
Package LIM , implementing linear inverse models in R

Karline Soetaert and Dick van oevelen
Royal Netherlands Institute of Sea Research

Yerseke
The Netherlands

Abstract

We present R package LIM (Soetaert and van Oevelen 2009) which is designed for
reading and solving linear inverse models (LIM). The model problem is formulated in text
files in a way that is natural and comprehensible. LIM then converts this input into the re-
quired linear equality and inequality conditions, which can be solved either by least squares
or by linear programming techniques. By letting an algorithm formulate the mathematics,
it becomes very simple to reformulate the model in case a parameter value changes, or a
component is added or removed.

Three different types of problems are supported: flow networks, reaction networks and
other (operations research) problems. The first two cases are based on mass balances of the
components.

We give three examples, a food web example, a biogechemical reaction example and a
blending example.

If you use this package, please cite as: (van Oevelen, van den Meersche, Meysman,
Soetaert, Middelburg, and Vezina 2009).

Keywords: Linear inverse models, flux balance analysis, linear programming, text files, R.

1. Introduction
In many disciplines, mathematical formulation of problems lead to a combination of linear
equalities that are supplemented with linear inequality constraints. Such linear equations arise
for instance:

• by considerations that certain quantities have to be positive, that the summed values should
not exceed a certain value (i.e. summed fractions or probabilities should remain smaller
or equal to 1), etc.

• In curve fitting problems, inequality constraints may arise by requirements of monoticity,
nonnegativity, convexity, while in piecewise linear fitting, equality conditions result from
the need to guarantee continuity and smoothness of the curves.

• In biochemical applications, the linear equalities arise because of linear conservation re-
lationships such as the conservation of mass, charge, etc.., while inequalities ensure that

2 Package LIM , implementing linear inverse models in R

mass remains a positive quantity.

2. Linear Inverse Models

Mathematically, linear inverse problems can be written in matrix notation as: 1

A ·x' b (1)

E ·x = f (2)

G ·x≥ h (3)

These are three sets of linear equations: equalities that have to be met as closely as possible (1),
equalities that have to be met exactly (2) andinequalities (3).

Often the problem originally only contains the latter two types of equations (2-3), and the ap-
proximate equalities are added to single out one solution.

Quadratic and linear programming methods are the main mathematical techniques to solve for
the vector x in this type of models. In R, these are made available through package limSolve
(Soetaert, Van den Meersche, and van Oevelen 2009).

Depending on the active set of equalities (2) and constraints (3), the system may either be un-
derdetermined, even determined, or overdetermined. Solving these problems requires different
mathematical techniques.

• If the model is even determined, there is only one solution that satisfies the equations
exactly. This solution can be singled out by matrix inversion (e.g. the solve function,
in case there are no inequalities) or using the least squares method lsei from package
limSolve .

• If the model is overdetermined, there is only one solution in the least squares sense; this
solution is singled out by function lsei (least squares with equalities and inequalities).
This function also returns the parameter covariance matrix, which gives indication on the
confidence interval and relationship among the estimated unknowns (elements in x).

• If the model is underdetermined, there exist an infinite amount of solutions. To solve such
models, there are several options:

– ldei - finds the "least distance" solution, i.e. the solution with minimal sum of
squared unknowns.

– lsei- minimises some other set of linear functions (A ·x' b) in a least squares sense

– linp - finds the solution where one linear function (i.e. the sum of unknowns) is
either minimized (a "cost" function) or maximized (a "profit" function)

– xranges - finds the possible ranges ([min,max]) for each unknown.

1notations: vectors and matrices are in bold; scalars in normal font. Vectors are indicated with a small letter;
matrices with capital letter.

Karline Soetaert, Dick van oevelen 3

– xsample - randomly samples the solution space using a Markov chain. This method
returns the marginal probability density function for each unknown. (Van den Meer-
sche, Soetaert, and Van Oevelen 2009)

All these functions are also available from package LIM .

3. Three types of LIM

One of the main remaining challenges in LIM models constitutes the setup of this type of prob-
lems. Especially when many unknowns have to be simultaneously estimated and the problem
contains many equality and inequality constraints, the construction of the matrix equations may
be quite complicated and error-prone. In addition to providing methods of solution, R-package
LIM has been designed to facilitate problem implementation.

Depending on how the problem is formulated and which are the unknowns, LIM distinguishes
three types of Linear Inverse Models (Figure 1).

• flow networks. Here the problem consists of a number of compartments, connected by
flows. Solving the model then constitutes of deriving the values of the flows between the
compartments.

• reaction networks. The problem consists of a number of compartments that are involved
in reactions. The LIM will estimate the reaction rates.

• other. LIM can also solve problems often occurring in operational research, e.g. to find
the optimal allocation of resources, optimal diet composition etc....

We give examples of these three types below.

3.1. Flow network problems

Flow networks are represented as a set of nodes (compartments), which are connected by arrows
(flows). The arrows generally have a direction, i.e. the flows are positive. Thus

A→ B

denotes a flow directed from A to B, while

A↔ B

denotes a flow that can proceed in both directions.

There can only be one flow from A to B (but there can also be a flow from B to A).

Solving the LIM-problem consists of finding the values of the flows.

After solution, several indices and food web properties can be estimated, using functions from
package NetIndices (Soetaert and Kones 2008; Kones, Soetaert, van Oevelen, and Owino 2009)

4 Package LIM , implementing linear inverse models in R

Flow network

A

B

C

D
E

F

G

H

I
J

A Reaction Network

E D F

I

E G

k1

k2

k3

B

Other

A B C

D

p1 p2 p3

C

Figure 1: Three types of Linear Inverse Models that can be created and solved with R package
LIM . A. Flow networks. B. Reaction networks, C. Other. In type (A) and (B), a mass balance
of components is generated. This is not the case for type C.

Example: a simple food-web

Organisms eat and are eaten; they use part of their food for biomass production and reproduction,
part is expelled as faeces or respired. Other (so-called autotrophic) organisms produce biomass
from light energy and inorganic compounds, whilst dead matter (detritus) may be consumed by
animals and bacteria.

When the mass balances of several groups of organisms (and dead matter) are considered to-
gether, we obtain a food web model. In this type of LIM, the unknowns are the food web flows
that connect the components (organisms and dead matter).

Assume a simple food web comprising a plant, detritus and an animal that eats both the plant
and detritus. For simplicity we assume that the system is in a climax situation, i.e. the masses,
which are expressed in moles C m−2 are invariant in time. There are eight flows that connect the

Karline Soetaert, Dick van oevelen 5

components with each other and with the outside world. 2 The mass balance equation for the
three components and with the rate of change = 0, is given by:

dPLANT
dt

= 0 = net primary production−grazing on plant−plant mortality

dANIMAL
dt

= 0 = grazing on plant+grazing on detritus− animal respiration

− animal mortality− faeces production
dDETRITUS

dt
= 0 = plant mortality+ animal mortality+ faeces production

− grazing on detritus−detritus mineralisation

These mass balances can be written in a more general way, and using shorthand notation for the
flows, as:

0 = 1 ·NPP−1 ·Pgraz−1 ·Pmort +0 ·Dgraz+0 ·Aresp+0 ·Amort +0 ·Faeces+0 ·Detmin (1)

0 = 0 ·NPP+1 ·Pgraz+0 ·Pmort +1 ·Dgraz−1 ·Aresp−1 ·Amort−1 ·Faeces+0 ·Detmin (2)

0 = 0 ·NPP+0 ·Pgraz+1 ·Pmort−1 ·Dgraz+0 ·Aresp+1 ·Amort +1 ·Faeces−1 ·Detmin (3)

These equations relate, on the left hand side, the zero rates of changes to a sum of products,
where each product is composed of the flows and a coefficient. The coefficient indicates if and
how much these flows contribute to the rate of change.

Now assume that net primary production and the total grazing rate (Grazing) of the animal has
been measured (30 mmol C m−2 d−1 and 10 mmol C m−2 d−1 respectively). Thus, we can add
two extra equations:

NPP = 30 (4)

Pgraz+Dgraz = 10 (5)

In matrix notation, we obtain

1 −1 −1 0 0 0 0 0
0 1 0 1 −1 −1 −1 0
0 0 1 −1 0 1 1 −1
1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0

 ·

NPP
Pgraz
Pmort
Dgraz
Aresp
Amort
Faeces
Detmin

=

0
0
0

30
10

2Since the foodweb is a subsystem of a larger system, we need to distinguish between model compartments,
i.e. compartments whose dynamics are fully described in the model and external compartments, whose dynamics is
coupled to processes occurring outside the model realm. The difference is essential: LIM will create mass balance
equations for model compartments only. In the example, there is no balance for CO2

6 Package LIM , implementing linear inverse models in R

The feeding, defaecation and respiration flows are not independent of one another. Firstly, or-
ganisms cannot produce more faeces than the amount of food they ingest. Thus it is customary
in foodweb modelling, to assume that faeces production lies in between some range of food
ingested. For our example we assume that in between 30 and 60% of total food ingested is
defaecated (the food is not of high quality).

Secondly, organisms respire carbohydrates to provide the energy for growth. Thus, of the frac-
tion of the food that is assimilated (i.e. not defaecated), part will be used to create new biomass,
the other part will provide the energy to do so (this is referred to as the cost of growth). Here we
assume that 30% of the assimilated food is respired. As total animal respiration also includes
basal respiration (for the animal’s maintenance), we impose that the animal respiration has to be
larger than - or equal - to this amount:

0.3 ·Pgraz+0.3 ·Dgraz <= Faeces (6)

0.6 ·Pgraz+0.6 ·Dgraz >= Faeces (7)

0.3 · (Pgraz+Dgraz−Faeces)<= Aresp (8)

Adding to that the requirement that the flows have to be positive gives the following set of
inequality conditions:

0 −0.3 0 −0.3 1 0 0.3 0
0 0.6 0 0.6 0 0 −1 0
0 −0.3 0 −0.3 0 0 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

·

NPP
Pgraz
Pmort
Dgraz
Aresp
Amort
Faeces
Detmin

>=

0
0
0
0
0
0
0
0

This model comprises 5 equations and 11 inequalities; there are 8 unknown flows. We will
outline below how this particular problem can be implemented and solved in package LIM .

3.2. reaction problems

These are LIM problems which are written as a set of reactions that connect the dynamics of
several constituents. For instance, in the reaction

A+B→C

C is produced while A and B are consumed in a stoichiometric ratio of 1 to 1. Some reactions
can occur in two directions, e.g.

A+B↔C

Karline Soetaert, Dick van oevelen 7

In contrast to previous ("flow") network problems, where only one link between two compart-
ments was allowed, in reaction problems there may exist many links between the constituents.
Solving the LIM amounts to finding values for the reaction rates.

The core metabolism of E.coli

The LIM software can be used for performing flux balance analysis (e.g. (Edwards, Covert, and
Palsson 2002)).

See vignette ("LIMecoli") (Soetaert 2009) for an example of how to do that.

Example: chemical reactions.

In the natural environment, the cycles of many constituents are linked via chemical reactions
that produce and consume them. We take the biogeochemical cycling of carbon (C), nitrogen
(N) and oxygen (O) in a marine sediment as an example.

Organic matter ((CH2O)106(NH3)16(H3PO4)) is mineralized (respired), using a series of oxi-
dants: oxygen (O2), nitrate (HNO3) and some other, undefined oxidant (XO). The reduced
byproducts of this mineralization process, ammonium (NH3), and an undefined reduced sub-
stance (X) can be re-oxidized by a reaction with oxygen. All dissolved substances are exchanged
with the water column. N2, produced by the reaction of organic matter with nitrate, does not react
in the sediment.

The mineralisation reactions can be written as:

r1 (CH2O)106(NH3)16(H3PO4)+106O2→ 106CO2 +16NH3 +H3PO4 +106H2O

r2 (CH2O)106(NH3)16(H3PO4)+84.8HNO3→ 106CO2 +42.4N2 +16NH3 +H3PO4 +148.4H2O

r3 (CH2O)106(NH3)16(H3PO4)+106O2X → 106CO2 +106X +16NH3 +H3PO4 +106H2O

for the oxic mineralisation, denitrification and anoxic mineralisation respectively.

The secondary reactions (nitrification and reoxidation of other reduced substances):

r4 NH3 +2O2→ HNO3 +H2O

r5 X +O2→ O2X

8 Package LIM , implementing linear inverse models in R

and the exchange with the bottom water:

r6 OMBW → (CH2O)106(NH3)16(H3PO4)

r7 O2↔ O2BW

r8 HNO3↔ HNO3BW

r9 NH3↔ NH3BW

r10 O2X ↔ O2XBW

r11 H3PO4↔ H3PO4BW

r12 CO2↔CO2BW

Note that the deposition of organic matter (r6) is directed into the sediment, while the direction
of the other fluxes can go either into or out of the sediment.

In this LIM, the rates of the mineralisation reactions, of the secondary reactions and the ex-
change reactions with the bottom water are the unknowns (r1-r12). Based on these reactions,
and following the law of conservation of mass, we can write a mass balance reaction for the
following 7 constituents: (CH2O)106(NH3)16(H3PO4), O2, CO2, NH3, H3PO4, HNO3, while
for the others (e.g. O2BW) only part of the reactions are specified. Hence these are considered
to be outside the domain of the model (externals).

We give only the mass balance reactions for O2 and HNO3:

dO2

dt
= 0 =−106 · r1−2 · r4− r5− r7

dHNO3

dt
= 0 =−84.8 · r1 + ·r4− r8

· · ·

As the exchange of dissolved substance across the sediment-water interface can go either way,
directed into or out of the sediment, they can be either positive or negative. Only the rates of
unidirectional reactions need be positive, and the following inequalities hold:

r1 >= 0

r2 >= 0

r3 >= 0

r4 >= 0

r5 >= 0

r6 >= 0

In this particular example, the oxygen, nitrate, and ammonium fluxes have been estimated; they
are -15 (influx), 1 (efflux) and 2 mmol m−2 d−1 respectively. These measurements lead to the
equations:

Karline Soetaert, Dick van oevelen 9

r7 =−15

r8 = 1

r9 = 2

Thus there are 10 equations (7 mass balances, 3 measurements) and 12 unknowns. In addition,
there are 6 inequality conditions3.

3.3. other problems

It is also possible to use LIM for specifying more general (linear) operational research problems
that do not classify as network problems.

These problems often try to find the most efficient, or least costly, way of achieving something.
They are often solved with linear programming techniques that optimize some function (cost or
profit) given a set of linear constraints.

blending problems

This example is borrowed from limSolve and comes from the website of J E Beasley (find it
on the web).

A manufacturer produces a feeding mix for animals. The feed mix contains two nutritive ingre-
dients and one ingredient (filler) to provide bulk. One kg of feed mix must contain a minimum
quantity of each of four nutrients as below:

Nutrient A B C D
gram 80 50 25 5

The ingredients have the following nutrient values and cost:

(gram/kg) A B C D Cost/kg
Ingredient 1 100 50 40 10 40
Ingredient 2 200 150 10 - 60
Filler - - - - 0

The problem is to find the composition of the feeding mix that minimises the production costs
subject to the constraints above. Stated otherwise: what is the optimal amount of ingredients in
one kg of feeding mix?

3Note a difference with the flow networks, where the coefficients were either -1, 0, 1. Here the coefficients reflect
the stoichiometry of the reaction and can differ from these numbers

10 Package LIM , implementing linear inverse models in R

Mathematically this can be estimated by solving a linear programming problem, where the
equalities ensure that the sum of the three fractions equals 1, and the inequalities enforce the
nutritional constraints; the quantity to be minimized is the cost function.

min(x1 ·40+ x2 ·60)

xi ≥ 0

x1 + x2 + x3 = 1

and

100 · x1 +200 · x2 ≥ 80

50 · x1 +150 · x2 ≥ 50

40 · x1 +10 · x2 ≥ 25

10 · x1 ≥ 5

4. Specifying a Linear Inverse Model in R-package LIM

The previous examples were quite simple, and the resulting matrices of small or moderate size.
Nevertheless, it is easy to make mistakes. Moreover, once the matrices are constructed, it may
be quite a challenge to update them after adding or removing constituents. Also, based on the
resulting set of linear equations it is not straightforward to infer the underlying model assump-
tions.

In general, a linear inverse model is first formulated verbally, after which the verbal description
of the problem is translated into an equivalent mathematical description.

Typically the equations are specified on aggregated unknowns, i.e. unknowns that are themselves
linear combinations of other unknowns. For instance, in the food web model example, the faeces
production (the flow from the animal to detritus) is specified as a part of the amount of food
ingested. Ingested food is itself the sum of the flow from the plant to the animal and from
detritus to the animal.

Model input in LIM is close to these verbal statements. Thus to implement the food web model
we first define a variable called "Ingestion" that consists of the sum of the two feeding flows
and then define the defaecation constraints on this variable. When the LIM input is parsed, the
constraints will be rewritten as a function of the unknowns.

Apart from this more natural input, there are many other benefits of using LIM . For instance,
for the flow network and reaction network type of problems, LIM generates the mass balances
for each component, based on the flows or reactions that were defined. This facilitates adding
or removing flows or constituents. Finally, solving the model will also generate estimates of all
defined variables.

We now document the input for each of the above introduced problems.

4.1. food web problem

Karline Soetaert, Dick van oevelen 11

===
Header of the file - ignored
file: foodweb.lim

Solve the model in R with:
require(LIM)
lim <- Setup("foodweb.lim")
Ldei(lim)
Xranges(lim)
===

EXTERNAL
CO2
EXP ! export

END EXTERNAL

COMPONENT
Pl ! plant
AN ! Animal
Det ! Detritus

END COMPONENT

Flows
NPP : CO2 -> Pl
Pgraz : Pl -> An
Pmort : Pl -> Det
Dgraz : Det -> An
Aresp : An ->CO2
Amort : An ->EXP
Faeces: An ->Det
Detmin: Det -> CO2

END Flows

PARAMETERS
minFaeces = 0.3
maxFaeces = 0.6
growthCost = 0.3

END PARAMETERS

VARIABLES
Ingestion = Pgraz + Dgraz
Assimilation = Ingestion - Faeces

12 Package LIM , implementing linear inverse models in R

GrowthResp = Assimilation*growthCost
END VARIABLES

Equalities
Faeces = 30
Det -> CO2 = 10

End equalities

Inequalities
growthcost : Aresp > GrowthResp
defaecation: Faeces = [minFaeces,maxFaeces]*Ingestion

End inequalities

Note the use of sections (## SECTIONNAME ... ## END SECTIONNNAME) to declare items;
the sections "COMPONENT" and "EXTERNAL" define the names; a mass balance equation is
only generated for components, not for externals. A name is declared as "name: ", an exclama-
tion mark ("!") demarcates the start of a comment.

Although more lengthy, this problem formulation is much more elegant, more flexible, less
error-prone, and easier to understand than the resulting matrices themselves.

Based on this input file, the matrices are generated using LIM function Setup and put in a list
(see below). The resulting LIM input can then be solved with Lsei(lim, parsimonious=TRUE)
or with Ldei, which will generate the simplest -parsimonious- solution, with Xranges which will
estimate ranges of unknowns, or with Xsample which will generate the conditional probability
distribution of each flow.

In the table below is what we obtained from running the following R-code:

require(LIM)
web.lim <- Setup("foodweb.lim")
pars <- Ldei(web.lim)
webranges<- Xranges(web.lim)

data.frame(webranges,parsimonious=pars$X)

min max parsimonious
NPP 30 80 30.000000
Pgraz 0 80 29.554950
Pmort 0 80 0.445050
Dgraz 20 100 20.445050
Aresp 6 70 9.489658
Amort 0 49 10.510342
Faeces 30 30 30.000000
Detmin 10 10 10.000000

Karline Soetaert, Dick van oevelen 13

Based on these results it is simple to create a plot which depicts the parsimonious solution and
the ranges (see Figure 2):

xlim <- range(webranges)
dotchart(x=pars$X,labels=rownames(webranges),xlim=xlim,

main="Food web",pch=16)
cc <- 1:nrow(webranges)
segments(x0=webranges[,1],y0=cc,x1=webranges[,2],y1=cc)

NPP

Pgraz

Pmort

Dgraz

Aresp

Amort

Faeces

Detmin

●

●

●

●

●

●

●

●

0 20 40 60 80 100

Food web

ranges and parsimonious solution

Figure 2: Ranges and parsimonious solution of foodweb example - seee text for R-code

4.2. chemical reaction problem

The input of the chemical reaction problem is:

===
Header of the file - ignored
file reaction.lim
0-dimensional sediment coupled C, N, O, P model
run with:
require(LIM)
reaction.lim <- Setup("reaction.lim")
X <- Ldei(reaction.lim)
xr <- Xranges(reaction.lim, ispos = FALSE)
===
COMPONENTS
OM
O2
CO2
NH3

14 Package LIM , implementing linear inverse models in R

H3PO4
HNO3
X
END COMPONENTS

EXTERNAL
H2O
N2
O2X
OMBW
O2BW
HNO3BW
NH3BW
XBW
H3PO4BW
CO2BW
END EXTERNAL

REACTIONS
r1: OM + 106*O2 -> 106*CO2 + 16*NH3 + H3PO4 + 106*H2O
r2: OM + 84.8*HNO3 -> 106*CO2 + 42*N2+16*NH3 + H3PO4 + 148.4*H2O
r3: OM + 106*O2X -> 106*CO2 + 106*X + 16*NH3 + H3PO4 + 106*H2O

r4: NH3+2*O2 ->HNO3 +H2O
r5: X+ O2 ->O2X

r6: OMBW -> OM
r7: O2 <-> O2BW
r8: HNO3 <-> HNO3BW
r9: NH3 <-> NH3BW
r10: X <-> XBW
r11: H3PO4 <-> H3PO4BW
r12: CO2 <-> CO2BW
END REACTIONS

EQUATIONS
r7 = -15
r8 = 1
r9 = 2
END EQUATIONS

INEQUALITY
r1>0

Karline Soetaert, Dick van oevelen 15

r2>0
r3>0
r4>0
r5>0
r6>0

END INEQUALITY

Results are in the following table:

min max parsimonious
r1 0.00000000 0.12264151 0.1226364
r2 0.00000000 0.07665094 0.00000000
r3 0.06485849 0.51709906 0.06486363
r4 1.00000000 7.50000000 1.00000000
r5 0.00000000 13.00000000 0.00005450
r6 0.18750000 0.59375000 0.18750000
r7 -15.00000000 -15.00000000 -15.00000000
r8 1.00000000 1.00000000 1.00000000
r9 2.00000000 2.00000000 2.00000000
r10 6.87500000 54.81250000 6.87500000
r11 0.18750000 0.59375000 0.18750000
r12 19.87500000 62.93750000 19.87500000

The marginal probability distribution of all reaction rates can be generated by Xsample and then
simply plotted using R-function pairs. This is done in the R-script below. Before creating the
pairs plot, we first remove the rates that were given a fixed value. On the diagonal of the pairs
plot, we plot a histogram; we define this function first (it is copied from one of the examples
in the pairs help file). We plot only the lower part of the pairs plot (i.e. set upper.panel =
NULL).

xs <- Xsample(reaction.lim, jmp = 10, iter = 500)
panel.hist <- function(x, ...) {

usr <- par("usr")
on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5)) #redefine y-axis; x-axis stays the same
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts
y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col = "grey", ...)

}
xs <- xs[,-(7:9)] #remove constant rates

16 Package LIM , implementing linear inverse models in R

pairs(xs, upper.panel = NULL, diag.panel = panel.hist,
pch = ".", cex = 2, main = "Reaction network")

The results are in Figure 3

0.00 0.08

0.
00

0.
10 r1

0.
00

0.
06 r2

0.
1

0.
4 r3

1
4

7 r4

0
6

12 r5

0.
2

0.
5 r6

10
40 r10

0.
2

0.
5 r11

0.00 0.08

20
40

60

0.00 0.06 0.1 0.4 1 4 7 0 4 8 0.2 0.5 10 40 0.2 0.5 20 40 60

20
40

60r12

Reaction network

Figure 3: MCMC sample of the reaction network

4.3. blending problems

Finally we give the input for the blending problem.

===
Header of the file - ignored
Blending problem file blending.lim
run with:
require(LIM)
blend.lim <- Setup("blending.lim")
lp <- Linp(blend.lim)

Karline Soetaert, Dick van oevelen 17

xr <- Xranges(blend.lim, ispos = TRUE)
xs <- Xsample(blend.lim)
===

COMPONENT
X1 ! Part ingredient 1
X2 ! Part ingredient 2
X3 ! Part ingredient 3 = filler

END COMPONENTS

PARAMETERS
! Minimal nutrient requirements in feeding mix
NutA = 80
NutB = 50
NutC = 25
NutD = 5

! Cost of ingredients 1,2,3
Cost1 = 40
Cost2 = 60
Cost3 = 0

! nutrient contents in X1 and X2
N1_A =100
N1_B =50
N1_C =40
N1_D =10

N2_A =200
N2_B =150
N2_C =10
N2_D =0

N3_A =0
N3_B =0
N3_C =0
N3_D =0

END PARAMETERS

COST
Cost1*X1 + Cost2*X2 + Cost3*X3

END COST

18 Package LIM , implementing linear inverse models in R

EQUATIONS
X1 + X2 + X3 = 1

END EQUATIONS

INEQUALITY
X1>0
X2>0
X3>0

N1_A*X1 + N2_A*X2 + N3_A*X3 >NutA
N1_B*X1 + N2_B*X2 + N3_B*X3 >NutB
N1_C*X1 + N2_C*X2 + N3_C*X3 >NutC
N1_D*X1 + N2_D*X2 + N3_D*X3 >NutD

END INEQUALITY

The following code generates multiple solutions (small dots) and plots these together with the
minimal cost solution (large red dots) (see figure 4). Note that the MCMC-generated matrix is
extended first with the parsimonious results.

XS <- rbind(lp$X,xs)

xsplot <- function (x,y,...) {
points(x,y,pch=".")
points(x[1],y[1],pch=16,cex=2,col="red")
}

pairs(XS,upper.panel=NULL,lower.panel=xsplot,main="blending")

Karline Soetaert, Dick van oevelen 19

0.5 0.6 0.7 0.8 0.9 1.0
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

X1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

●

X2

0.5 0.6 0.7 0.8 0.9 1.0

0.
00

0.
10

0.
20

●

0.0 0.1 0.2 0.3 0.4 0.5

●

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
10

0.
20

X3

blending

Figure 4: MCMC sample of the blending problem

4.4. A simple linear programming problem

It is also possible to write simple linear programming problems as in the following example,
from Vanderbei (2006), example 2.11:

==
File linprog.lim
Simple linear programming example
==

EQUALITIES
-x12 + x23 + x24 = 0

- x13 - x23 + x34 = 0
END EQUALITIES

INEQUALITIES

20 Package LIM , implementing linear inverse models in R

x12 + x13 + x14 > 1
x14 + x24 + x34 < 1

END INEQUALITIES

MINIMISATION
x12 + 8*x13 + 9*x14 + 2*x23 + 7*x24 + 3*x34
END MINIMISATION

In this simple example, the components ("decision variables" in linear programming jargon) are
not explicitly declared. Their names are inferred from the minimization function.

This model is solved as follows:

Linp("linprog.lim")

which gives:

$residualNorm
[1] 1.110223e-16

$solutionNorm
[1] 6

$X
X12 X13 X14 X23 X24 X34

cost1 1 0 0 1 0 1

5. Structure of the LIM input file

Based on the examples above, we now discuss the general structure of the LIM input files.

The structure of the LIM declaration file has to obey the following rules:

• Declarations are case-INsensitive: flows, Flows, FLOWS is all the same.

• The declaration file is divided into several sections, each contained between ’## section
name’ and ’## END section name’. Only the text embraced by "##" and "## END" cou-
ples is considered by the LIM parser. The number of #s does not matter. Only the first
four characters of the section names are considered, e.g. to designate the parameter sec-
tion, we can write ## PARAM or ##PARAMETERS. The declaration sections allowed are
summarised in table 1.

• text inbetween the declaration sections is ignored (and can be used to write comments).
In the foodweb example for instance, all text positioned in front of "## EXTERNAL" will
be ignored.

Karline Soetaert, Dick van oevelen 21

• An input file can contain declarations for externals, components, flows, parameters, vari-
ables and also defines the additional equalities (i.e. not the mass balances) and inequali-
ties, costs, and profits (see below).

• Any line that starts with "!" or any blank line is ignored. The exclamation mark can also
be used to discard part of an input line (i.e. everything past "!" is ignored).

• Simple calculations are allowed, i.e. addition and multiplication. The use of brackets for
a calculation is not allowed.

• Continuation of a line is allowed via the use of the "&" sign, at the end of the line.

• flows can also be given a name using ("name :"). Although this is not mandatory, it may
make the equations more readable.

• equalities and inequalities can also be given a name. This is only used for output.

A number of shorthand notations are available:

• If the LIM is a flow network, then FLOWfrom(x) is shorthand for the sum of all flows
directed out of component x, while FLOWto(x) is shorthand for all flows directed into
component x. In the foodweb model example, we wrote:

VARIABLES
Ingestion = Pgraz + Dgraz

VARIABLES

This could have been written as:

VARIABLES
Ingestion = Flowto(An)

VARIABLES

• In the inequality section, using

[]

assigns in one statement lower and upper bounds. In the foodweb example for instance,
we wrote:

defaecation: Faeces = [minFaeces,maxFaeces]*Ingestion

defaecation1: Faeces > minFaeces*Ingestion
defaecation2: Faeces < maxFaeces*Ingestion

22 Package LIM , implementing linear inverse models in R

Karline Soetaert, Dick van oevelen 23

Table 1: Nomenclature for LIM elements; sometimes several names are allowed for one type of
element; the parser only considers the first four characters.

Name Description
COMP, STATE, STOCKS,
DECI, UNKN

compartments (or components) between which flows are defined. If
neither FLOWS nor REACTIONS are defined, then the compartments
constitute the unknowns to be estimated (so-called "decision vari-
ables", see the blending example). If FLOWS or REACTIONS are
present, then there will be one mass balance generated for each com-
partment; this distinguishes them from EXTERNALS. If the compo-
nents are not explicitly specified, they will be generated from the
FLOWS, REACTIONS or COST or PROFIT section. To avoid er-
rors due to typing mistakes, it is recommended to explicitly define
components; in this case the parser can check if all items used in the
flow or reaction section actually exist. Compartments may be given a
value.

EXTERNALS compartments that represent the external world. There is no mass
balance generated for EXTERNALS

PARAMETERS Parameters (with their values) that have constant values during one
model application but whose value can be altered for other applica-
tions. They can be changed in monte carlo runs (see below). Param-
eters may be calculated based on other parameters (that have been
declared in front of the derived parameter).

FLOWS Flows between two components, written either as Flow(Source,Sink)
or Source→ Sink, and where source and sink are components. If this
section is defined, then the FLOWS will be considered the unknowns
that have to be estimated. This declaration section forms the basis
of a set of mass balance equations, one for each component. Cannot
co-occur together with REACTIONS declarations

REACTION A reaction occurring between components, e.g. A→ B + 2*C. Reac-
tions that can occur in two directions are denoted as in A↔ B+C. For
each unidirectional reaction, the rates are positive; thus an inequality
condition (rate>0) is imposed. Reactions occurring in two directions
need not be positive. If this section is defined, then the reaction rates
will be considered the unknowns that have to be estimated. The reac-
tions form the basis of a set of mass balance equations, one for each
component. A REACTION section can not co-occur with a FLOWS
declaration section.

VARIABLES A linear expression involving the unknowns, parameters or other vari-
ables. Variables are derived quantities, useful to make the declaration
of e.g. inequality constraints easier and more readable. Their values
are estimated by function Variables; the ranges of variables can be
solved with function Varranges

COST, MINIMUM One or more linear expression(s) that should be minimized
PROFIT, MAXIMUM, One or more linear expression(s) that should be maximized
RATES Only present when the problem is a flow or reaction network and the

net rate of change is not 0. It should give the net rate of change for
a compartment. If not specified, steady-state is assumed and RATES
gets the value 0.

EQUALITIES Relationships between unknowns, or measured values that are as-
sumed to be exactly known

INEQUALITIES Relationships between unknowns, or measured values that are as-
sumed to be known only with certain bounds.

24 Package LIM , implementing linear inverse models in R

6. setting up the linear inverse model

The LIM input is used to create the matrices and vectors that constitute the lsei problem (least
squares with equalities and inequalities).

This is done in two steps.

• Function Read performs the first step, which creates the liminput, a list that defines all
elements of the LIM as a function of the other elements.

• Function Setup.lim or Setup performs the second step. Based on the liminput, all terms
are written as a function of the unknowns only and the matrices and vectors A, b, G and
h are created.

It is also possible to create the LIM matrices and vectors directly from an input file. This is done
by calling function Setup which takes as input a file name.

Thus:

lim <- Setup("linprog.lim")

does the same as:

liminput <- Read("linprog.lim")
lim <- Setup(liminput)

Splitting problem generation in two steps is convenient when several runs need to be performed
with different parameter values, e.g. for performing a monte carlo analysis. Thus, the values
of the parameters can be directly altered in the liminput list, after which Setup will recreate the
corresponding matrices and vectors.

In the next sections we take a closer look at how setting up the LIM is achieved. This rather
technical information can be skipped.

6.1. creating a liminput list

Here the names of all section elements, and their calculations are saved as a list of type "limin-
put". All elements are considered to result from linear calculations, which are saved as a data
frame. In this data frame, one line denotes a product, while subsequent lines belonging to the
same calculation are sums. A product can be composed of the following items (columns): con-
stant values (column "val"), parameters (up to 4, columns "par1",..."par4"), variables ("var"),
flows ("flow"), components ("comp"), externals and reactions.

Except for the constants, all items are denoted with their number.

Consider the following part of the liminput generated by reading the simple linear programming
example.

The data frame captures the calculation of the inequalities. They were defined as:

Karline Soetaert, Dick van oevelen 25

INEQUALITIES
x12 + x13 + x14 > 1

x14 + x24 + x34 < 1
END INEQUALITIES

and are parsed into the following data.frame:

$constraints
name nr val par1 par2 par3 par4 var flow comp external reaction

1 ineq1 1 1 NA NA NA NA NA NA 1 NA NA
2 ineq1 1 1 NA NA NA NA NA NA 2 NA NA
3 ineq1 1 1 NA NA NA NA NA NA 3 NA NA
4 ineq1 1 -1 NA NA NA NA NA NA NA NA NA
5 ineq2 2 -1 NA NA NA NA NA NA 3 NA NA
6 ineq2 2 -1 NA NA NA NA NA NA 5 NA NA
7 ineq2 2 -1 NA NA NA NA NA NA 6 NA NA
8 ineq2 2 1 NA NA NA NA NA NA NA NA NA

which should be understood as follows:

First of all, there are two inequalities, numbered 1 and 2 (column "nr"); both are the sum of 4
terms (there are 4 lines in the data frame for each ineqauality). On line 2, only column "val" and
"comp" are not a NA. This term should be read as 1*comp[2].

Inequality 1 can thus be reconstructed as: 1∗ comp[1]+1∗ comp[2]+1∗ comp[3]−1 > 0

The liminput data.frame contains the following elements:

• "file" - the name of the input file

• "pars" - a data.frame with the parameters

• "comp" - a data.frame with the components (state variables)

• "rate" - a data.frame with rates of change

• "extern" - a data.frame with externals

• "flows" - a data.frame with flows (these have a different -simplified structure)

• "vars" - a data.frame with variables

• "cost" - a data.frame with cost function

• "profit" - a data.frame with profit function

• "equations" - a data.frame with equality conditions

• "constraints" - a data.frame with inequality conditions

26 Package LIM , implementing linear inverse models in R

• "reactions" - a data.frame with reaction

• "posreac" - a vector of logical elements: TRUE if corresponding reaction is positive (i.e.
unidirectional reaction,→) , FALSE otherwise (i.e. two-ways reaction,↔)

• "marker" - a data.frame with markers (see below)

• "parnames" - a vector with parameter names

• "varnames" - a vector with variable names

• "compnames" - a vector with component (state variable) names

• "externnames" - a vector with names of externals

• "Type" - one of "flow", "reaction",or "simple"

6.2. creating LIM matrices and vectors

Based on the liminput list, function Setup rewrites all terms as a function of the unknowns only.
It creates an instance of class lim, a list that contains, amongst other things the matrices and
vectors A, b, G and h.

The following elements are in type lim

• "file" - The name of the input file

• "NUnknowns" - the number of unknowns

• "NEquations" - the number of equations inputted (the "true" equality conditions, i.e. ex-
cluding the mass balances for flow and reaction networks)

• "NConstraints" - the number of constraints inputted (the "true" inequality conditions, i.e.
excluding the positivity constraints which are assumed for flow networks)

• "NComponents" - the number of components or state variables

• "NExternal" - the number of externals

• "NVariables" - the number of variables

• "A" - the matrix A, containing the coefficients of the equalities. If the problem is a flow
or reaction network, then the first NComponent equations are the mass balances, the last
NEquations rows correspond to the inputted equalities.

• "B" - the vector b, containing the right hand side of the equalities

Karline Soetaert, Dick van oevelen 27

• "G" - the matrix G, containing the coefficients of the inequalities. If the problem is a
flow or reaction network, then the first NConstraints rows correspond to the inputted in-
equalities, while the last rows correspond to the imposed positivity constraints. For flow
networks, there are NComponents positivity constraints ; for reaction networks the number
of positivity constraints are less than or equal to this amount.

• "H" - the vector h, containing the right hand side of the inequalities

• "Cost" - the cost vector, contains the coefficients of the cost function

• "Profit" - the profit vector, contains the coefficients of the profit function

• "Flowmatrix" - if a flow network: a matrix whose i,jth value denotes the flow number
from i to j

• "VarA" - variable matrix; contains the coefficients of the variables. 4

• "VarB" - variable vector; contains the right hand side of the variable declarations

• "Parameters" - names and values of all parameters

• "Components" - names and values of all components

• "Externals" - names and values of all externals

• "rates" - names and values of all rates

• "markers" - names and values of all markers (see below)

• "Variables" - names of the variables

• "eqnames" - names of the equalities

• "ineqnames" - names of the inequalities

• "costnames" - names of the cost functions

• "profitnames" - names of the profit functions

• "Unknowns" - names of the unknowns

• "ispos" - true if the unknowns have to be positive, i.e. for certain flows in a flow network

6.3. Solving LIM problems

During an inverse solution, two norms are calculated:

• the residual to the equations E * X = F. This is called the residual norm. A model that can
be solved has a residual norm ∼ 0.

4Variables are linear functions of the unknowns defined as: VarX*x-VarB

28 Package LIM , implementing linear inverse models in R

• the value of the function that has been minimised or maximised: MIN(f(Flows)) or MAX
(f(Flows). This is the solution norm.

7. Examples

Package LIM contains many example input files. They are present in three different subdirecto-
ries of the packages examples subdirectory.

• directory Foodweb contains the following food web examples:

– BrouageMudflat.input (Leguerrier, Niquil, Boileau, Rzeznik, Sauriau, Le Moine,
and Bacher 2003)

– CaliforniaSediment.input (Eldridge and Jackson 1993)

– Everglades.input (Diffendorfer, Richards, Dalrymple, and DeAngelis 2001)

– foodweb.lim, the simple food web in this vignette

– RigaAutumn.input,RigaSummer.input, RigaSpring.input (Donali, Olli, Heiska-
nen, and Andersen 1999)

– ScheldtIntertidal.input (Van Oevelen, Soetaert, Middelburg, Herman, Mood-
ley, Hamels, Moens, and Heip 2006)

– Takapoto.input (Niquil, Jackson, Legendre, and Delesalle 1998)

• directory Reactions contains

– E_coli.lim (Edwards et al. 2002)

– fba_simple.lim

– reaction.lim the example from this vignette

• directory LinearProg contains

– alloymixture.input

– blending.input

– diet.input

– FoodManufacture.001

– Greenberg1.input

– linprog.lim the example from this vignette

– Machines.input

– manpower.001

– refinery.001

– transportation.input

examples
Foodweb
Reactions
LinearProg

Karline Soetaert, Dick van oevelen 29

– Vanderbei1.input, Vanderbei2.input, Vanderbei3.input, Vanderbei4.input,
Vanderbei5.input 5 examples from the book of (Vanderbei 2000)

Additional foodweb examples can be found in package ToxLim (de Laender, van Oevelen, Mid-
delburg, and Soetaert 2009)

8. Extensions

8.1. Markers

For some flow network applications it may be useful to solve not only the default mass balance
that is setup based on the section "## COMP", but also an additional mass balances based e.g.
on stable isotope data. Stable isotope data are collected in many food web studies to decipher
food sources or trophic position of a consumer. Mathematically, isotope data are evaluated with
so-called linear mixing models. Verbally, a linear mixing model assumes that the isotope value
of a consumer is a flow-weighted average of its resources. Mathematically this is represented
by:

X j =
∑i Fi→ j (Xi +∆ j)

∑i Fi→ j
(9)

in which X j is the isotope composition of the consumer, Fi→ j is the flow from resource i to
consumer j and ∆ j is trophic fractionation (e.g. 15N fractionates with ∼3 ‰per trophic level).

Stable isotope data can be inputted as data equations in a LIM . Suppose that in the food web
example we have δ 15N isotope data for plants (Pl_iso), detritus (Det_iso) and the consumer AN
(AN_iso). Further, we assume a common fractionation factor of 3.4‰for δ 15 (Frac_iso). The
resulting isotope equation can be included in the ## EQUALITIES section as:

EQUALITIES
...
AN_iso*Ingestion = Pl_iso*Pl->AN + Frac_iso*Pl->AN +

Det_iso*Det->AN + Frac_iso*Det->AN
...

END EQUALITIES

This notation works fine and is easily manageable for this simple example. When however, food
webs interactions are more complex, the LIM package offers a short-hand notation for the above.
We can rewrite equation 9 as

∑
i

Fi→ j (Xi−X j) =−∆ j ∑
i

Fi→ j (10)

in which the left-hand side of the equation is the mass balance of the isotope and the right-hand
side accounts for trophic fractionation processes.

30 Package LIM , implementing linear inverse models in R

In the file we first include the parameter value for Frac_iso in the ## PARAMETER section and
define an additional section "## MARKER" in which the marker values (in this case δ 15N data)
are assigned to the components of the food web.

PARAMETERS
...

Frac_iso = 3.4
...

END PARAMETERS

MARKER
...
Pl = 10
Det = 5
AN = 11
...

END MARKER

Subsequently, we define the additional mass balance for the isotope in the equalities.

EQUALITIES
...
Massbalance(AN) = -flowto(AN)*Frac_iso
...

END EQUALITIES

In the above formulation, the left-hand side of the equality gives the mass balance notation as
derived above and the right-hand side takes care of the trophic fractionation. This short-hand
notation has several advantages. First of all, the notation in the equalities becomes must shorter
(especially in large flow networks). Secondly, when one decides to remove a particular food
source from a consumer in the ## FLOWS section, this change in the food web structure is
also propagated to the isotope balance, reducing the change of inconsistencies between different
mass balances. Currently, it is only possible to define one additional marker in the LIM package
using the short-hand notation.

8.2. Monte Carlo runs

Sometimes, a certain model needs to be solved with different parameter values.

Consider the following flow network:

==
file simple.input

Karline Soetaert, Dick van oevelen 31

==
##Parameter
f1 = 1

end parameter

FLOWS
A -> B
A -> C
B -> C
C -> A
B -> D
D -> A

END FLOWS

EQUATIONS
0.5* A->B = A->C

C->A = D->A
C->A = f1
END EQUATIONS

where there are four compartments, and 6 flows. The value of the flow from C to A is specified
with a parameter (f1).

To solve this model, we write:

Ldei("simple.input")

which outputs:

$X
A->B A->C B->C C->A B->D D->A

1.3333333 0.6666667 0.3333333 1.0000000 1.0000000 1.0000000

$unconstrained.solution
[1] 1.3333333 0.6666667 0.3333333 1.0000000 1.0000000 1.0000000

$residualNorm
[1] 1.887379e-15

$solutionNorm
[1] 5.333333

32 Package LIM , implementing linear inverse models in R

$IsError
[1] FALSE

$type
[1] "ldei"

Now we want solve the model successively for increasing values of the flow f1.

Here is how to do this: we first create the liminput structure by just reading the input file
(Read("simple.input").

This structure has a list item called "pars" which looks like:

$pars
name nr val par1 par2 par3 par4 var flow comp external reaction

left f1 1 1 NA NA NA NA NA NA NA NA NA

(it specifies the name f1 and the value (val) = 1.

We then loop over all required values of f1 (for (pars in seq(0,1,by=0.2))), each time
setting the value of the parameter in the liminput structure (ls$pars$val <- pars) and then
solving the model with this input.

ls <- Read("simple.input")

Res <- NULL
for (pars in seq(0,1,by=0.2))
{
ls$pars$val <- pars
Res<- rbind(Res,c(pars,Ldei(Setup(ls))$X))

}
Res

The results look like:

A->B A->C B->C C->A B->D D->A
[1,] 0.0 0.0000000 0.0000000 0.00000000 0.0 0.0 0.0
[2,] 0.2 0.2666667 0.1333333 0.06666667 0.2 0.2 0.2
[3,] 0.4 0.5333333 0.2666667 0.13333333 0.4 0.4 0.4
[4,] 0.6 0.8000000 0.4000000 0.20000000 0.6 0.6 0.6
[5,] 0.8 1.0666667 0.5333333 0.26666667 0.8 0.8 0.8
[6,] 1.0 1.3333333 0.6666667 0.33333333 1.0 1.0 1.0

5

5For the die-hard who has actually reached this part of the vignette. R makes a vignette only from files that have
extension "rnw" and that are then processed by R-function Sweave (Leisch 2002). Sweave interprets the R-code and
makes a tex file. When I started writing, I did not yet know how to Sweave. By renaming the "tex" file as "rnw", R is
tricked to believing it is a true Sweave file (which it is not) and thus makes a vignette. This means that the "R-code"
that you can read is not interpreted

Karline Soetaert, Dick van oevelen 33

A list of all functions in LIM is in table (1).

A list of useful functions in other packages is table (2)

34 Package LIM , implementing linear inverse models in R

Table 2: Table 1. Summary of the functions in package limSolve

Function Description
Flowmatrix Generates a flow matrix from a LIM problem
Plotranges Plots minimum and maximum (ranges) and a central value of a LIM

problem
PrintMat Print the matrices of a LIM problem
Read Reads a LIM input file and creates a liminput list
Setup Composes a LIM problem from either a liminput list or from a file
Ldei Solves a LIM problem using ldei (Least distance programming with

equalities and inequalities)
Linp Solves a LIM problem using Linear programming
Lsei Solves a LIM problem using lsei (Least squares with equality and in-

equality conditions)
Xranges Calculates ranges of unknowns
Varranges Calculates ranges of variables (linear combinations of unknonws)
Xsample Randomly samples a LIM problem for the unknowns
Varsample Randomly samples a LIM problem for the inverse variables

Karline Soetaert, Dick van oevelen 35

Table 3: Table 2. Useful functions from other packages: diagram (Soetaert 2008), ToxLim
(de Laender et al. 2009) and NetIndices (Soetaert and Kones 2008; Kones et al. 2009)

Function Package Description

plotweb diagram Plots a web, based on a flowmatrix 6 , thickness of arrow
=value of flow

plotmat diagram Visualises the transpose of a flowmatrix 6 as labeled boxes
connected by arrows (created using LIM function Flowmatrix

LimOmega ToxLim Predicts internal concentrations of hydrophobic chemicals in
aquatic organisms, based on a LIM

AscInd NetIndices Based on a flowmatrix 6 , estimates the ascendency network
indices

Dependency NetIndices Based on a flowmatrix 6 , estimates the dependency network
indices

EffInd NetIndices Based on a flowmatrix 6 , estimates the effective connectivity,
flows, nodes, roles network indices

EnvInd NetIndices Based on a flowmatrix 6 , estimates the indices of homogeniza-
tion, synergism,...

GenInd NetIndices Based on a flowmatrix 6 , estimates the general network indices
PathInd NetIndices Based on a flowmatrix 6 , estimates the direct and indirecgt

pathways in a network
UncInd NetIndices Based on a flowmatrix 6 , estimates the statistical, realised and

conditional uncertainty,...
TrophInd NetIndices Based on a flowmatrix 6 , estimates the trophic level and om-

nivory indices

36 Package LIM , implementing linear inverse models in R

References

de Laender F, van Oevelen D, Middelburg JJ, Soetaert K (2009). “Incorporating Ecological Data
and Associated Uncertainty in Bioaccumulation Modeling: Methodology Development and
Case Study.” Environmental Science and Technology, 43 No. 7, 2620–2626.

Diffendorfer J, Richards P, Dalrymple G, DeAngelis D (2001). “Applying Linear Programming
to estimate fluxes in ecosystems or food webs: an example from the herpetological assemblage
of the freshwater Everglades.” Ecological Modelling, 144, 99–120.

Donali E, Olli K, Heiskanen AS, Andersen T (1999). “Carbon flow patterns in the planktonic
food web of the Gulf of Riga, the Baltic Sea: a reconstruction by the inverse method.” Journal
of Marine Systems, 23, 251–268.

Edwards J, Covert M, Palsson B (2002). “Metabolic Modeling of Microbes: the Flux Balance
Approach.” Environmental Microbiology, 4(3), 133–140.

Eldridge P, Jackson G (1993). “Benthic trophic dynamics in California coastal basin and conti-
nental slope communities inferred using inverse analysis.” Marine Ecology Progress Series,
99, 115–135.

Kones JK, Soetaert K, van Oevelen D, Owino J (2009). “Are network indices robust indicators
of food web functioning? a Monte Carlo approach.” Ecological Modelling, 220, 370–382.
doi:http://dx.doi.org/10.1016/j.ecolmodel.2008.10.012.

Leguerrier D, Niquil N, Boileau N, Rzeznik J, Sauriau P, Le Moine O, Bacher C (2003). “Nu-
merical analysis of the food web of an intertidal mudflat ecosystem on the Atlantic coast of
France.” Marine Ecology Progress Series, 246, 17–37.

Leisch F (2002). “Sweave: Dynamic Generation of Statistical Reports Using Literate Data
Analysis.” In W Härdle, B Rönz (eds.), Compstat 2002 - Proceedings in Computational
Statistics, pp. 575–580. Physica Verlag, Heidelberg. ISBN 3-7908-1517-9, URL http://
www.stat.uni-muenchen.de/~leisch/Sweave.

Niquil N, Jackson G, Legendre L, Delesalle B (1998). “Inverse model analysis of the planktonic
food web of Takapoto Atoll (French Polynesia).” Marine Ecology Progress Series, 165, 17–
29.

Soetaert K (2008). diagram: Functions for visualising simple graphs (networks), plotting flow
diagrams. R package version 1.4.

Soetaert K (2009). Escherichia coli Core Metabolism Model in LIM. LIM package vignette.

Soetaert K, Kones JK (2008). NetIndices: Estimating network indices, including trophic struc-
ture of foodwebs in R. R package version 1.2.

Soetaert K, Van den Meersche K, van Oevelen D (2009). limSolve: Solving linear inverse
models. R package version 1.5.

https://doi.org/http://dx.doi.org/10.1016/j.ecolmodel.2008.10.012
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.stat.uni-muenchen.de/~leisch/Sweave

Karline Soetaert, Dick van oevelen 37

Soetaert K, van Oevelen D (2009). LIM: Linear Inverse Model examples and solution methods.
R package version 1.4.

Van den Meersche K, Soetaert K, Van Oevelen D (2009). “xsample(): An R Function for
Sampling Linear Inverse Problems.” Journal of Statistical Software, Code Snippets, 30(1),
1–15. URL http://www.jstatsoft.org/v30/c01/.

Van Oevelen D, Soetaert K, Middelburg J, Herman P, Moodley L, Hamels I, Moens T, Heip C
(2006). “Carbon flows through a benthic food web: Integrating biomass, isotope and tracer
data.” Journal of Marine Research, 64, 1–30.

van Oevelen D, van den Meersche K, Meysman F, Soetaert K, Middelburg JJ, Vezina AF
(2009). “Quantifying Food Web Flows Using Linear Inverse Models.” Ecosystems.
doi:10.1007/s10021-009-9297-6. URL http://www.springerlink.com/content/
4q6h4011511731m5/fulltext.pdf.

Vanderbei R (2000). Linear programming, Foundations and extensions. Kluwer Academic
Publishers.

Affiliation:
Karline Soetaert
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands E-mail: k.soetaert@nioz.nl
URL: http://www.nioz.nl

Dick van Oevelen
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands E-mail: d.vanoevelen@nioz.nl
URL: http://www.nioz.nl

http://www.jstatsoft.org/v30/c01/
https://doi.org/10.1007/s10021-009-9297-6
http://www.springerlink.com/content/4q6h4011511731m5/fulltext.pdf
http://www.springerlink.com/content/4q6h4011511731m5/fulltext.pdf
mailto:k.soetaert@nioz.nl
http://www.nioz.nl
mailto:d.vanoevelen@nioz.nl
http://www.nioz.nl

	Introduction
	Linear Inverse Models
	Three types of LIM
	Flow network problems
	Example: a simple food-web

	reaction problems
	The core metabolism of E.coli
	Example: chemical reactions.

	other problems
	blending problems

	Specifying a Linear Inverse Model in R-package LIM
	food web problem
	chemical reaction problem
	blending problems
	A simple linear programming problem

	Structure of the LIM input file
	setting up the linear inverse model
	creating a liminput list
	creating LIM matrices and vectors
	Solving LIM problems

	Examples
	Extensions
	Markers
	Monte Carlo runs

