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Abstract

The R4X package enhances the XML package by providing a simple
mechanism to create, read and manipulate XML structures from within
R. The functionality of the package is based on the E4X (EcmaScript for
XML) add-on to the javascript specifications.

R4X implements templating of XML structures based on the brew
package and convenient extraction of XML content using an XPath-like
syntax.

The XML format is used to transfer data accross many applications,
specially web applications. The R4X package came from the need of a
convenient tool to manipulate XML data when R is part of a bigger ap-
plication. The presentation will describe key features of the R4X package,
including examples of using the functionality to build a simple RSS reader
and a tag cloud generated by using description of all current CRAN pack-
ages.
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Creation of XML

The generic xml function allows creation of XML structures as defined by the
XML package from character vectors, connections. Users can write other xml
methods to convert different formats to XML structures

R> x <— xm1( '
<test>
<foo blah="1"/>
<bar/>
</test>' )
R> x

<test>
<foo blah="1"/>
<bar/>
</test>

R> class( x)

[1] "XMLNode" "RXMLAbstractNode"

"XMLAbstractNode"

"oldClass"



The character string used by the xml function may contain R code embedded
in curly brackets.

R> y <- "something"
R> x <- xml( '

<test>
<foo blah="{y}"/>
<bar/>
</test>' )
R> x
<test>
<foo blah="something"/>
<bar/>
</test>

Extracting XML content

The [ and [[ methods from the XML package are masked by R4X to provide an
XPath-like mechanism for extracting and modifying content of an XML struc-
ture.

R> x <-— xml1( '
<root>
<child id="1">
<subchild id = "subl" >foo</subchild>
<subchild id = "sub2" >bar</subchild>
</child>
<child id="2">
<subchild id="a">blah</subchild>
<subchild id="b">bob</subchild>
<something id="c" />
</child>
<fruits>
<fruit>banana</fruit>
<fruit>mango</fruit>
</fruits>
</root>
)
R> # extracting a single XMLNode
R> x[ "fruits" ]

<fruits>
<fruit>banana</fruit>
<fruit>mango</fruit>
</fruits>

R> # extracting the text content of each <subchild>
R> x[ "child/subchild/#" ]

child.subchild child.subchild child.subchild child.subchild
"foo" "har" "blah" "bob"



R> # extracting the id attribute of each <child>
R> x[ "child/@id" ]

child child
nqn non

R> # extracting the <subchild> of the second <child>
R> x[ "child[2]/subchild" ]

$subchild
<subchild id="a">blah</subchild>

$subchild
<subchild id="b">bob</subchild>

Example - Tag Cloud Generator
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Figure 1: Tag cloud generated from words used in descriptions of CRAN pack-
ages using the R4X package.



