'
#' createRPPAObject

#'
#' creates an RPPA object used in SuperCurve

#' @param x: the RPPA data list

#' @param arrayIdx: the index of the array, the RPPA object is created

#'
createRPPAObject <- function(x, arrayIdx, block.design) {

# the bg corrected expression values of the samples

# of the specified array

Mean.Net <- x[[1]][,arrayIdx]

# the names of the samples

Sample <- x[[4]][,"identifier"]

# now we calculate the main row and the main col

# we use this terms to determine the rows and cols of the clocks

# note: the blocks are ordered rowwise, e.g 16 blocks

# 1 2 3 4

# 5 6 7 8

# 9 10 11 12

# 13 14 15 16

# first the Main.Row, it can be expressed as

# (block-1) div (number of cols in the blockdesign) + 1

Main.Row <- ((x[[4]][,"Block"]-1) %/% block.design[2]) + 1

# second the columns which can be expressed as

# (block-1) mod (number of cols in the blockdesign) + 1

Main.Col <- ((x[[4]][,"Block"]-1) %% block.design[2]) + 1

# now we can copy our Col and Row information as Sub.Col and Sub.Row

Sub.Row <- x[[4]][,"Row"]

Sub.Col <- x[[4]][,"Column"]

# finally create data.frame

data <- data.frame(Main.Row=Main.Row, Main.Col=Main.Col,

Sub.Row=Sub.Row, Sub.Col=Sub.Col, Sample=Sample,

Mean.Net=Mean.Net)
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# now define the file and the antibody atribute of the RPPA object

file <- x[[3]]["gpr",arrayIdx]

antibody <- x[[3]]["target",arrayIdx]

# return the new created class RPPA

return(new("RPPA", data=data, file=file, antibody=antibody))

}

And here is the Rd source for the calcSuperCurve function:

\name{calcSuperCurve}

\alias{calcSuperCurve}

\title{ Calculates the concentration of serial diluted samples}

\description{

Calculates the protein concentration of a serial diluted sample

stored in an RPPA data list using quantification methods implemented

in the SuperCurve package (Coombes et. al, 2009).

}

\usage{

calcSuperCurve(x,model="cobs", method="nlrq",

sample.id=c("sample","sample.n"),sel=c("measurement","control"),

dilution="dilution", block.design, plot=T)

}

\arguments{

\item{x}{RPPA data list with replicates aggregated with median }

\item{model}{The model used by the SuperCurve package. Has to

be either "cobs", "logistic" or "loess".}

\item{method}{The method used for fitting the model. Has to be

"nlrq", "nlrob" or "nls".}

\item{sample.id}{Attributes to identify the samples}

\item{sel}{The sample type that should be calculated. Has to be

"measurements","control", "neg_control",or "blank".}

\item{dilution}{Name of the column in the feature data matrix

describing the dilution steps of the samples.}

\item{block.design}{Vector with two elements. Describes how the blocks

are arranged on the array. The first element specifies the number of

rows, the second the number of columns. The blocks are supposed to be

arranged row by row in the grid.}
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\item{plot}{Logical. If true, model fits are plotted }

}

\details{

This method is wrapper function to give the user access to the

quantification methods implemented in the SuperCurve package. The

package can be installed from

\url{http://bioinformatics.mdanderson.org/Software/OOMPA/}.

}

\value{

\item{expression}{matrix with expression values}

\item{error}{matrix with error values}

\item{arraydescription}{data frame with feature data}

\item{sampledescription}{data frame with pheno data}

}

\references{Coombes et. al, 2009, SuperCurve: SuperCurve Package

Hu et al., Bioinformatics 2007,

Non-parametric quantification of protein lysate arrays

}

\author{Stephan Gade <s.gade@dkfz.de> }

\examples{

\dontrun{

library(RPPanalyzer)

data(ser.dil.samples)

}

\dontrun{

predicted.data <- calcSuperCurve(ser.dil.samples, sel=c("measurement"),

block.design=c(1,4))}

}

\keyword{ manip }
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