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1 Introduction

This vignette describes how to use the GDS package starting from raw microarray data contained
in .CEL files. For the computation of the GDS model we do recommend the use of a supercomputer
as it requires memory and time for the data to be processed. All other methods can be conducted
in reasonable time on an ordinary laptop but those who have a high-performance computing
(HPC) service freely available have the advantage to use this also for the regular analysis. We will
demonstrate an example step by step after giving a short introduction into the used methodology.
The package accompagnies the paper by Van Moerbeke et al. (2016) which introduced the GDS
model.

2 Data

The example data is the tissue data publicly available on the Affymetrix website. The data
set contains 33 arrays from 11 tissues with three replicates per tissue and was generated with
the GeneChip® Human Exon 1.0 ST array. The array is a whole genome array and contains
only perfect matching (PM) probes, with a small number of generic mismatching probes for the
purposes of background correction. Four perfect match probes were designed for each probe set and
a probe set can roughly be seen as an exon. There are no probes which span exon-exon junctions
(Affymetrix, 2005b). The data comes from the ”HuEx-1 0-st-v2” chip type and a custom .cdf file
for the annotation is available from the website of the aroma.affymetrix (Bengtsson et al., 2008)
package.

3 Methodology

The Genome-wide Differential Splicing (GDS) model is situated in a mixed model framework. Al-
ternative splicing detection can now be formulated as variance decomposition in a random effects
model with a random intercept per exon taking the gene expression into account. The following
can be said. The between array variability of an alternatively spliced exon would be higher than
the within array variability among the exons of the same transcript cluster. A non-alternatively
spliced exon would have a between array variability that is at most the within array variability
across all exons of the same transcript cluster. These hypotheses can be formulated as a two-stage
mixed effect model for alternative splicing detection.

The model is fitted on the observed PM probe intensities levels as:

log2(PMijk) = pj + ci + bik + εijk, (1)

Here, parameter pj denotes the effect of probe j, ci is the overall gene effect of array i and bik
is an exon specific deviation from this overall effect. The background noise εijk(j) ∼ N(0, σ2)
captures the within array variability with σ2. Differential expression between the arrays is ex-
pected to be negated by incorporating the gene effect parameter ci. By consequence, the exon
specific parameters show the deviation of a particular exon from its corresponding gene level. If
there is only a small deviation, it can be said that the exon is present in the sample. A large
deviation however shows that the exon likely absent. Note that the exon specific deviations are
random effects assumed to be normally distributed, bik ∼ N(0,D). The K × K covarianc ma-
trix D contains the exon specific signals with τ2k on its diagonal and K the number of exons in a
transcript cluster. We term this model the Genome-wide Differential Splicing (GDS) mixed model.

The advantage of a mixed model formulation for alternative splicing detection is the existence
of a standard score to quantify the trade-off between signal and noise. We term this score an
“exon score” but it is also known as the intra-cluster correlation (ICC) of linear mixed models.
The score is defined as the ratio of the exon specific signal to the noise across all exons of a
transcript cluster. For a probeset k of a transcript cluster this is formulated as:

ρk = τ2k/(σ
2 + τ2k ),

where σ2 is the same for all probesets belonging to the same transcript cluster. It intuitively
follows from the definition of the exon score that an equity threshold between exon specific signal
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and transcript level noise is 0.5. This could be used as a threshold for identifying an alternatively
spliced probeset among the probesets of a transcript cluster. A value of ρk > 0.5 puts more weight
in favor of probeset k to be alternatively spliced. Note that the threshold for the exon score could
be adjusted to the relative amount of signal in the data. Given that probeset k has been identi-
fied to have substantial between array variability, we propose to use the estimated random effects
bik as an ”array score” for identifying arrays in which the alternatively spliced exon is expressed.
Tissues with an enrichment of probeset k are expected to have array scores greater than zero as
they resisted shrinkage towards the overall gene level effects.

The parameters of the proposed mixed effects model are estimated within the Bayesian frame-
work with vague proper priors since the full conditional posterior distributions for the parameters
of interest are known. More information can be found in Van Moerbeke et al. (2016).

4 Data Processing

The processing of the data starts from the raw .CEL files with functions of the aroma.affymetrix

(Bengtsson et al., 2008) package. Whether you are working on a HPC or on your laptop, to be
able to use this package, you have to make sure to have the correct folder structure. In the current
working directory two folders have to be set up. The first folder is a rawData folder. This folder
contains another folder with the name of your data set. In our case this will be ”TissueData”.
This ”TissueData” folder should contain a last folder with as name the chipType used to produce
the data (eg ”HuEx-1 0-st-v2”) and herein the .CEL files should be placed. The second folder
is the ”annotationData” folder. Herein a folder with name ”chipTypes” should be made which
contains folders for each chip type with the respective names. In the folder of each chip type the
corresponding .cdf file should be saved. Figure 1 shows the structure of the directories with as
working directory a folder named ”GDS”. An R script can now be created in the current working

Figure 1: Folder Structure for the aroma.affymetrix package

directory such that the functions have acces to the created folders. The function used to perform the
data processing is DataProcessing and is a wrapper of several functions of the aroma.affymetrix
package which is imported by the GDS package. To obtain the data to perform the GDS model on,
the raw .CEL files are background corrected with the rma background correction and normalization
is performed with the quantile normalization. The data is returned as a data frame with one line
per probe. There are thus multiple lines per probeset (one for each probe of the probeset) and even
more per gene as often more than one exon belongs to the same gene. The first colum contains
the gene IDs and the second column the exon IDs. All other columns contain the sample values of
the probes. If requested, also a gene and exon level summarization is performed on the data with
the rma summarization method. Further, the option is provided to perform the FIRMA model
(Purdom et al., 2008) on the data as well. For the tissue data data the function specified in a
regular R script is as follows:

> DataProcessing(chipType="HuEx-1_0-st-v2",tags="coreR3,A20071112,EP",

+ Name="TissueData",ExonSummarization=TRUE,GeneSummarization=TRUE,

+ FIRMA=TRUE,location="TissueData",verbose=TRUE)

The tags parameter refers to a tag that was added to the .cdf file. Make sure to have created a
folder named TissueData in your working directory for the results to be saved. This is the loctaion
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in the function above. The function as formulated above will create four data frames. One with the
backgouncorrected and normalized probe intensities, one with the gene level summarized values,
one with the exon level summarized values and a last one with the values of the FIRMA model.
If one has a HPC available, we can call upon the previous function via the DataProcessing.R and
DataProcessing.pbs scripts available in the doc folder. Be carefull to fill in the requirements for
your specific project. After completing the .pbs file, a qsub command on this batch file should get
the function running.

If you do not have access to a HPC service, the next processing steps can be skipped and the
data is a proper format for the GDS model implemented in the GDSFunction function. If you do
have access to an HPC service and you wish to use it, some more processing of the data is neces-
sary. The strength of using the HPC server is that calculations can be parallelized. In our case
where we run the GDS model gene-by-gene, the server needs a file in which every line correspond
to one gene and contains all the information of that gene. This way the cluster can read several
lines, etc several genes simultaneously and distribute them over multiple cores who perform the
calculations independently. First, a pivot transformation will be conducted to convert the data
into a file with one line per gene. All information concerning one gene is thus gathered into this
line. The first column of the returned file contains the gene ID, the second column contains the
exon IDs of all the exons of that gene. The third colum indicates the number of probes per exon,
the fourth contains the values of those probes per sample and the last column contains the sample
names.

> load("TissueData/TissueData.RData")

> PivotTransformation(Data=TissueData,GeneID=TissueData$GeneID,

+ ExonID=TissueData$ExonID,savecsv=TRUE,

+ Name="TissueData_Pivot",location="TissueData")

This function is already included in the DataProcessing.R file in the doc folder and thus if this
file is used on the HPC service, it is not needed to be called upon separately. Secondly, a final file
is created with the begin positions and lengths of the lines of the previous file. The function for
this indexing of the lines is not an R function but a python function. The doc folder contains the
Line Indexer.py function and its corresponding .pbs file. The last line is where the function is
called.

python Line_Indexer.py --output_file TissueData_lineindex.csv TissueData_Pivot.csv

After output file the first name is the name to be given to the transformed file. The second file
is the file to be transformed. Make sure that the function is run in the same folder where the file
to be transformed is saved. The HPC server will now work from these begin positions, read a line
from the first file and process the corresponding gene with the GDS model. The second file is not
necessary for the calculations of the HPC server but it makes life easier for the server as it does
not need to read in all the information on all the genes. After this final function, the data is ready
to be used with the GDS model on the cluster.

5 The GDS Model

The data is now in an adequate format for the GDS model. If you do not have acces to an
HPC service, the GDSFunction function can be performed on the data frame returned by the
DataProcessing function. The GDSFunction function consists of two subfunctions. The first is
the inigds which filters out non-informative probesets with the I/NI calls model (Kasim et al.,
2010). The option is available whether the filtering should be performed or not. The second
function is the gdsmodel intern and performs the actual GDS model, possibly on the output of
inigds. A list with one element per gene is returned. Per gene, there is list with three elements
if inigds is performed. Otherwise, two elements are available per gene. The optional element per
gene is a data frame with the exons and a logical value indicating whether the exon is informative
or not with TRUE or FALSE respectively. The other two elements contain the exon scores and the
array scores of the exons. The function is:

> load("TissueData/TissueData.RData")

> GDS_Output=GDSFunction(geneData=TissueData,nsim=5000,geneID=TissueData$GeneID,

+ exonID=TissueData$ExonID,informativeCalls=TRUE,alpha=0.5)
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The non-cluster version of the GDS model is recommended to be used only on a small data set or
a subset of a larger one. The GDSFunction ClusterVersion is an adaption of the GDS model to
be used on a HPC server. The cluster will parallelize the computations. This implies that several
genes will be processed simultaneously. The process starts by reading a line of the file created by
the python function Line Indexer. This contains a begin position and length of that line of the
file made by PivotTransfornmation. Next, the corresponing line will be looked for and read into
the script. This line enholds all the information of one gene and with some processing, a small data
frame of this gene is produced. This subset is then processed by the GDSFunction ClusterVersion

function. For each processed gene a .RData file will be saved with the output of the GDS model.
We will combine these later. The entire procedure is coded in the GDSFunction ClusterVersion.R
file in the doc folder of this pacakge. A corresponding .pbs file is also available. By submitting
the file of the Line Indexer function as the data and the GDSFunction ClusterVersion.pbs file
as a batch file to a worker framework on the HPC server the function should be executed. The
computation time depends from data set to data set. For the tissue data, 24 hours should be
adequate. The long computational time is due a just a few genes that have a large number of
exons. After 24 hours, five gene were not returned and therefore left out of the analysis.

Finally, the indiviudal gene outcomes of the GDSFunction ClusterVersion should be binded to-
gether into one larger data set. This is done by the CreateOutput function. It is necessary to
provide a file of the gene IDs of which the outcomes were produced. The doc folder contains this
file for the tissue data. The function will read the gene ID, look for the corresponding file of the
GDS model and add it to a list. Eventually it will return a list with one element per gene. The
function can be run on the HPC service with the CreateOutput.R and CreateOutput.pbs files in
the doc folder. A qsub command on the .pbs file gets the function started.

6 Analysis

If you are interested in the results of a particular gene and/or exon the Search function allows
you to get that specific data out of the output. Given exon IDs, it is capable of retrieving the
corresponding gene IDs as well in case the gene ID is not known beforehand. The function can be
run on the GDS ouput but also on more analyzed data frames as for example after performing a
test between the samples.

> exonID <- c(3252129,3597384,3333718,3735208,2598321,3338589,2605391,2605390,

+ 2605386,3025632,2375766,3569827,3569830,2334499,3972987,2516011,

+ 2989068,3422189)

> load("GDS_Output.RData")

> Results=Search(WhatToLookFor=data.frame(ExonID=exonID),Data=GDS_Output,

+ AggregateResults=FALSE,NotFound=NULL)

In order to identify exons that are alternatively spliced, their exon scores and array scores should
be investigated. The array scores can be tested between groups of interest of the samples. If
the data consists of paired samples, the mean paired differences can be investigated. We have
written a function ExonTesting that performs a simple t-test on the array scores. The p-values
are adjusted for multiplicty. The function has the option to already filter out probesets that do
not pass the exon score threshold and only consider those that do. If also a significance level is
specified, non-significant p-values will be left out of the results. A data frame with one line per
exon is returned. The columns contain the gene ID, the exon ID, the test statistic, a p-value and
an adjusted p-value. If the groups are paired also the mean paired difference is given.

> load("TissueData/GDS_Output.RData")

> groupHMPT=c(7,8,9,16,17,18,22,23,24,31,32,33)

> groupOthers=c(1,2,3,4,5,6,10,11,12,13,14,15,19,20,21,25,26,27,28,29,30)

> groups=list(group1=groupHMPT,group2=groupOthers)

> TissueData_ExonTesting=ExonTesting(Data=GDS_Output,Exonthreshold=NULL,groups=groups,

+ paired=FALSE,significancelevel=NULL)

The ExonTesting function was designed to be flexible. Filtering on exon scores is not necessary
and neither is filtering on the significance level. Also, ExonTesting.R and ExonTesting.pbs files
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are available in the doc folder to be run with an qsub command on the cluster.

The ExonTesting function is convenient when you are interested in the socres of all probesets. If
the interest lies in the those that are identified as alternatively spliced, we recommend to use the
ASExons function. If the input of this function is the outcome of the GDS model, the ExonTesting
function will be performed with a specified threshold on the exon scores and a given significance
level. A data frame only containing the probesets that pass the requiremenents on both exon
score and significance level will be returned. Further, the data frame is ordered from the highest
exon score to the lowest. Otherwise, if the ExontTesting function was already performed, the
returned data frame can be filtered according to specificed thresholds for the exon score and the
significance level with this function. An adjustment for multiplicty after filtering on exon score
will be performed as well.

> TissueData_ExonTesting_Sign1=ASExons(Data=GDS_Output,Exonthreshold=0.5,groups=groups,

+ paired=FALSE,significancelevel=0.05)

> TissueData_ExonTesting_Sign2=ASExons(Data=TissueData_ExonTesting,Exonthreshold=0.5,

+ groups=groups,paired=FALSE,significancelevel=0.05)

Corresponding files for use on the HPC server are also here available in the doc folder. During the
data processing, we have also obtained the results of the FIRMA model. These can be analyzed
further with the FIRMAScores function. In this function we calculate an all sample FIRMA score
as indicated in the FIRMA paper (Purdom et al., 2008). This is the mean paired difference for
paired samples. For more than two groups and in a situation were some of these are tested against
the other, the all sammple score is the maximum of the minimum of the FIRMA scores of those
that belong to one of the groups of interest. Further, a t-test is performed on the FIRMA scores
of the groups of interest and the returned p-value is adjusted for multiplicity. If a significance level
is specified, only significant probesets are returned. The application of the FIRMA model in the
aroma.affymetrix package does not allow for filtering. Here, we can specify a character vector
of informative exons that remain in the GDS output after filtering with the I/NI calls model or
even only those that are have adequate exon scores. The p-value will be adjusted accordingly. A
corresponding .R and .pbs script can be found in the doc folder for use with the qsub command.

> load("TissueData/FIRMA_Output.RData")

> load("TissueData/GDS_Output.RData")

> groupHMPT=c(7,8,9,16,17,18,22,23,24,31,32,33)

> groupOthers=c(1,2,3,4,5,6,10,11,12,13,14,15,19,20,21,25,26,27,28,29,30)

> groups=list(group1=groupHMPT,group2=groupOthers)

> exons=TissueData_ExonTesting[which(TissueData_ExonTesting$X50.>0.5),]

> TissueData_FIRMA=FIRMAScores(Data=FIRMA_Output,InformativeExons=exons,

+ groups=groups,paired=FALSE,significancelevel=0.05)

If an exon is of particular interest, plots can be made to visualize the provided data to investigate
the situation further. The PlotFunction makes three plots for one probeset. The first plot
illustrates the exon and gene level summarized values together with the observed probe intensities
for the probeset of interest. The second plots the density of the array scores. The last plot contains
a heatmap of the array scores and FIRMA scores of all the probesets of the gene.

> #Top gene 2736322 and Top exon 2736397

> load("TissueData/TissueData.rda")

> load("TissueData/TissueData_ExonLevelSummarized.RData")

> load("TissueData/TissueData_GeneLevelSummarized.RData")

> load("TissueData/FIRMA_Output.RData")

> load("TissueData/GDS_Output.RData")

> groupHMPT=c(7,8,9,16,17,18,22,23,24,31,32,33)

> groupOthers=c(1,2,3,4,5,6,10,11,12,13,14,15,19,20,21,25,26,27,28,29,30)

> groups=list(group1=groupHMPT,group2=groupOthers)

> PlotFunction(GeneID="2736322",ExonID="2736397",Data=TissueData,

+ GDS_Output=GDS_Output,GeneLevelData=TissueData_GeneLevelSummarized,

+ ExonLevelData=TissueData_ExonLevelSummarized,FIRMA_Data=FIRMA_Output,

+ groups=groups,plottype="new",

6



+ location="TissueData/Gene2736322_Exon2736397")
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Figure 2: Gene 2736322 with probeset 2736397
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Figure 4: The array scores of gene 2736322
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Figure 5: The array score of gene 2736322

Next to the GDS and FIRMA model we have also included the SI index of Affymetrix into our
package (Clark et al., 2007 and Affymetrix, 2005a) in the SpliceIndex function. The function
requires the gene and exon level summarized data. The first step is to normalize the exon data
by taking the ratio with the gene level data. These values are referred to as the splice indices. If
only two groups are specified, the ratio of their splice indices is taken as a measure for alternative
splicing. The more the ratio deviates from zero, the more there is an indication of alternative
splicing. A t-test is conducted on the splice indices of the two groups to test their difference. If
more than two groups are specified, an ANOVA model is fitted on the splice indices to discover with
an F-test whether there is a difference between the groups somewhere. If a vector of informative
exons is given to the function, only these are considered for the analysis. Finally, the p-values
are adjusted for multiplicity and if a significance level is specified only the significant p-valuesare
kept in the data frame. The function can be performed on the HPC server with the corresponding
SplicIndex.R and SpliceIndex.pbs file in the doc folder.
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> load("TissueData/TissueData_ExonLevelSummarized.RData")

> load("TissueData/TissueData_GeneLevelSummarized.RData")

> groupHMPT=c(7,8,9,16,17,18,22,23,24,31,32,33)

> groupOthers=c(1,2,3,4,5,6,10,11,12,13,14,15,19,20,21,25,26,27,28,29,30)

> groups=list(group1=groupHMPT,group2=groupOthers)

> SI_Output=SpliceIndex(GeneData=TissueData_ExonLevelSummarized,

+ ExonData=TissueData_GeneLevelSummarized,

+ InformativeExons=NULL,groups=groups,

+ paired=FALSE,significancelevel=NULL)

The addition of the SI method was for the completion of the package. We would like to compare the
GDS, FIRMA and SI method more in the future. The test-statistics returned by the SpliceIndex

function did not deviate from the results obtained by the MiDAS algorithm implemented in the
Affymetrix command tool program in our experience. We have implemented the function in R for
flexible and easy accesable use.
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7 Software used

• R version 3.2.2 Patched (2015-08-27 r69201), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Loaded via a namespace (and not attached): tools 3.2.2

9


	Introduction
	Data
	Methodology
	Data Processing
	The GDS Model
	Analysis
	Software used

