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TIBCO SPOTFIRE S+ BOOKS

Note about Naming

Throughout the documentation, we have attempted to distinguish between the language 
(S-PLUS) and the product (Spotfire S+). 

• “S-PLUS” refers to the engine, the language, and its constituents (that is objects, 
functions, expressions, and so forth).  

• “Spotfire S+” refers to all and any parts of the product beyond the language, including 
the product user interfaces, libraries, and documentation, as well as general product and 
language behavior.

The TIBCO Spotfire S+® documentation includes books to address 
your focus and knowledge level. Review the following table to help 
you choose the Spotfire S+ book that meets your needs. These books 
are available in PDF format in the following locations:

• In your Spotfire S+ installation directory (SHOME\help on 
Windows, SHOME/doc on UNIX/Linux).

• In the Spotfire S+ Workbench, from the Help � Spotfire S+ 
Manuals menu item.

• In Microsoft® Windows®, in the Spotfire S+ GUI, from the  
Help � Online Manuals menu item. 

Spotfire S+ documentation. 

Information you need if you... See the...

Must install or configure your current installation 
of Spotfire S+; review system requirements.

Installtion and fs 
Administration Guide

Want to review the third-party products included 
in Spotfire S+, along with their legal notices and 
licenses.

Licenses
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Are new to the S language and the Spotfire S+ 
GUI, and you want an introduction to importing 
data, producing simple graphs, applying statistical 

models, and viewing data in Microsoft Excel®. 

Getting Started 
 Guide

Are a new Spotfire S+ user and need how to use 
Spotfire S+, primarily through the GUI.

User’s Guide

Are familiar with the S language and Spotfire S+, 
and you want to use the Spotfire S+ plug-in, or 
customization, of the Eclipse Integrated 
Development Environment (IDE).

Spotfire S+ Workbench  
User’s Guide

Have used the S language and Spotfire S+, and 
you want to know how to write, debug, and 
program functions from the Commands window.

Programmer’s Guide

Are familiar with the S language and Spotfire S+, 
and you want to extend its functionality in your 
own application or within Spotfire S+.

Application  
Developer’s Guide

Are familiar with the S language and Spotfire S+, 
and you are looking for information about creating 
or editing graphics, either from a Commands 
window or the Windows GUI, or using Spotfire 
S+ supported graphics devices.

Guide to Graphics

Are familiar with the S language and Spotfire S+, 
and you want to use the Big Data library to import 
and manipulate very large data sets. 

Big Data  
User’s Guide

Want to download or create Spotfire S+ packages 
for submission to the Comprehensive S-PLUS 
Archive Network (CSAN) site, and need to know 
the steps.

Guide to Packages

Spotfire S+ documentation. (Continued)

Information you need if you... See the...
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Are looking for categorized information about 
individual S-PLUS functions.

Function Guide

If you are familiar with the S language and 
Spotfire S+, and you need a reference for the 
range of statistical modelling and analysis 
techniques in Spotfire S+. Volume 1 includes 
information on specifying models in Spotfire S+, 
on probability, on estimation and inference, on 
regression and smoothing, and on analysis of 
variance.

Guide to Statistics,  
Vol. 1

If you are familiar with the S language and 
Spotfire S+, and you need a reference for the 
range of statistical modelling and analysis 
techniques in Spotfire S+. Volume 2 includes 
information on multivariate techniques, time series 
analysis, survival analysis, resampling techniques, 
and mathematical computing in Spotfire S+.

Guide to Statistics,  
Vol. 2

Spotfire S+ documentation. (Continued)

Information you need if you... See the...
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Chapter 1  Introduction
OVERVIEW

FlexBayes is a software library for modeling data using the Bayesian 
paradigm for statistical inference (see for example Gelman et. al. 
2004). 

Bayesian modeling offers the following advantages over classical or 
frequentist modeling: 

• Uses more realistic models with many parameters. 

• Provides a natural way to integrate out “nuisance” 
parameters, or missing data.

• Quantifies uncertainty about model parameters in terms of a 
posterior probability distribution, which combines 
information from (1) prior understanding and (2) observed 
data.

• Provides a computational advantage of using priors to 
stabilize computation in ill-defined problems (for example, 
too many variables relative to the number of cases). Among 
other advantages, it helps with collinearity.

Until recently, Bayesian inference has been hampered by 
computational problems. These problems have been overcome partly 
by the wide availability of fast and inexpensive computer resources, 
and by the use of Monte Carlo Markov Chain (MCMC) methods to 
accomplish inference by simulation.

FlexBayes implements MCMC algorithms for a variety of models as 
displayed in Table 1.1. The interface for FlexBayes is the Spotfire S+ 
command line. 
Table 1.1: Models in the FlexBayes library

FlexBayes Models Function Name

Hierarchical linear mixed model bhlm
2



Overview
The function bhlm fits a hierarchical linear mixed effects model, while 
the functions bhpm and bhbm fit hierarchical Poisson and binomial 
mixed effects models with optional overdispersion.  In this manual we 
focus on documenting the functions bhlm, bhpm, and bhbm.

The FlexBayes package also allows for more flexible Bayesian model-
fitting using the posteriorSamples function, which provides an 
interface to the BUGS (Bayes Using Gibbs Sampling) open-source 
engine. Many examples and ample documentation for the 
posteriorSamples function are provided in the FlexBayes Help files. 
(To access this documentation, call help(posteriorSamples) after 
loading FlexBayes.) In addition, help for the BUGS model 
specification language and the BUGS engine are available in the 
OpenBUGS manual (http://mathstat.helsinki.fi/openbugs/).

Hierarchical Poisson mixed model bhpm

Hierarchical binomial (logistic) mixed model bhbm                                                                                                                                                                                                                                                                                                                                                                                                    

Flexible model-fitting posteriorSamples

Table 1.1: Models in the FlexBayes library

FlexBayes Models Function Name
3



Chapter 1  Introduction
FLEXBAYES FEATURES 

Workflow Table 1.2 organizes functions in FlexBayes according to activities in 
the workflow. Also see Table 1.1 to find the models which correspond 
to the model-fitting functions.

Table 1.2: 

Activity Functions

Specify priors bhlm.prior, bhpm.prior, 
bhbm.prior

Specify MCMC control 
parameters

bhlm.sampler, bhpm.sampler, 
bhbm.sampler

Fit models bhlm, bhpm, bhbm, 
posteriorSamples

Diagnose convergence of 
MCMC

traceplot, autocorr, 
autocorr.plot, crosscorr, 
crosscorr.plot, 
lagged.crosscorr, 
effectiveSize, gelman.diag, 
gelman.plot, geweke.diag, 
geweke.plot, heidel.diag, 
raftery.diag, cumuplot

View parameter inferences summary, densplot

Manipulate posterior objects varnames.posterior, 
nvar.posterior, 
niter.posterior, 
nchain.posterior, 
thin.posterior, 
start.posterior, 
end.posterior, [.posterior, 
[[.posterior, 
window.posterior, 
as.mcmc.list.posterior, 
getSamples

Validate model output validate.package( package = 
“FlexBayes” )
cgrFlexBayes

Analysis activities and corresponding function names. 
4



FlexBayes Features
Prior 
Specification

All generalized linear models in FlexBayes involve specifying priors 
for (1) the regression coefficients, and / or (2) variance or covariance 
parameters. Specify each of these priors by calling a function that 
creates a bayes.distribution object, which consists of the following 
two components: 

• name is the name of the prior distribution. 

• parameters gives values for the distribution parameters.

For example, to fit a linear model: 

Y γ0 γ1X ε+ +=

Create an object specifying a two-dimensional Gaussian prior to be 
used for γ γ0 γ1,( )= , with zero mean and diagonal covariance 

matrix, by calling

> bayes.normal(mean.vector= c(0,0), covmat= diag(2))
normal with:

mean vector :
[1] 0 0

covariance matrix :
     [,1] [,2] 
[1,] 1.00 0.00
[2,] 0.00 1.00

k0 :
[1] 1

If you assume that the errors ε  are distributed normally with a 
common variance, you can specify an inverse chisquare prior for the 
variance, with 3 degrees of freedom and unit scale, by calling:

> bayes.invChisq(df= 3, sigma0.sq= 1)
invChisq with:

df :
[1] 3

sigma0.sq :
5



Chapter 1  Introduction
[1] 1

Table 1.3 summarizes the available prior distribution functions 
implemented in FlexBayes. For each particular model, see the 
corresponding chapter for details on acceptable priors for that model.

Table 1.3: Functions to specify priors.

Regression Coefficients Description

bayes.normal

bayes.t

bayes.nonInformative 

normal

student t

“non-informative” flat

Variance/Covariance 
Parameters Description

bayes.invChisq

bayes.invWishart

bayes.massPoint

bayes.nonInfoPower

bayes.duMouchel

bayes.uniformShrinkage 

inverse chisquare

inverse Wishart 

Dirac delta

“noninformative” power law

DuMouchel

uniform shrinkage
6



Introductory Example using FlexBayes
INTRODUCTORY EXAMPLE USING FLEXBAYES

The data frame stack.dat combines the stack.loss and stack.x 
data sets included with Spotfire S+. These data are from the operation 
of a plant for the oxidation of ammonia to nitric acid, measured on 21 
consecutive days. 

The goal is to model Loss (percent of ammonia lost times 10) as a 
linear function of Air.Flow (air flow to the plant), Water.Temp (cooling 
water inlet temperature), and Acid.Conc (acid concentration as a 
percentage). 

Prior 
Specification

On the command line, proceed as follows.

The first step is to specify the priors for the linear model coefficients 
and the variance. 

Specify a four-dimensional Gaussian prior for the fixed effects 
γ γ0 γ1 γ2 γ3, , ,( )= , with zero mean and diagonal covariance 

(zero covariances and variance = 1), 

> coefPrior = bayes.normal(mean.vector= zero, covmat= 
identity)

zero and identity are function names that produce a zero vector and 
identity covariance of the correct dimension. This call is equivalent to 
the following:

> coefPrior = bayes.normal(mean.vector= rep(0,4), covmat= 
diag(4))

Specify an inverse chisquare prior for the variance of the outcome, 
with 3 degrees of freedom and unit scale, by:

> varPrior = bayes.invChisq(df= 3, sigma0.sq= 1)

Combine the separate priors into a linear model prior:

> modelPrior = bhlm.prior( fixed.coef= coefPrior, 
                        error.var = varPrior ) 
7



Chapter 1  Introduction
MCMC Control 
Specification

The function bhlm.sampler specifies control parameters for the Gibbs 
sampler. In particular, to run three chains, generating 1000 samples 
from the posterior distribution (beyond the burn-in samples), call

> stackSampler <- bhlm.sampler( nChains = 3,
                    nSamples=1000,
                    init.point = "prior" )

Here multiple chains are run, each starting at randomly chosen initial 
values, to allow Gelman-Rubin diagnosis of convergence of the Gibbs 
sampler. 

Fit Model Produce samples from the posterior distribution by calling

> stack.bhlm <- bhlm( fixed.formula = Loss ~ ., 
                  data = stack.dat, 
                  prior = modelPrior,
                  sampler = stackSampler)

Diagnostics As discussed in Chapter 3, Assessing Convergence of Monte Carlo 
Markov Chain Algorithms, FlexBayes allows the user to run several 
MCMC convergence diagnostics. 

To perform diagnostics on the parameter values, the diagnostics 
functions operate directly on the fit posterior object. Run these 
functions as follows. (They call functions in the open-source coda 
package for Spotfire S+, and so require the installation of the coda 
package.  It can be obtained as described in the section Installing 
Dependencies on page 14.)

> traceplot(stack.bhlm)
> autocorr.plot(stack.bhlm)

For information on the interpretation of these diagnostics, see the 
section Practical Considerations on page 32. Here the diagnostics do 
not give evidence of substantial lack of convergence.

Print / 
Summary

To print the fitted model, just type the model name, stack.bhlm, 
which is equivalent to print(stack.bhlm) and summary(stack.bhlm). 
The result includes output for each of the chains: the means, standard 
deviations, and percentiles 2.5%, 25%, 50%, 75% and 97.5% of the 
marginal posterior distributions for each coefficient:
8



Introductory Example using FlexBayes
> stack.bhlm
*** Posterior Distribution from the Bayesian Model ***
Call:  
bhlm(fixed.formula = Loss ~ ., data = stack.dat, prior = 
modelPrior, sampler = stackSampler)

# of Chains:  3 
Starting Iteration:  1001 
Ending Iteration:  2000 
Thinning:  1 
# of Samples:  1000 

1. Summary statistics:

               Mean    S.D. 
(Intercept) -0.2084 0.98790
   Air.Flow  0.8179 0.15250
 Water.Temp  0.9738 0.39400
 Acid.Conc. -0.6036 0.08265
      SIGMA  3.9120 0.63490

2. Quantiles:

              2.5 %    25 %    50 %    75 %  97.5 % 
(Intercept) -2.1370 -0.8533 -0.2254  0.4620  1.6980
   Air.Flow  0.5192  0.7179  0.8163  0.9176  1.1190
 Water.Temp  0.1787  0.7255  0.9719  1.2370  1.7490
 Acid.Conc. -0.7619 -0.6576 -0.6048 -0.5506 -0.4401
      SIGMA  2.9080  3.4790  3.8390  4.2790  5.3910

Here three chains were run with no thinning, and 1000 samples were 
obtained from each chain.

Plot Use the densplot function to display estimated marginal posterior 
distributions of the parameters in the model.

> densplot(stack.bhlm)

This produces posterior density plots, shown in Figure 1.1, that are 
estimated from the sampled values of the parameters.
9



Chapter 1  Introduction
Figure 1.1: Estimated posterior densities for the stack example.

It is also possible to view bivariate density estimates for the 
parameters, shown in Figure 1.2, by calling 
bivarDensplot(stack.bhlm).  The only two parameters that show 
substantial correlation are the coefficients for Air.Flow and 
Water.Temp.
10



Introductory Example using FlexBayes
Figure 1.2: Bivariate density plots for the stack example.

Comparison 
with Least 
Squares 
Estimates

You can compare your results easily with those obtained by least 
squares linear regression as follows. The data frame stack.dat is built 
into FlexBayes, so you can apply least squares regression through the 
Spotfire S+ GUI. Make sure you have set your Database Filter to 
view the FlexBayes library objects. (See the section Installing, 
Starting, and Quitting FlexBayes on page 14.) 

1. Select the response and predictor variables from the right-
hand Object Explorer pane, and then choose Statistics -> 
Regression -> Linear Regression from the Spotfire S+ 
toolbar. 

2. On the Printed Results region of the Results page of the 
dialog that appears, clear the Long Output box and select the 
Short Output box. 
11



Chapter 1  Introduction
3. Click OK to see the Report Window results shown in Figure 
1.1. 

Notice that the least squares coefficient values in Figure 1.1 are similar 
to the means of the Bayes posterior distribution, except for the 
intercept and Acid.Conc. This is because  the prior variance for the 
intercept is small in the Bayesian model. This, together with the 
corresponding prior mean of 0, shrinks the intercept estimate toward 
0.

Figure 1.3: Coefficient Values for Least Squares Fit of Linear Model to stack.dat.

Instead, if we run the Bayesian analysis with “non-informative” 
priors, then the least squares and Bayesian analyses agree very 
closely:

> modelPrior = bhlm.prior( fixed.coef= "non-informative", 

                       error.var= bayes.nonInfoPower(-1) ) 

> stack.bhlm <- bhlm( fixed.formula = Loss ~ ., 
                  data = stack.dat, 
                  prior = modelPrior,
                  sampler = stackSampler )
> stack.bhlm 
*** Posterior Distribution from the Bayesian Model ***
Call:  
12



Introductory Example using FlexBayes
bhlm(fixed.formula = Loss ~ ., data = stack.dat, prior = 
modelPrior, sampler = stackSampler)

# of Chains:  3 
Starting Iteration:  1001 
Ending Iteration:  2000 
Thinning:  1 
# of Samples:  1000 

1. Summary statistics:

                 Mean    S.D. 
    (Intercept) -40.1500 13.2100
       Air.Flow   0.7138  0.1468
     Water.Temp   1.3050  0.4025
     Acid.Conc.  -0.1505  0.1708
        SIGMA     3.4180  0.6197

2. Quantiles:

               2.5 %     25 %     50 %      75 %   97.5 % 
(Intercept) -64.4600 -48.2500 -39.9800 -31.75000 -14.8800
   Air.Flow   0.4336   0.6176   0.7155   0.80750   0.9993
 Water.Temp   0.5611   1.0640   1.3050   1.55800   2.0660
 Acid.Conc.  -0.4814  -0.2631  -0.1537  -0.04911   0.1662
      SIGMA   2.4290   2.9720   3.3210   3.71300   4.8300
13



Chapter 1  Introduction
USING FLEXBAYES

FlexBayes is currently available only for Windows. If you have used 
Spotfire S+ before, getting started with FlexBayes is easy. If you have 
not used Spotfire S+ before, consult the Spotfire S+ User’s Manual to 
learn more about Spotfire S+ before proceeding.

Installing, 
Starting, and 
Quitting 
FlexBayes

FlexBayes requires the installation of Spotfire S+ version 8.0 or later. 
To install FlexBayes, just copy the Windows binary version of the 
package into one of the user’s Spotfire S+ library directories. Then:

1. Start Spotfire S+. (See your Spotfire S+ User’s Guide for more 
detailed instructions on starting Spotfire S+.) 

2. Load the FlexBayes library in your Spotfire S+ session:

      > library(FlexBayes) 

You can then view the FlexBayes data sets by clicking +, located  to 
the left of FlexBayes in the Spotfire S+ object explorer.

Installing 
Dependencies

Certain model-fitting and convergence diagnosis functions in 
FlexBayes require the installation of the open-source Spotfire S+ 
packages BRugs, R2WinBUGS, and/or coda and the open-source 
standalone software WinBUGS. If you call a function that requires 
one of these dependencies, and the dependency is not installed, you 
will see an error message informing you of the required 
dependencies. 

The Spotfire S+ packages BRugs, R2WinBUGS, and coda can be 
found on TIBCO’s CSAN website:

http://spotfire.tibco.com/csan

Copy the Windows binary versions of the packages into one of the 
Spotfire S+ library directories. 

The open-source software WinBUGS can be found at 

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

Version 1.4.2 or later of WinBUGS is required to use the 
posteriorSamples function with the engine = “WinBUGS” option. Free 
registration of the WinBUGS software is necessary; instructions are 
available on the WinBUGS website. 
14



Using FlexBayes
Getting Help Initial help for FlexBayes is available by calling

> help(FlexBayes)

FlexBayes provides additional help files for virtually all FlexBayes 
functions. (Some functions intended for internal use have no help 
files.) For example, from the command line, you can obtain help and 
examples for the function bhlm by typing

> help(bhlm)

or

> ?bhlm  

In particular, detailed documentation and examples are available in 
the help files for the main FlexBayes model-fitting functions, namely 
bhlm, bhpm, bhbm, and posteriorSamples. 
15



Chapter 1  Introduction
FEATURED EXAMPLES

Additional examples showcasing the use of the FlexBayes functions 
are provided in the help files for a number of data sets, including 
epilepsy, crossoverTrial, drugAdverseEvents, effToxDose, 
schools, seeds, ratsWeight, pumps, salamanders, and stackBayes. 
The first four in this list are clinical examples. The others are well-
known data sets from a variety of areas for which standard analyses 
have been published. The latter are useful for comparative purposes 
and illustrate the use of the FlexBayes generalized linear model 
functions bhlm, bhpm, bhbm.

Clinical 
Examples

An analysis of the efficacy of a drug in reducing epileptic seizure 
counts can be found in the help file for the epilepsy data set:

> help(epilepsy)

This analysis fits a Bayesian hierarchical adaptation of a Poisson-
outcome model that was fit to the same data set by Breslow and 
Clayton (1993). It does so using the FlexBayes bhpm function.

The crossoverTrial help file gives an analysis of a two-period 
crossover trial for comparing two treatments, as described in Gelfand 
et al. (2004). The code in the help file fits a Bayesian hierarchical 
linear model by calling the FlexBayes posteriorSamples function, 
which allows the flexible specification needed for this model.

A late-phase drug trial safety analysis is provided in the help file for 
the drugAdverseEvents data set. The number of occurrences of each 
of several hundred adverse events in the treatment and control 
groups is modeled and analyzed in order to detect potentially 
elevated rates of some adverse events. A Bayesian hierarchical model 
is used that borrows strength across adverse events, addressing the 
issues of multiplicity and rare events. This model is fit by calling the 
FlexBayes posteriorSamples function.

The effToxDose help file shows a combined Phase I-Phase II dose-
finding study.   Data on the effect of a drug on mortality rates for 
acute eschemic stroke is gathered adaptively in cohorts. After each 
cohort, estimated efficacy and toxicity at each dose level are 
combined in order to choose the estimated best dose, and that dose is 
assigned to the next cohort. The “best” dose is one that does not have 
16



Featured Examples
strong evidence of toxicity and that has the highest probability of 
efficacy. The Bayesian models and dose choice criterion are as 
described by Thall and Russell (1998) and Thall and Cook (2004). 
One of the available models is fit by calling the FlexBayes bhbm 
function; an alternative model is fit using the FlexBayes 
posteriorSamples function. 
17



Chapter 1  Introduction
VALIDATION

FlexBayes includes a set of scripts for validating the output of the 
model-fitting functions.  Each of these scripts compares the posterior 
distribution obtained by a call to one of the FlexBayes proprietary 
model-fitting functions (bhlm, bhpm, bhbm) with the posterior 
distribution obtained from the open-source software BUGS via a call 
to the posteriorSamples function.  Various models are tested, and 
this set of validation scripts will continue to expand with each release 
of FlexBayes.  

For the beta release of FlexBayes, the validation scripts can be run by 
calling:

> validate( list.files( system.file("validate", 
package="FlexBayes") ), system.file("validate", 
package="FlexBayes") )

This call does take a while to run.  One can also run each of the 
validation scripts separately by changing the first argument in the call 
to validate to the name of the test script; these separate calls are 
quite fast.  If you have Spotfire S+ Version 8.1 or later, it is possible to 
run all the validation scripts using a simpler command:

> validate.package( "FlexBayes" )
18



Using this Manual
USING THIS MANUAL 

This manual describes how to use the FlexBayes library, and includes 
detailed descriptions of the principal FlexBayes functions and objects.

Intended 
Audience

Like the FlexBayes library, this book is intended for statisticians, 
researchers, and other analysts involved in analyzing data. This book 
is not meant to be a text book in Bayesian methods; we refer you to 
the cited works for recommended reading in this area. 

For users familiar with Spotfire S+, this manual contains all the 
information most users need to begin making productive use of 
FlexBayes. Users who are not familiar with Spotfire S+ should read 
their Spotfire S+ User’s Manual, which provides complete procedures 
for basic Spotfire S+ operations, including graphics manipulation, 
customization, and data input and output.

Other useful information can be found in the Spotfire S+ Guide to 
Statistics. This manual describes how to analyze data using a variety of 
statistical and mathematical techniques, including classical statistical 
inference, time series analysis, linear regression, ANOVA models, 
generalized linear and generalized additive models, loess models, and 
nonlinear regression.

Organization The main body of this book is divided into 6 chapters which take you 
step-by-step through the FlexBayes library.

• Chapter 1 (this chapter) introduces you to FlexBayes, lists its 
features, and tells you how to use this manual.

• Chapter 2 briefly gives background information, which may 
be skimmed at first, and revisited as needed.

• Chapter 3 discusses convergence of a Markov Chain Monte 
Carlo algorithm and convergence diagnostics.

• Chapter 4 discusses the hierarchical linear model.

• Chapter 5 discusses the hierarchical Poisson model.

• Chapter 6 discusses the hierarchical binomial model.
19



Chapter 1  Introduction
Typographic 
Conventions

This book uses the following typographic conventions:

• The italic font is used for emphasis, and also for user-supplied 
variables within UNIX, DOS, and Spotfire S+ commands.

• The bold font is used for UNIX and DOS commands and 
filenames, as well as for chapter and section headings. For 
example, 

setenv S_PRINT_ORIENTATION portrait

In this font, both “ and ” represent the double-quote key on 
your keyboard (").

• The typewriter font is used for Spotfire S+ functions and 
examples of Spotfire S+ sessions. For example,

      > ?bhlm

Displayed Spotfire S+ commands are shown with the Spotfire 
S+ prompt >. 
20
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Chapter 2  Background
OVERVIEW

This chapter discusses background information regarding Bayesian 
methods (Gelman et. al., 2004). You might want to skim this chapter, 
and then return to it as needed as you read the rest of the manual.

First, to put Bayesian methodology into context, we briefly compare 
with the frequentist school of inference, which has dominated statistical 
theory and practice until recently.   

Bayesian inference is performed using parameter posterior 
summaries such as quantiles, moments, and modes.   Posterior 
inference is discussed in the section Summarizing Posterior Inference 
on page 25.

Second, we discuss Markov Chain Monte Carlo (MCMC), which is a 
computational technique that overcomes computational barriers in 
the Bayesian approach. MCMC has increased interest in the Bayesian 
methods as much as any inherent philosophical or logical advantage 
of Bayesian thinking (Gelman et. al., 2004). However, assessing 
convergence of MCMC is an important practical problem. To address 
this problem, we discuss simple diagnostic procedures in Chapter 3, 
Assessing Convergence of Monte Carlo Markov Chain Algorithms. 

Third, we discuss hierarchical regression models, which are fitted by 
the main functions in FlexBayes and which are essential for any data 
in which the covariates are defined at different levels.
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Comparison with Frequentist Theory and Practice
COMPARISON WITH FREQUENTIST THEORY AND 
PRACTICE

Bayesian methods explicitly use probability to quantify uncertainty. 
After fitting a probability model to data, Bayesian inference 
summarizes the result by a probability distribution on unobserved 
quantities such as the parameters of the model, or predictions for new 
observations. These probability statements condition on the observed 
value of the data. 

This leads to a common sense interpretation of statistical conclusions. 
For example, you might interpret a Bayesian interval for a parameter 
as having high probability of containing the parameter. In contrast, 
the frequentist interpretation of confidence intervals is based on 
hypothetical repetitions of similar inferences. In general, the 
frequentist approach evaluates the procedure over the distribution of 
possible data values, conditional on the true unknown value of the 
unobserved quantity.

In many simple analyses, the two approaches lead to similar 
conclusions. However, Bayesian methods extend easily to more 
complex problems.

Prior, 
Likelihood, 
Posterior 

The Bayesian approach to inference specifies two distributions:

• a prior distribution P θ( )  for the parameters that reflects 
knowledge about θ  before seeing the data, and

• a distribution P y θ( )  for the data given parameters.

The posterior distribution combines these distributions, and reflects 
knowledge about θ  updated after seeing the data:

P θ y( )
P y θ( )P θ( )

P y θ( )P θ( ) θd
---------------------------------------=

If data are added sequentially to the data set, Bayesian inference is 
natural because one can perform a sequential analysis in which the 
new prior distribution is the posterior distribution from the previous 
analysis.
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Chapter 2  Background
Predictive 
Distribution

A future observation y∗̃  may be predicted using the predictive 

distribution P y∗ y( ) , which is calculated from the posterior 
distribution as follows:

P y∗ y( ) P y∗ θ( )P θ y( ) θd=

Importantly, this approach accounts for the uncertainty in estimating 

θ  during estimation of y∗ . By contrast, the maximum likelihood 

approach performs predictive inference using P y∗ θ̂( ) , the data 

density evaluated at the maximum likelihood estimate θ̂ .

Complex 
Models

Directly quantifying uncertainty encourages fitting models with many 
parameters and multilayer probability specifications, such as 
hierarchical models. The Bayesian paradigm gives freedom to 
establish complex models by supplying a conceptually simple 
method for coping with multiple parameters.

Although a realistic model might require many parameters, interest 
usually focuses on a smaller number of parameters. The other 
parameters are nuisance parameters. The state of knowledge about the 
parameters of interest can be obtained through their marginal 
posterior distribution, obtained by integrating over the nuisance 
parameters in the joint posterior distribution of all parameters. 
Equivalently, using simulation, you sample from the joint posterior 
distribution, but only look at the parameters of interest.
24



Summarizing Posterior Inference
SUMMARIZING POSTERIOR INFERENCE

Bayesian inference often consists of summaries of the posterior 
distribution. For example, one might estimate the “plausible” range of 
a parameter using a 99% posterior interval. Alternatively, one might 
be interested in the plausible range for a particular function of the 
parameters, or for a random variable that depends on the parameters. 
Posterior and predictive intervals can be used as estimates of the 
plausible ranges of these quantities. Posterior density plots or contour 
plots of posterior density functions are also useful summaries of the 
highest-probability values of the quantities of interest and the 
relationship between the quantities of interest.

Estimated posterior or predictive intervals and density plots can be 
easily obtained using a set of samples from the posterior distribution. 
One can obtain posterior samples using MCMC methods, thereby 
making sophisticated inferences possible even in complex models. 
For more information about posterior inference using a sample, see 
Simon and Bruce (1991), Smith and Gelfand (1992), or Albert (1993). 
25



Chapter 2  Background
COMPUTATION: MARKOV CHAIN MONTE CARLO

Monte Carlo Markov Chain (MCMC) methods are a type of Monte 
Carlo method, which estimates features of an unknown distribution 
π x( )  by either sampling from that distribution or suitably reweighting 
samples drawn from some other appropriately chosen distribution. 
MCMC methods obtain samples by constructing a Markov chain 
with equilibrium distribution equal to π x( ) . If the chain is run for a 
long time, simulated values from the chain can be used to summarize 
features of π x( ) , often through familiar exploratory data analysis 
tools like the histogram or box plot.

A number of algorithms are used for constructing Markov chains with 
specified equilibrium distributions. These algorithms include 
Metropolis-Hastings (Metropolis et al. (1953), Hastings (1970)), the 
Gibbs sampler (Geman and Geman (1984), Ripley (1977), Ripley 
(1979), Gelfand and Smith (1990), Zeger and Karim (1991)), data 
augmentation (Tanner and Wong (1987)), and sequential imputation 
(Kong and Wong (1991)).   For more information on the available 
methods and their properties, see Gelman and Rubin (1992), Geyer 
(1992), Smith and Roberts (1992), and Tierney (1991). 

Gibbs Sampling The Gibbs sampler is useful when it is difficult to sample from the 
joint posterior distribution, but simple to simulate from the full 
conditional distributions of each parameter given the data and the other 

parameters: P θj y θi i, j≠{ },( )  for j 1… K, ,= .   Gibbs 
sampling is useful because it reduces the problem to a simpler 
sequence of problems, each of which deals with one parameter at a 
time. Gibbs sampling alternately simulates from each of these 
distributions. After sufficient iterations, the procedure stabilizes, 
converging to the stationary distribution (the desired posterior 
distribution).

Metropolis 
Algorithm

The Metropolis-Hastings (MH) algorithm is a stochastic procedure 
which generates steps in parameter space from a proposal distribution. 
The algorithm generates posterior samples by generating from the 
proposal distribution and then accepting or rejecting the step with a 
particular probability. The probability of acceptance depends on both 
26



Computation: Markov Chain Monte Carlo
the proposal distribution and the underlying distribution, and is given 
in Metropolis et. al. (1953) and Hastings (1970). A high rejection rate 
slows the exploration of the space by the sampler.

MH is used as a component of many Markov chain Monte Carlo 
algorithms used for statistical inference (Gilks et. al. 1996, Liu 2001). 
MH is used by both frequentists and Bayesians to perform inference 
by calculating expectations for high dimensional distributions. 
Suppose X  is a vector of K  random variables with distribution π . In 
Bayesian applications, X  might consist of model parameters and 
missing data, and π  is the posterior distribution. In frequentist 
applications, X  might consist of data or random effects, and π  is the 
likelihood.
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Chapter 2  Background
HIERARCHICAL MODELS

The Bayesian approach shows great practical advantage in 
hierarchical models.

Assume that data are collected from many groups of units that are 
somehow similar, such as groups of subjects, animals, or cities. Rather 
than making inferences separately for each group, it is often desirable 
to combine the information from the various groups in order to better 
understand the phenomenon under study. 

A natural way to approach the problem is to build a multiple-level 
“hierarchical model”, which includes a level specifying the 
distributions of the individual observations as a function of some 
group-specific parameters, as well as a level specifying the common 
distribution of the group parameters. In this way, hierarchical models 
allow modeling of individual heterogeneity as well as population-
level correlation structure. FlexBayes implements several hierarchical 
regression models formed by distributions from the exponential 
family. 
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Chapter 3  Assessing Convergence of Monte Carlo Markov Chain Algorithms
OVERVIEW

The goal of Monte Carlo Markov Chain (MCMC) methods is to use 
simulated values from a Markov chain which has been run long 
enough to be very close to its limiting distribution. In practice, it is 
extremely difficult to know with absolute certainty that the chain is 
close enough; instead, users typically apply diagnostics to try to detect 
any problematic lack of convergence of the algorithm. Such 
diagnostics are crucial, because lack of convergence of the chain can 
lead to incorrect posterior inferences.

This chapter discusses the convergence diagnostics implemented in 
FlexBayes, as well as other practical considerations during the use of 
MCMC, including the choice of starting values. 
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MCMC Control Parameters
MCMC CONTROL PARAMETERS

In MCMC, the goal is to accurately estimate characteristics of the 
posterior distribution P θ Yobs( ) , such as its moments and quantiles. 
Convergence is given by the law of large numbers and occurs when 
the sample summaries are sufficiently close to the posterior quantities 
they estimate.

To estimate a quantity g g θ( )=  of interest such as a point estimate, 
standard error, interval estimate, or posterior probability (such as a 
“Bayes p-value”), collect iterates

g θk 1+( ) g θk 2+( )… g θk n+( ), , , .

Here, k  is the burn-in period and n  is the Monte Carlo sample size. If 

k  is large enough to ensure stationarity and n k⁄  is large enough for 
the law of large numbers to apply, then the sample can be used to 
estimate posterior quantities (for example, estimate the posterior 

mean E g Yobs( )  by the mean of g θk i+( )  over i ). The burn-in 

period k  theoretically should be chosen to be large enough to make 

g θk( )  practically independent of g θ0( ) . 

The goal of convergence diagnostics is to determine a good value for 

k , by plotting or analyzing g θi( ){ }. 
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Chapter 3  Assessing Convergence of Monte Carlo Markov Chain Algorithms
PRACTICAL CONSIDERATIONS

The FlexBayes library contains several functions for convergence 
diagnostics, including:

1. Trace (time series) plots for each parameter, i.e. a plot of 
parameter values versus iteration number.

2. Autocorrelation plots for each parameter.

3. Geweke’s diagnostic plots.

4. Gelman and Rubin’s diagnostic plots.

Most of these diagnostic functions call functions in the Spotfire S+ 
open-source package coda, and require this package to operate. For 
instructions on obtaining and installing coda, see the section 
Installing Dependencies on page 14.

For more information on these and other convergence diagnostics, 
see Cowles and Carlin (1996). 

Time Series 
Plots

After convergence, time series (trace) plots should not show a trend, 
nor should iterates k  steps apart have more than negligible 
correlation. Trace plots are available using the FlexBayes function 
traceplot.

Autocorrelation 
Plots

After convergence, autocorrelation function (ACF) plots should die 
out. The sample ACFs, excluding burn-in, should fall within 
approximate 0.05-level critical values for testing that the ACFs are 
zero. Autocorrelation plots are available using the FlexBayes function 
autocorr.plot.

Geweke’s 
Diagnostic

Geweke (1992) proposes a diagnostic which is especially appropriate 
for diagnosing the convergence of the mean of some scalar function 
of the sampled variables. Typically the function is of one particular 
parameter, but the function could also be based on several 
parameters. In particular, -2 times the log of the posterior density can 
be used to assess convergence of the joint posterior. 

Based a single chain, Geweke’s method tests whether the means from 
different parts of a chain are statistically equal. If not, there is 
evidence that the chain has not converged. The variances needed in 
32



Practical Considerations
performing the test are motivated by time series spectral analysis, 
which are appropriate because the posterior samples are usually 
dependent.

In particular, the chain is divided into two “windows” containing the 
first n1  and last n2  observations respectively. Geweke suggests taking 

the first tenth, and the last half, of the samples.   These are the defaults 
in the FlexBayes function geweke.diag. If the whole chain is 
stationary, the means early and late in the sequence should be similar. 
Geweke’s diagnostic G is the difference between the two means 
divided by the estimated standard error of their difference. 
Asymptotically (in the limit of the number of iterations of the chain), 
G is normally distributed with mean 0 and variance 1. Therefore 
extreme values of G (e.g. above 3 or below -3) suggest that the chain 
has not converged during the first window. 

FlexBayes 
Implementation

The function geweke.diag calculates Geweke’s diagnostic by calling 
the function of the same name in the open-source Spotfire S+/R 
library coda. The arguments are described in the help files for 
geweke.diag in FlexBayes and the coda library. As discussed above, 
extreme values give evidence that the chain has not yet converged. It 
might be reasonable to base further inference only on samples that 
occur after the Geweke diagnostic values become moderately sized. 

Gelman and 
Rubin’s 
Diagnostic

One possible cause of poor convergence is that if the posterior 
distribution is multimodal, the Markov chain simulation may appear 
to have converged but really be trapped in one or several modes of 
the posterior distribution. In this situation, multiple replications of the 
chain might become trapped in distinct modes, revealing the 
problem. Gelman and Rubin (1992) devised a diagnosis procedure 
based on this idea, which uses multiple chains run from 
“overdispersed” starting values.

The Gelman-Rubin diagnostic compares the within- and between-
chain variances for each variable in order to estimate the factor by 
which the standard deviation of the marginal posterior distribution of 
each parameter might be reduced if the chain were run to infinity. 
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Chapter 3  Assessing Convergence of Monte Carlo Markov Chain Algorithms
FlexBayes 
Implementation

The FlexBayes function gelman.diag obtains Gelman-Rubin’s 
diagnostic by calling the function of the same name in the open-
source Spotfire S+/R library coda. The arguments are described in 
the help files for gelman.diag in the FlexBayes and coda libraries.

The rate of convergence of a Markov chain to stationarity partly 
depends on the starting values or starting distribution. As a general 
guideline, Schafer (1997) recommends using starting values that are 
near the center of the posterior. For example, use a maximum 
likelihood estimate or posterior mode obtained from running an EM 
algorithm, if one is available. 

For multiple chains, Gelman and Rubin (1992) recommend starting 
values that are overdispersed  (exhibit greater variability) relative to 
P θ Yobs( ) . This increases the chance of discovering multiple modes 

of the distribution if they exist.

In order to obtain such overdispersed values, Schafer (1997)
recommends using the bootstrap method as follows. Repeat the 
following M  times:

1. Draw with replacement n*  rows from Yobs  to obtain a 

bootstrap sample Yobs
b

.

2. Calculate the maximum likelihood estimate of the 

parameters, θb
ˆ θ̂ Yobs

b( )= .

If we take n*  to be smaller than n , say n* n
2
---= , then θ̂b  tends to be 

overdispersed relative to P θ Yobs( ) . Take care, because a reduced 
data set size might lead to problems such as collinearity.
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Chapter 4  The Hierarchical Linear Mixed Effects Model
MODEL DESCRIPTION

The function bhlm fits a two-stage hierarchical linear mixed effects
model. For background on hierarchical models, see the section 
Hierarchical Models on page 28. A mixed effects model contains one 
or both of fixed and random effects.

Hierarchical models are often applied when there are multiple groups 
of correlated outcomes. The situation of independent and identically 
distributed data is included as a special case where the number of 
groups is one. 

For an example of grouped data, consider the data set Orthodont 
provided with Spotfire S+. It consists of measurements of the distance 
from the pituitary gland to the pterygo-maxillary fissure. These 
measurements were taken at two-year intervals from age eight to 
fourteen on 16 male and 11 female children; the measurements are 
shown in Figure 4.1. More details on the data can be found in Potthoff 
and Roy (1964). 

The multiple measurements from the same subject are correlated; 
therefore the groups in the hierarchical model correspond to the 
subjects. More generally, the function bhlm can be applied to any 
continuous-valued outcomes yij  where i 1 2… nj, , ,=  indexes 

the measurements in each of several groups j 1 2… J, , ,= .

The First-Level 
Model

Let yij  denote the i -th measurement in group j . The first-level 

model specifies the distribution of the individual responses yij . In the 

simplest case, these are assumed to be normal with individual mean 

θij and a possibly group-specific variance σj
2

:

yij N θij σj
2,( )∼

Often a common outcome variance is assumed, so that σj
2 σ2

= . 

The variance parameters σj
2
 or σ2

 are usually unknown, but 

FlexBayes also allows for the case that they are known. 
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Model Description
The Link 
Function

The means θij  are assumed to have the standard linear mixed effects 

structure

θij mijγ xijβj+=

:

where mij and xij  denote the q -dimensional fixed-effect predictors 

(covariates) and p -dimensional random-effect predictors, 

respectively, and γ βj,  are the q -dimensional fixed-effect 

coefficients and p -dimensional random effects, respectively. The 
fixed-effect coefficients take a common value across all groups 
(treatments), while the random effects are group-specific. 

The Second-
Level Model

The random effects βj  are assumed to have the linear model 

structure

βj zjα uj+=

 

where zj  is an r -dimensional vector of predictors associated with the 

j -th group or treatment, α  is the corresponding r p× -dimensional 

matrix of coefficients, and uj  is an r  -dimensional random vector 

of errors. The errors uj  are assumed to follow a multivariate normal 

distribution with mean equal to the zero vector and variance equal to 

τ2V , where either V  is the identity matrix and τ2
 is assigned a 

univariate prior, or τ2V  is given an inverse Wishart prior. 

The second-level coefficients α  can be thought of as population 

parameters. Several types of prior distributions are available for α ; 
for instance, the multivariate normal prior distribution with known 
mean vector α0  and known variance-covariance matrix Vo . 
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Chapter 4  The Hierarchical Linear Mixed Effects Model
If you wish to fit a non-hierarchical mixed-effects model, you can 

omit the second-level model specification, so that βj N 0 τ2V,( )∼ . 

Prior 
Specification

FlexBayes allows you to choose from a number of prior distributions 

for the coefficients α γ,( )  and the variances σj
2
 (alternatively, σ2

) 

and τ2
 (alternatively, τ2V ). 

Table 4.1:  Prior distributions available for a hierarchical mixed effects model.

Parameter Available prior distributions

α γ, normal, t, non-informative flat

σj
2
 OR σ2 inverse chi-square, uniform shrinkage, 

non-informative power, non-informative 
DuMouchel, known

τ2
 OR

τ2V

inverse chi-square, uniform shrinkage, 
non-informative power, non-informative 
DuMouchel.

inverse Wishart. 

Fixed Effect 
Coefficients

Often the fixed effect coefficients γ  are given a flat non-informative 

prior. However, you also can specify a normal or t prior for γ .

Second-level 
coefficients

If enough information is present in the data, you can afford to have a 
flat non-informative prior on α . However if you have knowledge 

about α , then you should use it and put it into a non-flat prior. For 
example, say that experts in the field inform you that the most 
reasonable value of α  is the vector 0 1,( )  (here we assume that α  is 

two-dimensional), but they do not know how far away α  could 

plausibly be from 0 1,( ) . In this case you may specify a t prior for 
alpha with a “large” scale matrix, and several degrees of freedom:

> priorA <- bayes.t( c(0,1), 100*diag(2), df = 3 )
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Model Description
Variance 
Components

In a hierarchical model, the choice of prior for the variance 
parameters is important and difficult. The following priors can be 

specified for both variance components σ2
 and τ2

, except for the 
case when the variance is known, which can only be specified for the 

outcome variance σ2
, and the case where τ2V  is assigned an inverse 

Wishart prior. You can also specify different priors for σj
2
 associated 

to different groups j 1… J, ,= .

In most applications, little or no prior information is available. You 
can specify any of the following three vague priors to reflect this 
uncertainty.

Vague priors

•  “non-informative” power: This prior is of the form 

p σ2( ) σ2κ∝ κ 0<

A proper posterior for the outcome variance σ2
 is 

guaranteed if κ n 2⁄–( )> , where n  is the number of 

observations. When using group-specific variances σj
2
, this 

prior is guaranteed to yield proper posteriors for specific 
values of κ  depending on the number of observations in each 

group; FlexBayes always verifies that the power κ  supplied in 
the prior specification gives a proper posterior. For the 

random effect variance parameter τ2
 the analogous 

restriction is κ Jp( ) 2⁄–( )> , where p  is the dimension of 

the random effect coefficient vector βj  and J  is the number 

of groups. 

• uniform shrinkage: This prior is of the form (Daniels 1999)
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Chapter 4  The Hierarchical Linear Mixed Effects Model
p σ2( ) σ0
2 σ2 σo

2
+( )

2
⁄( )= σ0 0>

One can show easily that σo
2
 is the median of this 

distribution. This prior is diffuse in the sense that both its 

expectation and the expectation of the inverse 1 σ2⁄  are 
infinite.

• DuMouchel: This prior has the form

p σ2( ) σ0 2σ σo σ+( )2( )⁄= σ0 0>

Similarly to the uniform shrinkage prior, this is a proper but 
diffuse distribution. 

You might specify the following two informative priors for the 
variance components.

Informative Priors

• Scaled inverse chi-square: This prior has the form

p σ2( ) σ
2 υo 2⁄ 1+( )–

υoσo
2( ) 2σ2( )⁄–{ }exp∝
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Model Description
It is specified by two parameters, the degrees of freedom 

υo 0>  and the scale σo
2
. The degrees of freedom give 

weight to your knowledge of the variance, which is assumed 

to lie about σo
2
. The larger υo , the more influence the prior 

has on the posterior of σ2
. 

• Inverse Wishart: This prior is the generalization of the 
above inverse chi-square prior to multivariate variance-

covariance matrices. You may use it for τ2V  when you do 

not want to restrict the random effects coefficients βj  to have 

equal variances, and/or you want to account for possible 
correlation among these coefficients. You can create this prior 
by calling, for example:

      > priorTau2 = bayes.invWishart( df= 2,     

                            scale= 100*diag(2) )

for a two-dimensional βj .

Known Variances

In the rare case when the variances σj
2
 (alternatively, σ2

) 

are known, you can specify a degenerate Dirac delta prior. For 
example,

      > priorSigma2 = bayes.massPoint( c( 0.25, 0.50 ) )

creates a prior giving probability one to the event that 

σ1
2 0.25=  and σ2

2 0.50= .
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Chapter 4  The Hierarchical Linear Mixed Effects Model
EXAMPLE: ORTHODONT DATA 

The Orthodont data set provided with Spotfire S+ consists of 
measurements of the distance from the pituitary gland to the pterygo-
maxillary fissure. These measurements were taken at two-year 
intervals from age eight to fourteen on 16 male and 11 female 
children. More details can be found in Potthoff and Roy (1964). An 
analysis of these data carried out by Pinheiro and Bates (2001) using 
the mixed-effects model library nlme of Spotfire S+ found clear 
differences in the growth pattern between female and male children. 
Differences in the growth curves within each child are also visible 
from the curve plots in Figure 4.1. Pinheiro and Bates suggest fitting a 
mixed effects linear growth model to the data

distanceij γo γ1ageij γ+ 2sexj ageij× β+ jageij εij+ +=

. 

with γ γo γ1 γ2, ,( )=  common among all children (fixed effects), 

and βj  subject-dependent (random effects). For this data set, 

i 1… 4, ,=  and j 1… 27, ,= .
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Example: Orthodont Data
.

Figure 4.1: Growth curve plots of all 27 children in the Orthodont data set. M01 to 
M16 correspond to the 16 male subjects, and F01 to F11, to the female ones. 

Alternatively, our hierarchical linear model setup allows us to model 
the variation in the growth rate due to sex in the second-level model

βkj αko αk1sexj ukj+ +=
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Chapter 4  The Hierarchical Linear Mixed Effects Model
k 0 1,=  (corresponding to the subject intercept and slope, 
respectively), which seems to be a more “natural” way to model the 
growth rate as sex-dependent. The first-level model is then

distanceij βoj β1jageij εij+ +=

Note that by including a second-level model there is no need to 
include fixed effects into the first level. The fixed effects are taken 
over by the population model for βoj β1j,( ) .

Fitting the 
Hierarchical 
Model

First we show how to fit the hierarchical model (the second model 
described above). It is recommended that you work with the centered 
age variable (age-11). To fit the Orthodont data from the 
command line start by setting the priors for the model parameters

> alpha.prior = bayes.nonInformative()
> error.prior = bayes.nonInfoPower( -1 )
> betaCov.prior = bayes.invWishart(df= 2, scale= diag(2)/2)

You need to put all these priors in a single prior specification object

> orthodont.prior = bhlm.prior( error.var= error.prior, 
level2.coef= alpha.prior, random.var= betaCov.prior, 
common.error.var= 2 )

This creates a list with the prior information needed to fit a 
hierarchical model to the Orthodont data. The specification 
error.var=bayes.nonInfoPower( -1 ) means that the prior density 

for σ2
is proportional to 1 σ2⁄  (which is a power law prior with 

power -1). The specification level2.coef= bayes.nonInformative()
means that the second-level coefficients α  have a flat improper 
prior. The specification random.var= 
bayes.invWishart(df=2,scale=diag(2)/2) means that the random 

effects covariance matrix τ2V  has an inverse Wishart prior with two 

degrees of freedom and a diagonal scale matrix with entries 1 2⁄ . 
The last term in the list, common.error.var = 2, specifies that all 
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the groups share the same variance, i.e. σj
2 σ2

= , for 

j 1… 27, ,= . To specify the likelihood (error) structure of the 
model, set

> orthodont.likelihood = bhlm.likelihood(type= "normal")

The errors are assumed to be normally distributed; t-distributed 
errors are the alternative (given by type= "t"). Specify the number of 
chains desired in the simulation, as well as the control specifications 
for the chains and the way the parameters are to be initialized in each 
chain:

> orthodont.sampler = bhlm.sampler(nBurnin= 2000, nSamples= 
1000, nChains= 3, init.point="prior")

Setting init.point to “prior” tells the program to initialize all 
parameters (within each chain) by random draws from t distributions 
that are centered at the prior mean/median (because α γ,  have flat 
priors, the prior median does not exist and is nominally taken to be 
zero). See the help file for bhlm.sampler for more details on these 
default draws. Setting init.point to “user’s choice” would 
allow you to explicitly specify the initial values for all the model 
parameters in all chains. 

Launch the fitting routine by calling

> orthodont.post = bhlm( 
random.formula= distance ~ I(age-11),  
level2.formula= ~Sex,  
group.formula= ~Subject,  
data= Orthodont,  
prior= orthodont.prior,  
likelihood= orthodont.likelihood,  
sampler = orthodont.sampler 
)

The specification random.formula= distance ~ I(age-11) indicates 

that there is both a random “intercept” parameter ( βoj ) and a 

random slope ( β1j ) corresponding to the centered age variable. The 
specification level2.formula= ~Sex indicates that each of these 
random effects (both intercept and slope) have a mean structure given 
by an intercept plus a sex fixed effect. Setting group.formula= 

~Subject indicates that the groups j  correspond to the subjects.
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Convergence 
Diagnosis

The resulting object orthodont.post is of class posterior. To 
check convergence of the three chains to the same parameter 
distributions take a look at the Gelman-Rubin plots. Obtain these   
using the gelman.plot function, which by default shows only the 
first six parameters:

 > gelman.plot( orthodont.post )

To view the autocorrelation plots, type

 > autocorr.plot( orthodont.post )

Posterior 
Inference

You can look at the model fit results by typing

> orthodont.post

By default, this prints only the first 30 parameters. Examine the 
complete results by typing:

> summary(orthodont.post, maxVars=80)

which yields:

*** Posterior Distribution from the Bayesian Model ***
Call:  
bhlm(random.formula = distance ~ I(age - 11), 
level2.formula =  ~ Sex, 
group.formula =  ~ Subject, data = Orthodont, prior = 
orthodont.prior,
likelihood = orthodont.likelihood, sampler = 
orthodont.sampler)

# of Chains:  3 
Starting Iteration:  2001 
Ending Iteration:  3000 
Thinning:  1 
# of Samples:  1000 

1. Summary statistics:

                                 Mean    S.D. 
MEASUREMENT ERROR [ SIGMA ]   1.30200 0.12090
    (Intercept):(Intercept)  24.98000 0.49910
            Sex:(Intercept)  -2.32300 0.79990
    (Intercept):I(age - 11)   0.78180 0.13210
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            Sex:I(age - 11)  -0.30950 0.20980
             RANDOM:TAU:1.1   3.50800 1.23500
             RANDOM:TAU:1.2   0.06855 0.21670
             RANDOM:TAU:2.1   0.06855 0.21670
             RANDOM:TAU:2.2   0.20490 0.07414
   (Intercept):distance:M16  23.23000 0.62480
   I(age - 11):distance:M16   0.60720 0.24850
   (Intercept):distance:M05  23.24000 0.62080
   I(age - 11):distance:M05   0.81110 0.24570
   (Intercept):distance:M02  23.57000 0.63100

    ...

• The lines labelled (Intercept):(Intercept), 
Sex:(Intercept), (Intercept):I(age - 11), and Sex:I(age 
- 11) refer to the α  parameters corresponding to the random 
intercept (the first two) and random slope of I(age - 11) (the 
last two), respectively. 

• The lines labelled RANDOM:TAU:#.# correspond to the 

elements of the covariance matrix τ2V  of the random effects. 

• The lines labelled (Intercept):distance:<subj_ind> refer to 
the random intercept parameter for each subject and those 
labelled I(age - 11):distance:<subj_ind> correspond to 
the random slope parameter for each subject. 

To visualize the parameter posterior densities, use the following (plots 
not shown here):

> densplot( orthodont.post )

Bayesian Mixed 
Effects Model

You can also fit a Bayesian version of the mixed effects model used by 
Pinheiro and Bates (2001) for the Orthodont data. The model is based 
on the following equation:

distanceij γo γ1ageij γ+ 2sexj ageij× β+ jageij εij+ +=
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Here, the model is no longer hierarchical (there is no second level). 
Instead, all effects are specified in the first level. The subject 
variations are modeled through a random slope for the age predictor.

To fit this model, type the following at the command prompt:

> orthodont.prior = bhlm.prior( error.var=

  bayes.nonInfoPower( -1 ), 

  fixed.coef= bayes.nonInformative(), 

  random.var= bayes.invChisq(df = 3, sigma0.sq = 10), 

  common.error.var= 2 )

> orthodont.sampler = bhlm.sampler(nBurnin= 2000, 

  nSamples= 1000, nChains= 3, 

  nThin = 10, init.point="prior")

> orthodont.post = bhlm(

  fixed.formula= distance ~ I(age-11) + Sex * I(age-11),
  random.formula = ~I(age-11)-1,

  group.formula= ~Subject, 

  data= Orthodont, prior= orthodont.prior, 

  likelihood= orthodont.likelihood, 

  sampler = orthodont.sampler)

After doing convergence diagnostics, summarize the model output by 
typing:

> orthodont.post

The following is displayed:

*** Posterior Distribution from the Bayesian Model ***
Call:  
bhlm(random.formula =  ~ I(age - 11) - 1, fixed.formula = 
distance ~ I(age -
11) + Sex * I(age - 11), group.formula =  ~ Subject, data 

= Orthodont,
prior = orthodont.prior, likelihood = 

orthodont.likelihood, sampler = 
orthodont.sampler)

# of Chains:  3 
Starting Iteration:  2001 
Ending Iteration:  11991 
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Thinning:  10 
# of Samples:  1000 

1. Summary statistics:

                                  Mean   S.D. 
                (Intercept)  24.970000 0.3115
                I(age - 11)   0.783900 0.3329
                        Sex  -2.315000 0.4824
            Sex:I(age - 11)  -0.301900 0.5186
MEASUREMENT ERROR [ SIGMA ]   2.428000 0.1889
                 RANDOM:TAU   1.199000 0.1690
   I(age - 11):distance:M16  -0.191600 0.5654
   I(age - 11):distance:M05   0.065820 0.5717
   I(age - 11):distance:M02  -0.016950 0.5575
   I(age - 11):distance:M11  -0.371000 0.5656
   I(age - 11):distance:M07   0.004793 0.5684
   I(age - 11):distance:M08  -0.342700 0.5685
   I(age - 11):distance:M03  -0.024180 0.5545
   I(age - 11):distance:M12   0.184500 0.5617
   I(age - 11):distance:M13   0.959200 0.5677
   I(age - 11):distance:M14  -0.207400 0.5774
   I(age - 11):distance:M09   0.155400 0.5548
   I(age - 11):distance:M15   0.281100 0.5645

...

The first four parameters listed here are the fixed effects γ .  SIGMA is 
the square root of the outcome variance and TAU is the square root of 
the random effect variance. The parameters I(age-11):distance:M#

are the random slope parameters βj  for some of the male subjects. 
The remaining parameters in the model are not shown here. The 
above results for the fixed effects are very similar to the ones obtained 
through the hierarchical model.
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Chapter 5  The Hierarchical Poisson Mixed Model
MODEL DESCRIPTION

The hierarchical Poisson regression implemented in the FlexBayes
function bhpm enjoys the same multi-level structure as the hierarchical 
linear regression in bhlm. The Poisson hierarchy is illustrated by the 
following example. 

Suppose there are J  epilepsy patients in a study, each of which is 

monitored over several weeks of treatment. The number of seizures 
in week i  for patient j  could be assumed to be Poisson distributed 

with some rate λij . The rates λij  for j 1 2… J, , ,=  and 

i 1 2… nj, , ,=  are called the “individual parameters”. The 

approximate distribution of these parameters for the patients in 
treatment and control must be estimated in order to make inferences 
about the effect of treatment.

The individual parameters λij may be modeled through a link as a 

linear function of a week effect along with some patient-specific 
random effects βj . This component of the regression is sometimes 

called the “structural model”. 

In turn, the mean of these random effects βj  may be modeled as a 

linear function of some patient-specific covariates (including a 
treatment indicator), just as is the case for the linear regression of the 
previous chapter. We will call the model for the random effects the 
“second-level model”. 

Next, we  describe each of the components (individual, structural, and 
second-level) of the Poisson hierarchy in detail. The FlexBayes
Poisson hierarchical regression applies generally to any set of grouped 
and count-valued observations, where j 1 2… J, , ,=  indexes the 

groups and i 1 2… nj, , ,=  indexes the observations. 

The Individual 
Model

The individual model specifies the distribution of the i th observation 

yij  in group j , given the individual parameter λij :
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yij λij Poisson eijλij( )∼

In epidemiology the parameter λij  is often called the rate, and eij  

is called the exposure.

The Structural 
Model

The structural model is the model for the individual parameters λij . 

The most commonly used Poisson model uses a log link function to 

relate the individual parameter λij  directly to the covariates and the 

random effects: 

λijlog mijγ xijβj+=

where, just as in the linear model in the previous chapter, mij  and 

xij  are the fixed-effect predictors and random-effect predictors 

respectively, and γ βj,  are the fixed-effect coefficients and random-

effect coefficients, respectively. This model is available in FlexBayes. 
Additionally, FlexBayes can be used to fit several models that allow 

some variability of λijlog  around mijγ xijβj+ . One popular 

structural model is the gamma model, conjugate to the Poisson. In 

this model, λij  follows a gamma distribution

λij ξj μij, Gamma ξj
ξj
μij
------, 

 ∼
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where ξj 0>  is a group-specific precision parameter and μij 0>  is 

the mean of the gamma distribution. Often a common value is used 

for the precision parameters ξj , so that ξj ξ= . The mean μij  is 

usually modeled through the log link equation

μijlog mijγ xijβj+=

The parameter ξj
1–

 is an overdispersion parameter, meaning that 

ξj
1– 0=  corresponds to a standard Poisson regression model with 

log link function, λijlog mijγ xijβj+= , and that as ξj
1–

 

increases so does the variance of yij  relative to this standard Poisson 

regression model. We will refer to this particular type of 

overdispersion as “gamma-conjugate” overdispersion, since λij  has 

been assigned a gamma distribution, and that distribution is conjugate 
to the Poisson.

An alternative to gamma-conjugate overdispersion is log-normal 
overdispersion, modeled with: 

λijlog Normal μij σj
2,( )∼

where σj
2 0>  and μij mijγ xijβj+= , i.e. μij  is modeled as a 

linear function of the covariates. In practice, this type of 
overdispersion is a popular choice because with an appropriate prior, 
an MCMC scheme is simple to implement; see the section MCMC 
Sampler for the Log-Normal Overdispersion Case on page 78 for 
more details. The overdispersion parameter for the log-normal case is 
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σj
2

, which plays the same role as ξj
1–

 in the gamma conjugate 

case. Also similarly to the gamma-conjugate case, a common 

overdispersion parameter is often assumed, so that σj
2 σ2

= .

The Second-
Level Model

The second-level model is specified exactly as in the hierarchical 
linear regression in the previous chapter. In particular,

βj zjα uj+=

where zj  are the predictors associated with the j -th group, α  is 

the corresponding matrix of coefficients, and the vector uj  is 

distributed according to a multivariate normal distribution with mean 

equal to the zero vector and variance equal to τ2V , where either V  

is the identity matrix and τ2
 is assigned a univariate prior, or τ2V  

is given an inverse Wishart prior.

Prior 
Specification

FlexBayes allows you to choose from a number of prior distributions 

for the coefficients α γ,( ) , the random effect variance   τ2
 

(alternatively, τ2V ), and the optional overdispersion parameters 

σj
2
 or ξj . 

Fixed Effect Prior 
Specification

The regression coefficient vector γ  can be given the same prior 

distributions as for the linear hierarchical model in the previous 
chapter, namely a normal prior, a t prior, or a flat (“non-informative”) 
prior. 
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Prior 
Specification for 
the Gamma 
Conjugate 
Overdispersion 
Parameter

In the gamma conjugate overdispersion case, the prior for the 

precision parameter ξ  (or the group-specific parameters ξj ) can 

be specified as the uniform shrinkage distribution:

π ξ( )
z0

ξ z0+( )2
---------------------=

Under the uniform shrinkage prior, the prior shrinkage factor 
ξ ξ z0+( )⁄  is uniformly distributed in the interval 0 1,[ ] . This 

prior is very vague, giving both ξ  and 1 ξ⁄  infinite expectations. 

The constant z0  is the median of ξ . Christiansen and Morris 

(1997) remark that small values of z0  are less informative and lead 

to less shrinkage in the posterior than large values of z0 . They 

recommend choosing z0 ξ̂< , where ξ̂  is the maximum 

likelihood estimate of ξ .

Prior 
Specification for 
the Log-Normal 
Overdispersion 
Parameter

The log-normal overdispersion parameter σ2
 (alternatively, σj

2
) is 

commonly assigned a scaled inverse chi-square prior:

σ2 InvChisq υo so
2,( )∼

 

However, as in the hierarchical linear model, FlexBayes allows you to 
choose priors from a number of distributions. Refer to Table 4.1 for 

the available prior distributions for σ2
 (alternatively, σj

2
).

Prior 
Specification for 
the Second-Level 
Model

The prior specification for the second-level parameters τ2
 

(alternatively, τ2V ) and α  is exactly as in the linear hierarchical 

model. Refer to Table 4.1 for the available prior distributions for these 
parameters.
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EXAMPLE 1: PUMP DATA

Here we give an example of an overdispersed Poisson regression with 
fixed effects. This example does not have a group structure, which in 
the framework of the previous section means that J 1= . For an 

example of the use of bhpm for fitting grouped data ( J 1> ), see the 
epilepsy data example in the section Example 2: Epilepsy Data on 
page 66.

The FlexBayes data frame pumps (Christiansen and Morris, 1997) 
contains counts of pump failures at a pressurized water reactor 
nuclear power plant. This data frame contains four variables z, e, y, 
and x giving the failure counts, the exposure (the time of operation in 
units of 1,048 hours), the ratio y = z/e, and a covariate (see Figure 
5.1). The first six pumps ran intermittently, indicated by xi 1–= , 

while the four pumps with the largest exposures were operated 
continuously, indicated by xi 1.5= . The exposures ei  are in units 

of 1,048 hours of operation.

Figure 5.1: The pump failure counts data set.
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The quantity yi  is the i th pump failure rate in failures per 1,048 

hours. The average rate for the intermittently operated pumps is 1.14, 
while the average rate for the continuously operated pumps is 0.22. 
The weighted average is 0.225. 

Following Christiansen and Morris (1997) we use a Poisson regression 
with gamma-conjugate overdispersion for this data. We use a uniform 
shrinkage prior for the overdispersion parameter ξ , and set the 

prior median to be the weighted average 0.225 of the pump failure 
rates. The fixed effects are given a flat prior distribution, as is done in 
Christiansen and Morris (1997).

Prior 
Specification

First specify the priors for the parameters:

> pump.prior = bhpm.prior ( xi = 

  bayes.uniformShrinkage (0.225), 

  fixed.coef = "non-informative", common.glm = 2 )

Here common.glm = 2 specifies that overdispersion is desired and that 
the overdispersion parameter should be common to all groups 
(although there is only one group for this example). The setting xi = 
bayes.uniformShrinkage (0.225) specifies a uniform shrinkage prior 
with median 0.225 for ξ . The ”non-informative” specification 
for fixed.coef indicates the flat prior for the fixed effects. 

MCMC Control 
Specification

Next, specify the MCMC control parameters, including the number 
of chains desired in the simulation, the number of samples desired 
from each chain, the burn-in length, and the way the parameters are 
to be initialized in each chain:

> pump.sampler = bhpm.sampler( nSamples=1000, 

  nChains = 3, nBurnin = 1000,

  init.point = "prior", update.cov = 1 )

Simulating multiple chains allows us to use the Gelman-Rubin 
convergence diagnostic. Setting init.point to “prior” tells the 
program to initialize each parameter (within each chain) by a random 
draw from a t-distribution that is centered at the prior mean/median 
(nominally zero for a flat improper prior such as that specified for 
γ ). Setting update.cov = 1 directs the Metropolis-Hastings 

sampler to update the covariance structure of the proposal 
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distributions at each iteration. update.cov = 0 would indicate that 
the covariance structure should be fixed throughout the simulation at 
the value computed during the first iteration of the sampler. This 
latter option might be useful if numerical errors arise when 
covariances are updated at each iteration, or when the number of 
predictor variables is very large and faster results are desired. 

Fitting the 
Model Using 
Gamma 
Conjugate 
Overdispersion

Next, fit the model:

> pump.exposure = ~ e

> pump.fixed = z ~ x

> pump.post = bhpm(fixed.formula = pump.fixed, 

  exposure.formula = pump.exposure, data = pumps, 

  prior = pump.prior, sampler = pump.sampler,

  overdispersion = "gamma-conj" )

Here we have specified gamma-conjugate overdispersion. The fixed 
effects in the model consist of an intercept parameter and a slope 
parameter for x . 

Convergence 
Diagnosis

The output pump.post is an object of class posterior. To check the 
convergence of the simulation, call the traceplot function on 
pump.post:

> traceplot(pump.post)

It looks like there might be a trend in the values of some parameters 
over the length of the chain. Perhaps the chain has not yet  converged 
fully. As another convergence diagnostic, create autocorrelation plots 
for the parameters:

> autocorr.plot(pump.post)

It looks like there might be substantial autocorrelation out to lag 15 
for the regression coefficients and the overdispersion parameter. 
Rerun the simulation, using thinning this time to reduce the 
autocorrelation:

> pump.sampler = bhpm.sampler( nSamples=1000, 

  nChains = 3, nBurnin = 1000, nThin = 20,

  init.point = "prior", update.cov = 1 )

> pump.post = bhpm(fixed.formula = pump.fixed, 

  exposure.formula = pump.exposure, data = pumps, 
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  prior = pump.prior, sampler = pump.sampler,

  overdispersion = "gamma-conj" )

Recreating the autocorrelation plots shows that the autocorrelation is 
now negligible. Create Gelman-Rubin-Brooks plots as another 
convergence diagnostic:

> gelman.plot(pump.post)

This plots the Gelman-Rubin shrink factor for each parameter as a 
function of the iteration of the chain, yielding the plot in Figure 5.2. 
By default, only the first six parameters are plotted, but more can be 
obtained by setting the maxVars argument. 

As described in Brooks and Gelman (1998), the shrink factor shown 
in the plots should be close to 1 for the entire length of the simulation. 
The shrink factor is loosely interpretable as an estimate of the factor 
by which the posterior interval of the parameter might shrink if the 
chain were run for a much longer time. Values up to about 1.2 are 
therefore probably acceptable. The Gelman-Rubin plots here do not 
show substantial lack of convergence.
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Figure 5.2: Gelman-Rubin-Brooks plots for the pumps MCMC.

Posterior 
Inference

Because the convergence diagnostics are acceptable, summarize the 
posterior distributions of the parameters:

> summary(pump.post)

*** Posterior Distribution from the Bayesian Model ***
Call:  
bhpm(exposure.formula = pump.exposure, fixed.formula = 
pump.fixed, data = 
pumps, overdispersion = "gamma-conj", prior = pump.prior, 
sampler = pump.sampler)

# of Chains:  3 
Starting Iteration:  1001 
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Ending Iteration:  20981 
Thinning:  20 
# of Samples:  1000 

1. Summary statistics:

                Mean    S.D. 
(Intercept) -0.41900 0.43360
          x -0.64780 0.34310
       XI:1  1.00100 0.50810
   LAMBDA:1  1.09300 0.82540
   LAMBDA:2  1.08300 0.81820
   LAMBDA:3  1.74300 0.84920
   LAMBDA:4  0.67580 0.34880
   LAMBDA:5  2.11400 0.45080
   LAMBDA:6  0.12470 0.09182
   LAMBDA:7  0.57890 0.13860
   LAMBDA:8  0.09240 0.03797
   LAMBDA:9  0.06324 0.02610
  LAMBDA:10  0.12080 0.03105

2. Quantiles:

               2.5 %     25 %     50 %     75 %  97.5 % 
(Intercept) -1.15800 -0.70980 -0.45400 -0.17250 0.53450
          x -1.28500 -0.86960 -0.65030 -0.44300 0.05702
       XI:1  0.34500  0.64910  0.89320  1.22700 2.31200
   LAMBDA:1  0.10850  0.49510  0.89710  1.45600 3.22000
   LAMBDA:2  0.12160  0.49010  0.89470  1.43900 3.13100
   LAMBDA:3  0.53700  1.13000  1.59300  2.19400 3.79900
   LAMBDA:4  0.16620  0.42150  0.62540  0.86440 1.51800
   LAMBDA:5  1.32900  1.79700  2.08600  2.39400 3.10100
   LAMBDA:6  0.01126  0.05711  0.10410  0.16870 0.35550
   LAMBDA:7  0.33760  0.48050  0.56910  0.66620 0.86700
   LAMBDA:8  0.03473  0.06472  0.08722  0.11550 0.18080
   LAMBDA:9  0.02272  0.04451  0.05866  0.07866 0.12350
  LAMBDA:10  0.06827  0.09859  0.11840  0.13980 0.18880
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The parameters that are summarized are the fixed effect coefficients 
corresponding to the intercept and to x, the overdispersion parameter 

ξ , and the rates λ . Here there is no group specification so J 1=  

and n1 10=  (where J  and nj  are as defined in the model 

description at the beginning of this chapter). 

The posterior means for the regression coefficients and ξ  are close 
to those reported by Christiansen and Morris (1997). The 95% 

credible (posterior) interval for the coefficient for x  contains zero, 
so there is not strong evidence for a difference in failure rate between 
the two pump types. One can also look at the density plots for the 
parameters.

> densplot(pump.post)

yields the window in Figure 5.3. Three tabs are created, of which the 
first is visible. The other tabs show the density plots for the rest of the 
parameters.
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Figure 5.3: Posterior density plots for the first six parameters in the pumps example.

Note that the posterior distributions of the regression coefficients are 
nearly symmetric, while those of the overdispersion parameter ξ  

and some of the rates λ  are right-skewed. Compare the posterior 
means for the rates to their empirical values, given by:

> pumps$y

 [1] 1.00 1.00 2.00 0.60 2.20 0.07 0.63 0.08 0.06 0.12

Note that some shrinkage towards the common mean occurred in the 
Bayesian estimates relative to these raw rates. 

Fitting the 
Log-Normal 
Model

You can also fit the Poisson log-normal model to the same data:

> pump.prior = bhpm.prior ( sigma2 = 

  bayes.uniformShrinkage (0.5), 
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  fixed.coef = "non-informative", common.glm = 2 )

> pump.post = bhpm(fixed.formula = pump.fixed, 

  exposure.formula = pump.exposure, data = pumps, 

  prior = pump.prior, sampler = pump.sampler,

  overdispersion =  "log-normal" )

which gives similar results (by calling summary(pump.post)) to the 
gamma conjugate overdispersion case. The posterior interval for the 
x  coefficient still contains zero, again indicating that there is not a 

significant effect of the pump type.
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EXAMPLE 2: EPILEPSY DATA

FlexBayes includes the epilepsy data set, from Thall and Vail (1990), 
which gives seizure counts for 59 patients in the two weeks preceding 
each of four clinic visits. We use this example to showcase the ability 
of hierarchical regression models to fit grouped data. This example is 
also available by calling help(epilepsy) at the command prompt.

Out of the 59 patients, 31 received a particular medication while the 
others did not. The interest is in whether or not the medication is 
associated with decreased seizure counts. The seizure counts are 
grouped by patient, so J 59=  and nj 4=  for each of 

j 1… J, ,= . 

Regression 
Models for the 
Epilepsy Data

Breslow and Clayton (1993) fit the following Poisson regression 
model (their model III) to the epilepsy data, where λij  is the 

underlying (unknown) seizure rate for patient j  in the two weeks 

preceding visit i :

λijlog Normal mijγ βj· σ2,+( )∼

Here mij  is a vector of predictors consisting of an intercept, a 

treatment indicator, an indicator of week four, the logarithm of 
patient age, a variable capturing the baseline seizure count of the 
patient, and an interaction term between the “treatment” and 
“baseline” predictors. Week four is singled out because preliminary 
analysis showed that the counts in the fourth week were significantly 
lower than those in the other weeks. 

Breslow and Clayton (1993) fit this model via estimating equations 
based on penalized quasilikelihood. We show how to perform 
Bayesian inference for the same model using the bhpm function.
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Because several of the predictors are at the patient level, one can also 
consider the following hierarchical version of the model:

λijlog Normal mijγ βj·+ σ2,( )∼

βj Normal zjα τ2,( )∼

where mij  now consists of just the indicator of week four and zj  

is a vector containing the intercept, treatment, age and “baseline” 
predictors plus the interaction between “treatment” and “baseline”. 
We will also show how to fit this model using the bhpm function.

Fitting the 
Mixed Model

First, we demonstrate how to perform Bayesian inference for model 
III in Breslow and Clayton (1993) using bhpm. We start by loading 
and preparing the data. The epilepsy object is a list with one 
component y that gives the seizure counts, as well as components for 
the various predictors. epilepsy$y is a matrix with a row for each 
patient and a column for each visit, thus conforming to the j i,  
indexing scheme from the above description of the model. 

FlexBayes requires that the data used to fit the model be in a data 
frame where one column gives the outcome counts, one column gives 
the group index j , and the other columns give the predictor values. 
Create such a data frame for the epilepsy data by calling:

> data(epilepsy)

> nSubj <- dim(epilepsy$y)[1]

> base <- log ( epilepsy$baseline / 4 )

> epilepsyBhpm <- data.frame( 

  y = as.vector( epilepsy$y ),

  subj = rep( (1:nSubj), each = 4 ),

  visit4 = rep( epilepsy$visit4, nSubj ),

  base = rep( base, each = 4 ),

  treat = rep( epilepsy$treatment, each = 4 ),

  logAge = rep( log( epilepsy$age ), each = 4 ) )  

Next, specify the prior distributions for the parameters:

> epilepsyPrior <- bhpm.prior( sigma2= 
67



Chapter 5  The Hierarchical Poisson Mixed Model
   bayes.nonInfoPower(-1), common.glm = 2 )

Here we are specifying an improper power-law prior with power -1 

for σ2
 (so that the prior density is proportional to 1 σ⁄ 2

). Because 

the priors for γ , α , and τ2
 are not specified, the default priors for 

these parameters are used. The defaults for γ  and α  are improper 

flat priors and the default for τ2
 is an improper power-law prior 

with power -1 (proportional to 1 τ⁄ 2
). 

Set the control parameters for the MCMC, including the thinning and 
the desired number of samples (after thinning):

> epilepsySampler <- bhpm.sampler( nSamples = 1000,

  nThin = 10, init.point = "user's choice",

  params.init = list( sigma2 = 1, 

  fixed.coef = rep(0, 6), random.var = 1,

  random.coef = 0 ) )

Here we specify manually the initial values for the chain, because the 
default is to draw initial values from a distribution that is related to the 
prior; because the prior is very diffuse, the sampled values usually 
would be very far from the concentration of the posterior distribution. 
This leads to very slow convergence of the chain to stationarity. 
Choosing the initial values by hand leads to better convergence of the 
chain as long as the initial values are reasonable. The above 
specification indicates that the six fixed effects and the random effects 
for all of the groups are initialized at zero, and the random effect 

variance τ2
 and outcome variance σ2

 are initialized at 1. 

Now we are ready to fit the model. Note that the following call to bhpm
takes a few minutes to run:

> fixedEff <- 

  y ~ visit4 + treat + base + logAge + treat * base 

> randomEff <- ~ 1

> epilepsyPost <- bhpm( data = epilepsyBhpm, 

  fixed.formula = fixedEff, 

  random.formula = randomEff,
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  group.formula = ~ subj,

  prior = epilepsyPrior,

  sampler = epilepsySampler, 

  overdispersion = "log-normal" )

The specification random.formula = ~ 1 indicates that there is a 

random intercept parameter ( βj ) but no random slope parameters. 

The argument group.formula sets the group structure for the model. 
Here the subjects form the groups (and thus the correlation structure 
of the seizure counts).

Convergence 
Diagnosis

Next, run several relevant convergence diagnostics on epilepsyPost. 
Autocorrelation plots (obtained by calling 
autocorr.plot(epilepsyPost)) show that slightly more thinning 
would be desirable (see Figure 5.4).

Figure 5.4: Autocorrelation plots for the epilepsy example.
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Increasing the thinning to 40 leads to negligible autocorrelation (but 
increases the computing time by a factor of four). After increasing the 
thinning, generate trace (time series) plots with the following 
command. 

> traceplot(epilepsyPost)

The first of these plots is shown in Figure 5.5. The plot is consistent 
with convergence to stationarity and good mixing. There is no trend 
in the mean or “stickiness” in the time series. Inspect each of the plots 
to verify that this holds for all of the parameters.

Figure 5.5: The trace plot for the intercept in the epilepsy example.

Posterior 
Inference

The convergence diagnostics are acceptable, so obtain the posterior 
summaries of the parameters by calling summary(epilepsyPost). This 
yields the following (the summary statistic lists are truncated here to 
save space):

*** Posterior Distribution from the Bayesian Model ***
Call:  
bhpm(random.formula = randomEff, fixed.formula = fixedEff, 
group.formula =  ~
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subj, data = epilepsyBhpm, overdispersion = "log-normal", 
prior = 
epilepsyPrior, sampler = epilepsySampler)

# of Chains:  1 
Starting Iteration:  1001 
Ending Iteration:  40961 
Thinning:  40 
# of Samples:  1000 

1. Summary statistics:

                   Mean    S.D. 
   (Intercept) -1.43400 1.30200
        visit4 -0.10100 0.09257
         treat -0.94230 0.44100
          base  0.88110 0.14080
        logAge  0.49350 0.38410
    treat:base  0.34570 0.22260
         sigma  0.37050 0.04527
    Random:tau  0.51660 0.07678
 (Intercept):1  0.04755 0.30860
 (Intercept):2  0.05692 0.29150

...

2. Quantiles:

                  2.5 %     25 %     50 %     75 %   97.5 % 

   (Intercept) -3.95600 -2.28900 -1.40900 -0.57020  1.05800
        visit4 -0.28170 -0.15820 -0.10750 -0.04004  0.08603
         treat -1.80300 -1.22200 -0.94480 -0.65500 -0.08436
          base  0.60280  0.78770  0.88410  0.96990  1.14900
        logAge -0.26900  0.23490  0.49170  0.73960  1.25300
    treat:base -0.08344  0.19410  0.34920  0.49620  0.78940
         sigma  0.28840  0.33880  0.36980  0.39790  0.46390
    Random:tau  0.38320  0.46300  0.51180  0.56720  0.67630
 (Intercept):1 -0.55550 -0.15070  0.04491  0.25410  0.65930
 (Intercept):2 -0.54610 -0.13600  0.06804  0.25210  0.58880
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...

The first six parameters are the fixed effects. The others are called 
sigma, Random:tau, and (Intercept):1, (Intercept):2, and so 
on.  

• sigma refers to the parameter σ . 

• Random:tau refers to the parameter τ ; the prefix Random:

is due to the fact that τ  is the random effects standard 

deviation.

• (Intercept):# refers to the random effect βj  for 

j 1… 59, ,= .

Not all of the parameter summaries are displayed by FlexBayes; by 
default, only the first thirty parameters are shown. One can increase 
the number of parameters that are displayed by setting the maxVars
argument in the call to summary to be greater than thirty. However, 
this results in a fairly lengthy output. Alternatively, view the 
summaries for parameters 31-60 of the model by calling 

> summary( epilepsyPost[,(31:60)] )

The parameters that are displayed are more of the subject effects βj . 

Because epilepsyPost is of class posterior, the subsetting operation 
epilepsyPost[,(31:60)] is defined to return another object of class 
posterior containing the posterior samples for just parameters 31-60 
of the epilepsy model. Therefore calling summary on this object 
generates the desired statistics. 

To see the names of all of the parameters in the model, type 
varnames(epilepsyBhpm). The parameters called LAMBDA:1 through 

LAMBDA:236 are the individual seizure rates λij  for each subject and 

visit; the numbering refers to the index of each data point in 

epilepsyBhpm$y rather than in the i j,  indexing scheme.
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The estimates of the fixed effects and the parameters σ  and τ  

that we have obtained are close to those obtained by Breslow and 
Clayton (1993). This is not surprising, because the prior distributions 
used here are very vague. 

The 95% credible interval for the treatment fixed effect is entirely 
below zero. Therefore there is evidence of a beneficial effect of the 
medication in reducing epileptic seizures. This is the same conclusion 
that one would draw from the analysis in Breslow and Clayton (1993).

Fitting the 
Hierarchical 
Model

Next we show how to fit the hierarchical version of the epilepsy 
model (the hierarchical version is described in the section Regression 
Models for the Epilepsy Data on page 66). We use the data frame 
epilepsyBhpm that was created by the code given in the previous 
subsection. Specify the MCMC control parameters with:

> epilepsySampler <- bhpm.sampler( nSamples = 1000,

  nThin = 40, init.point = "user's choice",

  params.init = list( sigma2 = 1, 

  fixed.coef = 0, random.var = 1,

  random.coef = 0, level2.coef = rep(0, 5) ) )

Here we specified initial values for the fixed effect, the five second-
level effects, the random effects (they are all initialized at zero), the 

random effect variance τ2
 and the outcome variance σ2

. 

Next, fit the model using the following code. Note that the call to bhpm
takes quite a few minutes to run, in part because the thinning is large. 
For a quicker demo, reduce the thinning.

> epilepsyPrior <- bhpm.prior( sigma2= 

  bayes.nonInfoPower(-1), common.glm = 2 )

> fixedEff <- y ~ visit4 - 1

> level2Eff <- ~ treat + base + logAge + treat * base

> epilepsyPost <- bhpm( data = epilepsyBhpm, 

  fixed.formula = fixedEff, 

  random.formula = ~ 1,

  group.formula = ~ subj,

  level2.formula = level2Eff,

  prior = epilepsyPrior,
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  sampler = epilepsySampler, 

  overdispersion = "log-normal" )

In this call, there is no intercept in the fixed effects because the 
intercept is included at the patient level of the hierachy (level2Eff in 
the above code). Including intercepts at both levels would lead to 
nonidentifiability of the intercept parameters, exhibiting itself through 
poor mixing of the Markov chain (very high cross-correlation of the 
intercept parameters). 

The specification random.formula = ~ 1 indicates that βj  is a 

random intercept parameter. If we instead specified random.formula 
= ~ visit4 then there would be both a random intercept term and a 
random coefficient for the “visit4” predictor.

Posterior 
Inference

Verify that the autocorrelation and trace plots are acceptable, and 
then summarize the posterior distribution using 
summary(epilepsyPost), which gives the following result. (The 
summary statistic lists have been truncated to save space.)

*** Posterior Distribution from the Bayesian Model ***
Call:  
bhpm(random.formula = randomEff, fixed.formula = fixedEff, 
level2.formula = 
level2Eff, group.formula =  ~ subj, data = epilepsyBhpm, 
overdispersion
= "log-normal", prior = epilepsyPrior, sampler = 
epilepsySampler)

# of Chains:  1 
Starting Iteration:  1001 
Ending Iteration:  40961 
Thinning:  40 
# of Samples:  1000 

1. Summary statistics:

                           Mean    S.D. 
                 visit4 -0.1006 0.08762
                  sigma  0.3697 0.04264
(Intercept):(Intercept) -1.3550 1.27800
      treat:(Intercept) -0.9692 0.42760
       base:(Intercept)  0.8741 0.14850
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     logAge:(Intercept)  0.4724 0.37820
 treat:base:(Intercept)  0.3571 0.22170
             Random:tau  0.5137 0.07482
          (Intercept):1  1.1850 0.28190
          (Intercept):2  1.1910 0.28440

...

In this display, visit4 refers to the fixed effect coefficient γ  for 

visit four and sigma refers to the parameter σ . The lines labelled 
(Intercept):(Intercept) through treat:base:(Intercept)

refer to the second-level coefficients α . 

Once again, the fixed-effect coefficient estimates and conclusions 
match those from Breslow and Clayton (1993) closely.
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ALGORITHMS FOR THE HIERARCHICAL POISSON MODEL

In this section, we explain the MCMC algorithms used to fit the 
hierarchical Poisson model without overdispersion, with gamma-
conjugate overdispersion, and with log-normal overdispersion. 
Recall the model definitions from the section Model Description on 
page 52.

MCMC Sampler 
for the Gamma 
Conjugate 
Overdispersion 
Case 

Because the gamma distribution is conjugate to the Poisson, the 

parameter λij  can be marginalized out for the gamma conjugate 

overdispersion case, so that the distribution of yij  conditional on the 

rest of the parameters is the negative binomial distribution:

yij ξj Bij,
Γ ξj yij+( )

Γ ξj( )yij!
------------------------ 1 Bij–( )

yijBij
ξj∼

where Bij  is the shrinkage factor defined by 

Bij ξj ξj eijμij+( )⁄= .

The MCMC sampler in FlexBayes for the case of gamma-conjugate 
overdispersion is based on the Metropolis-Hastings algorithm, 

outlined as follows: initialize the parameter vector ν  to some 

particular value ν 0( )
 and repeat the following steps for 

k 0 1 2… N, , , ,= :

• Generate ν∗  from a proposal distribution q ν k( ) ν∗,( )  and 

u  from a uniform distribution U 0 1,( ) ;

• If u ρ ν k( ) ν∗,( )<  (where ρ  is defined below) then set 

ν k 1+( ) ν∗=  else set ν k 1+( ) ν k( )
= .

• Return the values ν 1( ) ν 2( )… ν N( ), , ,{ } .
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The acceptance probability ρ ν ω,( )  in the algorithm is given by the 

following, where L ν y( )  is the likelihood function (the product 

over i j,  of the density of yij ξj Bij,  as given above): 

ρ ν ω,( )
π ω( )L ω y( )q ω ν,( )
π ν( )L ν y( )q ν ω,( )
------------------------------------------------=

In practice, each element of the parameter vector is updated 

separately (the regression coefficients γ  are updated as a block, as 

are the random effects βj  and the second-level coefficients α ), 
conditional on the values of the rest of the parameters. The proposal 

distribution q γ k( ) γ,( )  for updating the regression coefficient 

vector γ  is a multivariate normal distribution with mean γ k( )
 and 

covariance matrix Σγ
k( )

, where Σγ
k( )

 is the inverse of the negative 

Hessian of L ν y( ) , evaluated at γ k( )
. The proposal distribution for 

the random effects βj  is also a multivariate normal distribution, with 
the mean and covariance chosen in the analogous fashion. The 

proposal distribution for each overdispersion parameter ξj  

(alternatively, the common overdispersion ξ ) is a univariate log-
normal distribution with the mean and variance chosen analogously 

to that for γ .

The parameter α  has a closed-form posterior distribution (normal) 
conditional on the values of the other parameters, so it is updated 

according to its conditional posterior distribution. The parameter τ2
 

(alternatively, τ2V ) has a closed-form posterior distribution if its 

prior is inverse chi-squared (alternatively, inverse Wishart); in this 
case it is updated from its conditional posterior, and otherwise it is 
updated via a Metropolis-Hastings step.
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MCMC Sampler 
for the No-
Overdispersion 
Case 

A standard Poisson regression has no overdispersion and the 
distribution of yij  conditional on the rest of the parameters is the 

Poisson distribution,  

yij λij Poisson eijλij( )∼

This case is computed similarly to the case with gamma-Poisson 

overdispersion.  The only difference is that there is no parameter ξj  

and the likelihood function L ν y( )  is the product over i j,  of the 

Poisson density of yij λij .

MCMC Sampler 
for the Log-
Normal 
Overdispersion 
Case

When there is log-normal overdispersion, it is straightforward to 
construct a MCMC sampler to generate samples from the joint 
posterior distribution of all of the parameters 

θij λijlog={ } γ βj{ } σj
2{ } τ2V α, , , , ,( ) . 

Conditional on the parameters γ βj{ } σj
2{ } τ2V α, , , ,( ), the 

transformed individual means θij{ }  have independent posterior 

distributions with θij  distributed according to the density 

proportional to 

f yij θij( ) φ θij βj γ σj
2, ,( )×

where f yij θij( )  is the Poisson density with mean θij( )exp  and 

φ θij βj γ σj
2, ,( )  is the normal density with mean mijγ xijβj+  

and variance σj
2 . In FlexBayes, the parameters θij  are updated 

individually using a Metropolis-Hastings step.
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By combining the structural model and the prior distributions, it is 

easily seen that the regression coefficients γ , the random effects 

βj , and the second-level coefficients α  have closed-form (normal) 

posterior distributions. The variance parameters τ2
 (alternatively, 

τ2V ) and σj
2

 (alternatively, σ2
) have closed-form posterior 

distributions if their priors are inverse chi-squared or inverse Wishart; 
in this case they are updated from their conditional posteriors, and 
otherwise they are updated via a Metropolis-Hastings step. 
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MODEL DESCRIPTION

The hierarchical binomial model implemented in the FlexBayes
function bhbm has the same multi-level structure as the hierarchical 
Poisson and linear models. This is illustrated by the following 
example. 

Suppose that a chain of stores has locations in a number J  of distinct 

regions, and that in each region j  there are there are nj  stores. 

Associated with each store i  in region j  is a binomial parameter 

θij  that represents the proportion of individuals entering the store 

that make a purchase. The data for a particular store might consist of 
the number of customers yij  who made a purchase on a particular 

day, out of a total of nij  customers entering the store that day.  In 

order to make inferences about the effect of a store’s layout, 
advertising, service level, or orther factor on purchasing, one must 
take into account the fact that stores in the same region may be 
correlated. 

In order to take this into account, the “individual parameters” θij  

may modeled as a function of store-level predictors mij  as well as a 

region effect βj . We call this part of the model the “structural 

model.” The mean structure of the region effects βj  may in turn be 

modeled as a function of region-level factors (e.g. average income and 
education levels) using regression coefficients α . We will call this 
component of the regression the “second-level model.”

This type of hierarchical analysis of binomial data is appropriate 
when groups, clusters, or correlated observations are present in the 
data, in which case we use j 1 2… J, , ,=  to index the group, 

i 1 2… nj, , ,=  to index the data, and yij  to denote the number 

of events out of nij  trials. Next we describe each of the levels 

(individual, structural, and second-level) in detail, as they are 
implemented in the FlexBayes function bhbm.
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Model Description
The Individual 
Model

The individual-level model specifies that the numbers of events yij , 

given the individual parameters θij , are independently distributed 

as:

yij θij Binomial nij θij,( )∼

The Structural 
Model

The most common structural model corresponds to standard logistic 
regression, wherein the individual parameters θij  are modeled as:

θij 1 θij–( )⁄( )log mijγ xijβj+=

where, just as in the linear and Poisson models, mij  and xij  are the 

fixed-effect predictors and random-effect predictors respectively, and 
γ βj,  are the fixed-effect coefficients and random effects, 

respectively. This model is available by calling bhbm.

Alternatively, the bhbm function also allows two types of structural 

models that incorporate variability of θij 1 θij–( )⁄( )log  around 

mijγ xijβj+ . One such structural model uses the beta distribution, 

conjugate to the binomial. The model is parametrized in terms of its 

mean μij 0 1,( )∈  and a group-specific precision parameter 

ξj 0>  as follows:

θij μij ξj, β ξjμij ξj 1 μij–( ),( )∼
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The precision parameter ξj  characterizes the individual-level 

variability and is often assumed to be common to all of the groups, so 
that ξj ξ= . The mean μij  is modeled through the logit link 

equation

μij 1 μij–( )⁄( )log mijγ xijβj+=

The parameter ξj
1–

 is also called an overdispersion parameter, 

meaning that ξj
1– 0=  corresponds to standard logistic regression, 

and that as ξj
1–

 increases so does the variance of yij  relative to this 

standard logistic regression. We  will refer to this particular type of 

overdispersion as “beta conjugate” overdispersion, since θij  has 

been assigned a beta distribution, and since that distribution is 
conjugate to the binomial. 

An alternative to beta conjugate overdispersion is logit-normal 
overdispersion, modeled with: 

θij 1 θij–( )⁄( )log N μij σj
2,( )∼

where σj 0>  and μij mijγ xijβj+= , i.e.  μij  is modeled as a 

linear function of the covariates.  In practice, this model is a popular 
choice because with an appropriate prior, the MCMC scheme is 
simple to implement; see the section Algorithms for the Hierarchical 
Binomial Model on page 94 for more details. The overdispersion 

parameter for the logit-normal case is σj
2

, which plays the same role 

as ξj
1–

 in the beta conjugate case. Also similarly to the beta 

conjugate case, a common overdispersion parameter is often 

assumed, so that σj
2 σ2

= .
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Model Description
The Second-
Level Model

The second-level model is specified exactly as in the hierarchical 
linear and Poisson models. In particular,

βj zjα uj+=

where zj  are the predictors associated with the j -th group or 

treatment, α  is the corresponding matrix of coefficients, and the 

vector uj  is distributed according to a multivariate normal 

distribution with mean equal to the zero vector and variance equal to 

τ2V , where either V  is the identity matrix and τ2
 is assigned a 

univariate prior, or τ2V  is given an inverse Wishart prior.

Prior 
Specification

FlexBayes allows you to choose from a number of prior distributions 

for the coefficients α γ,( ) , the random effect variance   τ2
 

(alternatively, τ2V ), and the optional overdispersion parameters 

σj
2
 or ξj . 

Fixed Effect Prior 
Specification

The regression coefficient vector γ  can be given the same prior 

distributions as for the linear hierarchical model, namely a normal 
prior, a t prior, or a flat (“non-informative”) prior. 

Prior 
Specification for 
the Beta 
Conjugate 
Overdispersion 
Parameter

In the beta conjugate overdispersion case, the prior for the precision 

parameter ξ  (or the group-specific parameters ξj ) must be 

specified as the uniform shrinkage distribution.  This distribution is 
described in section Prior Specification for the Gamma Conjugate 
Overdispersion Parameter on page 56.
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Prior 
Specification for 
the Logit-Normal 
Overdispersion 
Parameter

The logit-normal overdispersion parameter σ2
 (alternatively, σj

2
) 

is commonly assigned a scaled inverse chi-square prior:

σ2 InvChisq υo so
2,( )∼

 

However, as in the hierarchical linear and Poisson models, FlexBayes
allows you to choose priors from a number of distributions. Refer to 

Table 4.1 for the available prior distributions for σ2
 (alternatively, 

σj
2

).

Prior 
Specification for 
the Second-Level 
Model

The prior specification for the second-level parameters τ2
 

(alternatively, τ2V ) and α  is exactly as in the hierarchical linear 

and Poisson models. Refer to Table 4.1 for the available prior 
distributions for these parameters.
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EXAMPLE: TOXOPLASMOSIS DATA

The data frame toxo.dat (Kass and Steffey 1989) contains 
observations on tests for toxoplasmosis, taken in 10 cities in El 
Salvador. yi is the number of subjects that tested positive for 
toxoplasmosis in each city. ni is the number of subjects tested in each 
city. A simple model for yi is a binomial model with probability θi  
of testing positive for toxoplasmosis, given a total number ni of trials. 
In terms of the framework given in the previous section, there is a 
single group, so that J 1=  and n1 10= .

Figure 6.1: The toxoplasmosis data set.

Fitting the 
Model

In this section we fit the toxoplasmosis data from the command 
line, using a binomial regression model with beta conjugate 
overdispersion. First set the priors for the model parameters

> toxo.prior <- bhbm.prior( xi= bayes.uniformShrinkage( 
median= 0.4 ), fixed.coef= "non-informative", common.glm= 2 
)

By setting common.glm= 2 we have specified that overdispersion 
should be included in the model, and that a common overdispersion 

parameter ξ  should be used for all groups. In fact, there is only a 
single group for this example, so common.glm= 2 is equivalent to 
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common.glm= 1 and common.glm= 0. The above code also specifies a 

uniform shrinkage prior for ξ  and a flat prior for the (fixed-effect) 

intercept γ . Next, create a list of MCMC control specifications:

> toxo.sampler <- bhbm.sampler(nBurnin= 2000, nSamples= 
1000, nThin= 25, nChains= 3, update.cov= 1, init.point= 
"prior")

Here we specify multiple chains in order to allow use of the Gelman-
Rubin convergence diagnostic.  Setting init.point to "prior" tells 
the program to initialize all parameters (within each chain) by 
random draws from distributions related to the priors for the 

parameters. For instance, the intercept γ  is drawn from a t-
distribution with 3 degrees of freedom centered at zero (the nominal 
“center” of the prior), in order to give a wide range of selection for the 
initial value of this parameter and to avoid very similar initial draws 
in the different chains. Setting update.cov to 1 directs the 
Metropolis-Hastings sampler to update the covariance structure of the 
proposal distribution at each iteration. If this argument is set to zero, 
then the covariance structure is fixed during the entire simulation at 
the value computed during the first iteration of the sampler. This 
latter option might be useful if numerical errors arise when updating 
covariances on each iteration, or when the number of covariates is 
very large and faster results are desired. Now you are ready to launch 
the fitting routine

> toxo.post <- bhbm(trials.formula= ~ ni, fixed.formula= yi 
~ 1, data= toxo.dat, overdispersion= "beta-conj", prior= 
toxo.prior, sampler= toxo.sampler )  

Note that overdispersion=”beta-conj” specifies beta conjugate 
overdispersion as described in section Model Description on page 82. 
The specification fixed.formula=~1 gives a single regression 
coefficient, namely an (fixed effect) intercept. The output toxo.post
is an object of class posterior. 

Convergence 
Diagnosis

You can look at autocorrelation plots for the parameters by typing

 > autocorr.plot(toxo.post)
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The first tab of the resulting window is given in Figure 6.2, showing 
the autocorrelation plots from the first chain for the intercept γ , the 

overdispersion parameter ξ , and the individual parameters θi . 
The autocorrelation plots for the rest of the individual parameters and 
the second and third chains are also generated but are not shown 
here.  The autocorrelation plots show that slightly more thinning 
would be desirable. Increase the thinning in the above model fit by 
setting nThin= 100 in the call to bhbm.sampler. Then produce the 
Gelman-Rubin-Brooks plots by calling gelman.plot(toxo.post), 
which gives the plot shown in Figure 6.3. The only parameter that 

exhibits substantial lack of convergence by this measure is ξ .  

Figure 6.2:  Autocorrelation plots for the toxoplasmosis example.
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Figure 6.3:  Gelman-Rubin-Brooks plots for the toxoplasmosis example.
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Look at the estimated posterior density of ξ  by calling 
densplot(toxo.post), which yields the plot given in Figure 6.4.

Figure 6.4:  Posterior density plots for the toxoplasmosis data.

Notice that the estimated posterior density of ξ  is very right-skewed. 

This can be viewed more clearly by looking at the trace plot for ξ , 
generated by calling traceplot(toxo.post). The Gelman-Rubin 
diagnostic assumes normality of the posterior density, so that in cases 
with very skewed posterior density it can yield invalid results. 
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Application of the Gelman-Rubin diagnostic to a log transformation 

of the posterior samples of ξ  shows no substantial lack of 
convergence.

Posterior 
Inference

Create posterior summaries of toxo.post by typing its name, which 
gives the following output.  Be aware that in all of the chains we have 
only drawn 3,000 samples from the posterior distribution, so that our 
posterior inferences are subject to fairly high random variability; in 
order to obtain more accurate posterior inferences increase the value 
of nSamples in the above call to bhbm.sampler.

> toxo.post
*** Posterior Distribution from the Bayesian Model ***
Call:  
bhbm(trials.formula =  ~ ni, fixed.formula = yi ~ 1, data = 
toxo.dat, 
overdispersion = "beta-conj", prior = toxo.prior, sampler 

= 
toxo.sampler )

# of Chains:  3 
Starting Iteration:  2001 
Ending Iteration:  101901 
Thinning:  100 
# of Samples:  1000 

1. Summary statistics:

               Mean      S.D. 
(Intercept)  0.1747   0.21930
         XI 66.8600 873.90000
    THETA:1  0.4959   0.06314
    THETA:2  0.4963   0.09041
    THETA:3  0.5573   0.04966
    THETA:4  0.6083   0.09236
    THETA:5  0.5404   0.06340
    THETA:6  0.6692   0.05416
    THETA:7  0.5764   0.08987
    THETA:8  0.4567   0.11030
    THETA:9  0.4414   0.12580
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   THETA:10  0.5958   0.06543

2. Quantiles:

              2.5 %    25 %    50 %    75 %   97.5 % 
(Intercept) -0.2738 0.04328  0.1869  0.3145   0.5911
         XI  3.5700 9.98300 17.8400 35.0900 215.9000
    THETA:1  0.3663 0.45510  0.4976  0.5399   0.6135
    THETA:2  0.2978 0.44000  0.5017  0.5572   0.6651

...

The estimated values of the individual parameters θi  can be 

compared to their empirical values, given by 
> toxo.dat$yi / toxo.dat$ni

This comparison shows that shrinkage of these parameters towards 
the common mean has occurred in the Bayesian model.
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ALGORITHMS FOR THE HIERARCHICAL BINOMIAL MODEL

Computation in the hierarchical binomial model is analogous to the 
hierarchical Poisson model (see the section Algorithms for the 
Hierarchical Poisson Model on page 77 for details on the latter).  
The main difference is that in the binomial model, integrating out 
the individual parameters for the conjugate beta overdispersion case 
yields a beta-binomial distribution for the outcome counts, while in 
the Poisson model this integration yields a negative binomial 
distribution for the outcome counts.  However, the consequences for 
computation are the same; for the beta conjugate overdispersion 
case it is possible to perform computation entirely ignoring the 
individual parameters. As for logit-normal overdispersion in the 
binomial model, the computation is analogous to that for log-normal 
overdispersion in the Poisson model. For these cases, the individual 
parameters must be explicitly sampled.
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