R4X: Convenient XML Manipulation for R

Romain Francois - Mango Solutions
rfrancois@mango-solutions.com

April 3, 2012

Abstract

The R4X package enhances the XML package by providing a simple
mechanism to create, read and manipulate XML structures from within
R. The functionality of the package is based on the E4X (EcmaScript for
XML) add-on to the javascript specifications.

R4X implements templating of XML structures based on the brew
package and convenient extraction of XML content using an XPath-like
syntax.

The XML format is used to transfer data accross many applications,
specially web applications. The R4X package came from the need of a
convenient tool to manipulate XML data when R is part of a bigger ap-
plication. The presentation will describe key features of the R4X package,
including examples of using the functionality to build a simple RSS reader
and a tag cloud generated by using description of all current CRAN pack-
ages.

Keywords: XML, templates, data manipulation

Creation of XML

The generic xml function allows creation of XML structures as defined by the
XML package from character vectors, connections. Users can write other xml
methods to convert different formats to XML structures

R> x <— xm1('
<test>
<foo blah="1"/>
<bar/>
</test>')
R> x

<test>
<foo blah="1"/>
<bar/>
</test>

R> class(x)

[1] "XMLNode" "RXMLAbstractNode"

"XMLAbstractNode"

"oldClass"

The character string used by the xml function may contain R code embedded
in curly brackets.

R> y <- "something"
R> x <- xml('

<test>
<foo blah="{y}"/>
<bar/>
</test>')
R> x
<test>
<foo blah="something"/>
<bar/>
</test>

Extracting XML content

The [and [[methods from the XML package are masked by R4X to provide an
XPath-like mechanism for extracting and modifying content of an XML struc-
ture.

R> x <-— xml1('
<root>
<child id="1">
<subchild id = "subl" >foo</subchild>
<subchild id = "sub2" >bar</subchild>
</child>
<child id="2">
<subchild id="a">blah</subchild>
<subchild id="b">bob</subchild>
<something id="c" />
</child>
<fruits>
<fruit>banana</fruit>
<fruit>mango</fruit>
</fruits>
</root>
)
R> # extracting a single XMLNode
R> x["fruits"]

<fruits>
<fruit>banana</fruit>
<fruit>mango</fruit>
</fruits>

R> # extracting the text content of each <subchild>
R> x["child/subchild/#"]

child.subchild child.subchild child.subchild child.subchild
"foo" "har" "blah" "bob"

R> # extracting the id attribute of each <child>
R> x["child/@id"]

child child
nqn non

R> # extracting the <subchild> of the second <child>
R> x["child[2]/subchild"]

$subchild
<subchild id="a">blah</subchild>

$subchild
<subchild id="b">bob</subchild>

Example - Tag Cloud Generator

12al algorithm allows analyses analy51s applications applied approach arbitrary association available basic bayesian
binary book bootstrap ¢ calculate calculation carlo censored chain class classes classification cluster clustering code collection
common components computation computational compute computing conditional confidence control correlation count covariates
create currently curves data database datasets density described design designed detection different discrete display distance

distribution eg either engineering environment error estimate estimating estimation estimator et etc exact examples

experiments features file finance financial first fit fitting framework functlon functionality gaussian gene general

generalized genetic graph graphical graphics group gui hazard hierarchical if implementation implemented implements include
included including independent inference information interface intervals its kernel large level library likelihood linear local

logistic main manipulating map markov matrices matrix maximum may mean measures method microarray missing mixture

mOdel modeling modelling monte most multiple multivariate network nonlinear nonparametric normal number object

observations order output package parameter parametric perform plot plotting point population possible power

probability problems procedure process processes program programming proportional pI’OVidE provided quantitative I' random

I'€QreSS101 related response results risk robust routines s sample sampling selection series S€t simple simulation single
smoothing so software spatial specified splus squares standard statistical statistics structure support survival system teaching test

testing theory through time tools trees univariate useful user uses USiI’lg utilities utility value variable variance various vector
version very wavelet weighted without written

Figure 1: Tag cloud generated from words used in descriptions of CRAN pack-
ages using the R4X package.

