
Monte Carlo Methods

Ross Bennett

April 3, 2014

Abstract

The purpose of this vignette is to demonstrate monte carlo methods as outlined in
Chapter 9 of Foundations of Quantitative Analysis.

Contents

1 Monte Carlo 1

2 Bootstrap 6

1 Monte Carlo

Monte Carlo methods are simulation techniques uses in valuing derivatives and in measuring
risk. The Monte Carlo method we will focus on is the simple case with one random variable.
The stochastic model we will use to model the price of an asset is the Geometric Brownian
Motion (GBM) model. The model assumes that small changes in price are described by

dS = µSdt+ σSdz (1)

where

µ represents the instantaneous drift rate

σ represents the instantaneous volatility rate

S represents the asset price

dz is a normally distributed random variable with mean 0 and variance dt

In order to simulate the price path followed by S, we can discretize the process by dividing
the overall time of the asset into N intervals of length δt to get

dS = St−1(µdt+ σε
√
dt) (2)

where ε is a standard normal random variable, ε ∼ N(0, 1).
The simulated price for S1 is computed as

S1 = S0 + S0(µ∆t+ σε
√
dt) (3)

1

The general equation to simulate the price path for S is

St+1 = St−1 + St−1(µ∆t+ σε
√

∆t) (4)

We can easy simulate this in R.

suppressPackageStartupMessages(library(GARPFRM))

drift rate

mu <- 0

volatility rate

sigma <- 0.1

starting price

S0 <- 100

number of steps

N <- 100

dt <- 1 / N

Generate N standard normal random variables

set.seed(123)

eps <- rnorm(N)

Allocate a vector to hold the prices

S <- vector("numeric", N+1)

S[1] <- S0

Precompute some of the terms

mu_dt <- mu * dt

sig_dt <- sigma * sqrt(dt)

for(i in 2:length(S)){
S[i] <- S[i-1] + S[i-1] * (mu_dt + sig_dt * eps[i-1])

}
head(S)

[1] 100.00 99.44 99.21 100.76 100.83 100.96

plot(S, main="Simulated Price Path", type="l")

2

0 20 40 60 80 100

98
10

0
10

2
10

4
10

6
10

8
11

0

Simulated Price Path

Index

S

In practice, simulating lnS instead of S gives more accuracy. By applying Ito’s lemma, the
process followed by lnS is

d lnS =

(
µ− σ2

2

)
dt+ σdz (5)

Equivantly we can write this as the discretized version used for simulation purposes.

St+1 = Stexp

[(
µ− σ2

2

)
∆t+ σε

√
∆t

]
(6)

Two key assumptions with this model are that ST is lognormally distributed and the per-
centage changes of S are normally distributed.

We can easily simulate this in R using the variables we previously defined.

Allocate a vector to hold the prices

S1 <- vector("numeric", N+1)

S1[1] <- S0

Precompute terms

3

mu_sig_dt <- (mu - 0.5 * sigma^2) * dt

sig_dt <- sigma * sqrt(dt)

for(i in 2:length(S1)){
S1[i] <- S1[i-1] * exp(mu_sig_dt + sig_dt * eps[i-1])

}
head(S1)

[1] 100.00 99.44 99.20 100.76 100.82 100.95

plot(S1, main="Simulated Price Path", type="l")

0 20 40 60 80 100

98
10

0
10

2
10

4
10

6
10

8
11

0

Simulated Price Path

Index

S
1

The above R examples simulated only one price path. To carry out the Monte Carlo simula-
tion to value derivatives or manager risk, the process above is carried out K times to simulate
K price paths. Here we simulate 10,000 price paths of an asset with a time horizon of 1 year
and 52 time steps.

4

mu <- 0.05

sigma <- 0.15

N <- 10000

time <- 1

steps <- 52

startingValue <- 100

Run Monte Carlo simulation and store simulated price paths

mcSim <- monteCarlo(mu, sigma, N, time, steps, startingValue)

summary(endingPrices(mcSim))

Min. 1st Qu. Median Mean 3rd Qu. Max.

61.3 94.0 104.0 105.0 115.0 184.0

Plot the simulated price paths and distribution of ending prices.

par(mfrow=c(2,1))

plot(mcSim)

plotEndingPrices(mcSim)

5

0 10 20 30 40 50

60
16

0

Monte Carlo Simulation

Time Index

P
ric

e

Ending Prices

Price

D
en

si
ty

60 80 100 120 140 160 180

0.
00

0
0.

02
5

par(mfrow=c(1,1))

The Monte Carlo simulation method is useful for valuing options that are path dependent
such as lookback or asian options, do not have an analytical solution, or have a complex payoff.
Valuing options and variance reduction techniques using Monte Carlo simulation are beyond
the scope of this vignette.

2 Bootstrap

An alternative simulation method to generating random numbers from a model with assump-
tions of the distribution is to sample directly from historical data. Bootstrapping is a statistical
method for estimating the sampling distribution of an estimator by sampling with replacement
from the original sample. One key assumption is that returns are independent and identically
distributed. Note that by random resampling, we break any pattern of time variation in returns.
Another drawback is that resampling requires large sample sizes (a small sample size may lead
to a poor approximation of the actual distribution) and is relatively computationally intensive.

6

A major advantage of this approach is that we do not need to make any assumption about the
distribution of the data. The bootstrap will capture any departure from the normal distribution
or if the data is skewed, has fat tails, or jumps.

We can use the bootstrap method to project prices, returns, or calculate statistics such as
standard deviation or Value-at-Risk.

As an example, suppose the ending price of MSFT is $25 and we want to project the prices
5 periods into the future using the bootstrap method.

data(crsp_weekly)

R.MSFT <- largecap_weekly[, "MSFT"]

Project number of periods ahead

nAhead <- 5

Previous price

S.p <- 25

Using a for loop

bootS <- vector("numeric", nAhead)

for(i in 1:nAhead){
bootS[i] <- S.p * (1 + sample(R.MSFT, 1, TRUE))

S.p <- bootS[i]

}
bootS

[1] 24.34 24.02 22.23 22.70 19.76

Vectorized solution

S.p <- 25

bootS1 <- S.p * cumprod(1 + sample(coredata(R.MSFT), nAhead, TRUE))

bootS1

[1] 24.98 22.12 21.13 22.39 21.98

We can also use the bootstrap method to compute various statistics such as Value-at-Risk.
Here is an example of how to calculate historical Value-at-Risk with bootstrapped returns.

Number of boostrap replications

rep <- 10000

Allocate vector to hold VaR statistic

out <- vector("numeric", rep)

for(i in 1:rep){
out[i] <- VaR(R.MSFT[sample.int(nrow(R.MSFT), replace=TRUE)],

method="historical")

}

Bootstrapped VaR

7

mean(out)

[1] -0.06727

Standard error of Bootstrapped VaR

sd(out)

[1] 0.006033

The GARPFRM package (Bennett and Fillebeen, 2013) provides several functions for boot-
strapped statistics as well as a bootFUN function that will calculate a bootstrapped statistic of
any valid R function.

R <- largecap_weekly[,1:4]

function to calculate the annualized StdDev using the most recent n periods

foo <- function(R, n){
StdDev.annualized(tail(R, n), geometric=TRUE)

}

bootFUN(R[,1], FUN="foo", n=104, replications=1000)

[,1]

foo NA

std.err NA

Bootstrap mean estimate.

bootMean(R)

ORCL MSFT HON EMC

mean 0.004933 0.002764 0.002280 0.004886

std.err 0.002368 0.001641 0.001861 0.002645

Bootstrap standard deviation estimate.

bootSD(R)

ORCL MSFT HON EMC

sd 0.066910 0.045873 0.050943 0.070533

std.err 0.003103 0.001811 0.003952 0.002948

Bootstrap standard deviation estimate using the StdDev function from

PerformanceAnalytics.

bootStdDev(R)

ORCL MSFT HON EMC

StdDev 0.067108 0.04598 0.05083 0.07062

std.err 0.003196 0.00185 0.00403 0.00282

8

Bootstrap simpleVolatility estimate.

bootSimpleVolatility(R)

ORCL MSFT HON EMC

SimpleVolatility 0.067090 0.045976 0.050856 0.07076

std.err 0.002985 0.001807 0.004015 0.00289

Bootstrap correlation estimate.

bootCor(R)

ORCL.MSFT ORCL.HON ORCL.EMC MSFT.HON MSFT.EMC HON.EMC

cor 0.44931 0.31470 0.56858 0.37181 0.4952 0.34405

std.err 0.04728 0.03715 0.03019 0.05567 0.0401 0.04669

Bootstrap covariance estimate.

bootCov(R)

ORCL.MSFT ORCL.HON ORCL.EMC MSFT.HON MSFT.EMC HON.EMC

cov 0.0013847 0.0010656 0.0026838 0.0008654 0.0016071 0.0012206

std.err 0.0001825 0.0001536 0.0002795 0.0001916 0.0002019 0.0001663

Bootstrap Value-at-Risk (VaR) estimate using the VaR function from

PerformanceAnalytics.

bootVaR(R, p=0.9, method="historical", invert=FALSE)

ORCL MSFT HON EMC

VaR 0.062685 0.046322 0.05319 0.073137

std.err 0.003925 0.002573 0.00489 0.006267

bootVaR(R, p=0.9, method="gaussian", invert=FALSE)

ORCL MSFT HON EMC

VaR 0.080949 0.05636 0.062666 0.085324

std.err 0.004138 0.00281 0.005056 0.004769

Bootstrap Expected Shortfall (ES) estimate using the ES function from

PerformanceAnalytics. Also known as Conditional Value-at-Risk (CVaR) and

Expected Tail Loss (ETL).

bootES(R, p=0.9, method="historical")

ORCL MSFT HON EMC

ES -0.111719 -0.077321 -0.088374 -0.125729

std.err 0.007255 0.005173 0.006202 0.008351

bootES(R, p=0.9, method="gaussian")

ORCL MSFT HON EMC

ES -0.112410 -0.077632 -0.086332 -0.119100

std.err 0.005675 0.003586 0.006443 0.005686

9

To improve speed and performance, we can run the bootstrap in parallel. We leverage the
foreach package (Analytics and Weston, 2013) to perform the computations in parallel.

Register multicore parallel backend with 3 cores

Note that this example does not work on Windows

Windows users should use doSNOW

library(doMC)

registerDoMC(3)

Estimate VaR via bootstrap

bootVaR(R[,1], p=0.9, method="historical", replications=1000, parallel=TRUE)

Benchmark the performance of running the bootstrap in parallel

Bootstrap VaR with parallel=TRUE

bootPar <- function(){
bootVaR(R[,1], p=0.9, method="historical", replications=5000, parallel=TRUE)

}

Bootstrap VaR with parallel=FALSE

bootSeq <- function(){
bootVaR(R[,1], p=0.9, method="historical", replications=5000, parallel=FALSE)

}

Benchmark these functions

library(rbenchmark)

benchmark(bootPar(), bootSeq(), replications=1)[,1:4]

References

R. Analytics and S. Weston. foreach: Foreach looping construct for R, 2013. URL http:

//CRAN.R-project.org/package=foreach. R package version 1.4.1.

R. Bennett and T. Fillebeen. GARPFRM: Global Association of Risk Professionals: Financial
Risk Manager, 2013. R package version 0.1.0.

10

