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Chapter 1

Competing risks

1.1 Technicalities

First we set some output and graphics parameters for convenience and load the packages
needed:

> options(width = 90,

+ show.signif.stars = FALSE,

+ SweaveHooks=1ist (fig = function()

+ par(mar = c(3, 3, 1, 1),

+ mgp = c(3, 1, 0) / 1.6,
+ las = 1,

+ lend = "butt",

+ bty — ”H”)))

> library(Epi)

> library(popEpi)

> library(survival)
> clear()

R Epi  popEpi
4.5.1 2.60 0.4.13

1.2 Concepts

The concept of competing risks is one where persons in a given state, “alive”, say, are
subject to a number of different causes of death, “causel”, “cause2” etc. Causes of death are
required to be exhaustive and mutually exclusive. That is, you will eventually die from one
of the designated causes, and you can only die from one.

The cause-specific rate for cause c is defined as:

Ae(t) = P{death from cause c in (t,t+ h]| alive at t} /h

... formally, the limit of this quantity as h — 0.

The observed data will be a survival time and an exit status which is either “censored
alive” or one of the causes. In situations where the causes are not causes of death but other
events, it is implicit that we only consider the first occurrence of an event from the state
“alive”, and ignore whatever occurs after that.
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1.2.1 Cause specific rates and likelihood

The likelihood for observations from a competing risk scenario is a function of the
cause-specific transition rates, and is a product of the likelihoods that would emerge if we
considered each cause as being the only possible event. Thus analysis is in principle
straight forward: estimate a model for each of the cause-specific rates; these will together
form a complete model for the competing risks problem.

If the cause-specific rates are all we want to assess then we are done.

1.2.2 Survival and cumulative risks

In addition to the rates we might however also be interested in the survival probability and
the cumulative risks of each cause of death.

The survival is the probability of still being alive at a given time after entry—a function
of time since entry. The cumulative risk of dying from cause c is the probability of having
died from cause c as a function of time since entry.

This means that a time of entry is required for the calculations these quantities.

1.2.3 Sojourn times

The sojourn time for cause c is the time spent in the “cause ¢’ state before a given time, ¢,
say. This is also called the expected lifetime lost to cause ¢, truncated at the time ¢t. For
the state “alive” it will be the expected time lived before ¢. This is also called the restricted
mean survival time, RMST.

1.2.4 The time scale

The cause specific rates will be functions of covariates, notably a time scale, be that age or
time since entry to the study or even calendar time. But the cumulative risks are
probabilities that refer to time since some origin. Thus cumulative risks (and survival) are
only meaningful in relation to a time that begins at 0. Though not a formal mathematical
requirement this implies that we should have data starting at time 0.

If we were to use age as timescale for cumulative risk, we would want data available since
birth; if we only had observations where most people entered between 20 and 40 years of
age, we could mathematically compute cumulative risk to some age, but it would be
nonsense. Instead we would compute the cumulative risk given that a person attained age
40, say. In that case the time scale would be age — 40.

1.3 Rates and cumulative risks

Each of the cumulative risks is a function of the survival function which in turn depends on
all rates. Specifically, if the cause-specific rates are A.(t), c = 1,2, ..., then the survival
function (probability of being alive at time t) is:

S(t) = exp <_/o Z)\C(s) ds) = exp (—Z Ac(t)> (1.1)
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The quantities A.(t) = fot Ac(s) ds are called cumulative rates (probabilists call them
integrated intensities), although they are not rates. Cumulative rates are dimensionless,
but they have no probability interpretation of any kind.

The cumulative risk, the probability of dying from cause k, say, before time ¢, Ry(t) is:

Ru(t) = / () S(u) du = / T (u) exp (-Z Aj(u)> du (1.2)

=0 =0

The rationale is that A;(u)du is the probability of death from cause k in the small interval
(u,u + du), conditional on being alive at time w. If this is multiplied with the probability
of being alive at u, S(u), Bayes rule tells us that we get the marginal probability of death
from cause k in the small interval (u,w + du). This function of u is the argument in the
integral; so integration from u = 0 to u = ¢, will give the probability of death from cause ¢
anywhere in (0, t)—the cumulative risk of cause k at t.

Parametric models for the cause-specific rates can produce estimated transition rates A,
at closely spaced intervals, and the cumulative risks can then be estimated from these by
simple numerical integration; this is illustrated in the next chapter.

Note that at any one time every person is either alive or dead from one of the causes, so
the sum of the survival and the cumulative risks is always 1:

1=S5()+ Ri(t)+ Rao(t) +---, V¢

1.3.1 Confidence intervals by simulation

But even if we from the modeling of the \.s may have standard errors of log (A.(t)), the
standard errors of the R.s will be analytically intractable from these.

In practice, the only viable way to get confidence intervals for the cumulative risks, R, is
therefore by calculation of a set of rates A\.(¢) by sampling from the posterior distribution
of the parameters in the models for log ()\c(t)), and then compute the integrals numerically
for each simulated sample, according to formulae 1.1 and 1.2. This will produce a so-called
parametric bootstrap sample of the cumulative risks from which we can derive confidence
intervals

The simulation approach also allows calculation of confidence intervals for sums of the
cumulative risks, R;(t) + Ra(t), for example, which will be needed if we want to show
stacked cumulative risks.

Finally, it will also allow calculation of standard errors of sojourn times in each of the
states “alive” and “causel”; “cause2”,.... While the latter two may not be of direct interest,
then differences between such sojourn times between different groups can be interpreted as
years of life lost to each cause between groups.

1.3.2 Subdistribution hazard

A common concept seen in competing risks is the subdistribution hazard, and proportional
hazards models for this (the Fine-Gray model).

Suppose for a moment we only consider all-cause mortality, A(t). Then the cumulative
risk of death is:

R(t) =1 - S(t) = 1 — exp (—/Ot AGs) ds>
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Solving this for A will yield:
dlog (1 — R(t))
dt

In the case of multiple causes of death we can define the subdistribution hazard for cause c
by using the same transformation of the cumulative risk for cause c:

() =

Sull) = — dlog (1d; R.(t))

R0 =1-e0 (- [ Rs) 1s)

Thus, the subdistribution hazard S\C(t) is a function which, when subjected to the
(hazard—risk) function from the all-cause mortality case, yields the cause-specific risk.

The Fine-Gray model is a model for the subdistribution hazard .. It is only a model for
one cause-specific hazard. Of course it can be applied to all available causes in turn, but
the sum of the cumulative risks derived from the models may exceed 1. ..

Unlike a cause-specific hazard, which can depend on multiple time scales, the
subdistribution hazard can only depend on one, since it requires an origin—just like
cumulative risks.

But the interpretation of a subdistribution hazard is difficult. I have yet to see one that
goes beyond the mathematical formalism above. Therefore the subdistribution is not
included in this vignette.

or, for the cause-specific risk:



Chapter 2

Example data

2.1 A Lexis object

As an illustrative data example we use the (fake) diabetes register data; we set up the
Lexis object, an then cut the follow-up time at dates of 0AD and Ins using mcutLexis:

> data(DMlate)
> Ldm <- Lexis(entry = list(per = dodm,
age = dodm-dobth,
tfd = 0),
exit = list(per = dox),
exit.status = factor(!is.na(dodth), labels = c("DM", "Dead")),
+ data = DMlate)
NOTE: entry.status has been set to "DM" for all.
NOTE: Dropping 4 rows with duration of follow up < tol

+ 4+ + +
I

> summary(Ldm, t = T)

Transitions:
To
From DM Dead Records: Events: Risk time: Persons:
DM 7497 2499 9996 2499 54273.27 9996
Timescales:
per age tfd

> set.seed(1952)
> Mdm <- mcutLexis(Ldm,

+ wh = c('dooad', 'doins'),
+ new.states = c('0AD', 'Ins'),

+ seq.states = FALSE,

+ ties = TRUE)

NOTE: Precursor states set to DM
NOTE: 15 records with tied events times resolved (adding 0.01 random uniform),
so results are only reproducible if the random number seed was set.

> summary (Mdm)

Transitions:
To
From DM Dead O0OAD 1Ins Ins+0AD Records: Events: Risk time: Persons:
DM 2830 1056 2957 689 0 7532 4702 22920.38 7532
0AD 0 992 3327 0 1005 5324 1997 22965.24 5324
Ins 0 152 0 462 172 786 324 3883.06 786



6 2.1 A Lexis object CmpRskParSim

Ins+0AD 0 299 0 0 878 1177 299 4504 .58 1177
Sum 2830 2499 6284 1151 2055 14819 7322  54273.27 9996

before drug inception) in intervals of 1/12 year, creating a Lexis object for a competing
risks situation with three possible event types:

> Sdm <- splitLexis(factorize (subset (Mdm,

+ lex.Cst == "DM")),
+ time.scale = "tfd",
+ breaks = seq(0, 20, 1/12))
> summary (Sdm)
Transitions:
To
From DM Dead O0AD Ins Records: Events: Risk time: Persons:
DM 274263 1056 2957 689 278965 4702 22920.38 7532

We can illustrate the follow-up in the full data frame and in the restricted data frame

> boxes(Mdm, boxpos = list(x = c(15, 50, 15, 85, 85),
+ = ¢c(85, 50, 15, 85, 15)),
+ scale.R = 100,
+ show.BE = TRUE)
DM ??? ?)) Ins
22,920.4 - | 3,883.1
7,532 2,830 97 462
1,056
(4.6)
152
2,957 (3.9) 172
(12.9) Dead (4.4)
0 2,499
992
4.3)
299
L 1,005 (6:6) v
OAD ( éi 4) Ins+OAD
22,965.2 - | 4,504.6
2,367 3,327 0 878

Figure 2.1: The transitions in the multistate model, where follow-up is extended also after
beginning of first drug exposure. Rates in brackets are per 100 PY. ./crisk-boxes5

boxes (Relevel (Sdm, c(1, 4, 2, 3)),
boxpos = list(x c(15, 85, 75, 15),
c(85, 85, 30, 15)),

scale.R
show.BE

100,

>
+
+
+
+ TRUE )
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689
DM
22.920.4 (3.0 - Ins 660
7,532 2.830
1,056
2957 (4-6)
(12.9)
Dead
v 0 1,056
OAD
0 2957

Figure 2.2: The transitions in the competing risks model, where follow-up is stopped at
first drug exposure. By that token only the DM state has person-years; a characteristic of a
competing risks situation. ./crisk-boxes4

2.2 Models for rates

Now that we have set up a dataset with three competing events, we can model the
cause-specific rates separately by time from diagnosis as the only underlying time scale.
This is done by Poisson-regression on the time-split data set; since the dataset is in
Lexis format we can use the convenience wrapper gamLexis to model rates as smooth
functions of time (tfd). Note that we only need to specify the to= argument because there
is only one possible from for each to (incidentally the same for all to states, namely DM):

> mD <- gamLexis(Sdm, ~ s(tfd, k = 5), to = 'Dead')
mgcv::gam Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:

DM->Dead

> m0 <- gamLexis(Sdm, ~ s(tfd, k = 5), to = 'OAD' )

mgcv::gam Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:

DM->0AD

> mI <- gamLexis(Sdm, ~ s(tfd, k = 5), to = 'Ins' )

mgcv::gam Poisson analysis of Lexis object Sdm with log link:
Rates for the transition:
DM->Ins

We see that gamLexis (just like glmLexis would) tells us what transition rates are
modeled.
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With these models fitted we can compute the rates, and from these cumulative rates and
the cumulative risks and sojourn times in states using the usual formulae.

First we compute the rates in intervals of length 1/20 years. Note that these prediction
points are unrelated to the follow-up intervals in which we split the observed data for
analysis—they were 1 month intervals (1/12 year), here we use 1/20 year (in real life a
smaller interval should be used, say 1/50 or 1/100 year):

> nd <- data.frame(tfd = seq(0, 10, 1/20))

> rownames (nd) <- nd$tfd

> str(nd)

'data.frame': 201 obs. of 1 variable:

$ tfd: num 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 ...

With this we can show the rates as a function of the time since entry (diagnosis of
diabetes):

> matshade (nd$tfd, cbind(ci.pred(mD, nd),
+ ci.pred(mI, nd),
ci.pred(m0, nd)) * 1000,
col = c("black", "red", "blue"), log = "y", lwd = 3, plot = TRUE,
xlab = "Time since DM diagnosis (years)",
ylab = "Rates per 1000 PY", ylim = c(0.05, 500), yaxt = "n")
axis(side = 2, at = 11 <- outer(c(1,2,5), -2:3, function(x,y) x * 107y),
labels = formatC(11l, digits = 4), las = 1)
axis(side = 2, at = outer(c(1.5,2:9), -2:3, function(x,y) x * 107y),
labels = NA, tcl = -0.3)
text (0, 0.5%0.6°c(1,2,0),
c(”Dead", "Tns u} HOADH) s
col = c("black","red", "blue"), adj = 0, font = 2)

+ +V+VH+VE+ S+ o+

Note that the graph in figure 2.3 is not normally shown in analyses of competing risks;
the competing cause-specific rates are hardly ever shown. I suspect that this is frequently
because they are often modeled by a Cox model and so are buried in the model and hard
to get at.

Since we will be integrating the rates, it would also be relevant to show the rates on a
linear scale instead, de-emphasizing the very small fluctuations of the Ins rates that are
over-emphasized when using a log-scale for the y-axis.

> matshade (nd$tfd, cbind(ci.pred(mD, nd),
+ ci.pred(mI, nd),
ci.pred(m0, nd)) * 1000,
col = c("black", "red", "blue"), lwd = 3, plot = TRUE,
xlab = "Time since DM diagnosis (years)",
ylab = "Rates per 1000 PY", ylim = c(0, 500), yaxs = "i")
text (8, 500 - c(2, 3, 1) * 20,
c("Dead", "IHS N, NUADN) s
col = c("black","red","blue"), adj = 0, font = 2)

+ 4+ VvV + + + +

2.3 Cumulative rates and risks

For the calculation of the cumulative rates and state probabilities, we need just the
estimated rates (without Cls). The formulae 1.1 and 1.2 on page 3 are transformed to
R-code; starting with the rates, A\p as 1D etc:
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0.05

[ T T T T 1
0 2 4 6 8 10

Time since DM diagnosis (years)

Figure 2.3: Estimated rates from the DM state, estimates are from gam models fitted to data
split in 1 month intervals (1/12 year, that is). Rates of OAD is in the vicinity of 0.1/year,
and mortality about half of this. Rates of insulin start among persons on no other drug are
beginning high, then decreasing with a nadir at about 4 years and then increase to a peak at
8 years.

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

./crisk-rates

# utility function to compute midpoints between sucessive values in a vector

mp <-
#

function(x) x[-1] - diff(x) / 2

int <- 1 / 20
# rates at midpoints of intervals

1D <-
1T <-
10 <-
#

mp(ci.pred(mD, nd)[, 1])
mp(ci.pred(mI, nd)[, 1])
mp(ci.pred(m0, nd)[, 1])

# cumulative rates and survival function at right border of the intervals

LD <-
LT <-
LO <-

cumsum(1D) * int
cumsum(1I) * int
cumsum(10) * int

# survival function, formula (1.1)

Sv <-
#

exp(- LD - LI - LO)

# when integrating to get the cumulative *risks* we use the average
# of the survival function at the two endpoints
# (adding 1 as the first), formula (1.2)

Sv <-
rD <-
rI <-
ro <-

Now we

c(1, Sv)

c(0, cumsum(1D * mp(Sv)) * int)
c(0, cumsum(1I * mp(Sv)) * int)
c(0, cumsum(10 * mp(Sv)) * int)

have the cumulative risks for the three causes and the survival, computed at the
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500
OAD
Dead
Ins
400
>
0300
o
o
o
—
o)
o
1)
(0]
©200
x
100
L ———
0= T T T T )
0 2 4 6 8 10

Time since DM diagnosis (years)

Figure 2.4: FEstimated rates from the DM state, estimates are from gam models fitted to data
split in 1 month intervals (1/12 year, that is). Rates of OAD is in the vicinity of 0.1/year,
and mortality about half of this. . ./crisk-rates-1

end of each of the intervals. At any time point the sum of the 3 cumulative risks and the
survival should be 1:
> summary(rD + rI + r0 + Sv)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1 1

> oo <- options(digits = 20)
> cbind (summary(Sv + rD + rI + r0))

[,1]
Min. 1.0000000000000000000
1st Qu. 1.0000252933615676465
Median 1.0000254405444475303
Mean 1.0000249140597872177
3rd Qu. 1.0000258488927373790
Max. 1.0000260207157363190

> options(oo0)

...and bar a small rounding error, they are.

We can then plot the 3 cumulative risk functions stacked together using mat2pol (matrix
to polygons):
> zz <- mat2pol(cbind(rD, rI, r0, Sv), x = nd$tfd, # $

+ xlim = ¢(0,10), xaxs = "i", yaxs = "i", las = 1,
+ xlab = "Time since DM diagnosis (years)",

+ ylab = "Probability",

+ col = c("black","red", "blue","forestgreen"))

> text (9, mp(zz["9", ]), c("Dead", "Ins", "OAD"," DM"), col = "white")
> box(col = "white", lwd = 3)
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1.0

0.8

Probability
o
o

©
i

0.2

0.0
0 2 4 6 8 10

Time since DM diagnosis (years)

Figure 2.5: Probabilities of being in the 4 different states as a function of time since diag-
nosis. Note that 0AD means that OAD was initiated first, and similarly for Ins. We are not
concerned about what occurs after any these events. Dead means dead without initiating any
of the two drugs. ./crisk-stack

2.4 Sojourn times

The sojourn times in each of the states is just the area of each of the coloured parts of
figure 2.5. Since the y-dimension of the plot is probability (dimensionless) and the z-axis
has dimension time, the computed areas will have dimension time.

Normally we will not report the sojourn times as functions of (truncation) time, but only
report them at a few select truncation points, such as 5 or 10 years. Calculation of the 10
year sojourn times would be straight-forward as integrals from 0 to 10—these calculations
rely on the predicted rates from nd being for the first 10 years:

> Sj <- c(sjA = sum(Sv * int),
+ sjD = sum(rD * int),
+ sjI = sum(rI * int),
+ 5j0 = sum(r0 * int))
> ¢(Sj, sum(Sj))
sjA sjD sjI sjo0

4.3486390 1.2071800 0.8396038 3.6548276 10.0502504

We see that there is a some rounding error in the calculations; the sum should really be

exactly 10.
This was a demonstration on how to compute the rates, cumulative risks and sojourn
times. But no confidence intervals.
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Confidence 1mmtervals for cumulative risks

Besides confidence intervals for each of the 4 cumulative risks, we will also be interested in
confidence intervals for sums of any subset of the cumulative risks, corresponding to the
borders between the colours in figure 2.5. If we only had two competing risks (and hence
three states) the latter would not be an issue, because the sum of any two cumulative risks
will be 1 minus the cumulative risk of the remainder, so we could get away with the
confidence intervals for the single cumulative risks. This is the reason we have chosen an
example with 3 competing risks and not just 2; we then have 4 probabilities to sum in
different order.

A short look at the formulae for cumulative risks will reveal that analytic approximation
to the standard error of these probabilities (or some transform of them) is not really a
viable way to go. Particularly if we also want confidence intervals of sums of the state
probabilities as those shown in stacked plots.

So in practice, if we want confidence intervals not only for the state probabilities, but
also for any sum of subsets of them we would want a large number of simulated copies of
the cumulative risks, each copy being of the same structure as the one we just extracted
from the models.

Confidence intervals for sojourn times (i.e. time spent) in each state up to a given time,
would come almost for free from the simulation approach, by taking the relevant quantiles
of the simulated quantities.

This means that we must devise a method to make a prediction not from the estimated
model, but where we instead of the model parameters use a sample from the posterior
distribution of the estimated parameters. Here, the posterior distribution of the parameters
will be taken to be the multivariate normal distribution with mean equal to the vector of
parameter estimates and variance-covariance matrix equal to the estimated
variance-covariance matrix of the parameters.

Precisely this approach is implemented in ci.lin via the sample argument; we can get a
predicted value from a given prediction data frame just as from ci.pred resp. ci.exp;
here is shown two different ways of getting predicted values of the cause-specific rates:

> head(cbind(ci.pred(mI, nd),
+ ci.exp (mI, nd)))
Estimate 2.5% 97.5% exp(Est.) 2.5% 97.5%
0.3425874 0.3111484 0.3772030 0.3425874 0.3111484 0.3772030
.05 0.2874359 0.2630855 0.3140401 0.2874359 0.2630855 0.3140401
.1 0.2411669 0.2221042 0.2618657 0.2411669 0.2221042 0.2618657
.15 0.2023535 0.1871526 0.2187890 0.2023535 0.1871526 0.2187890

12
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1697982 0.1573575 0.1832226 0.1697982 0.1573575 0.1832226

0.2 0.
0.25 0.1424958 0.1319999 0.1538263 0.1424958 0.1319999 0.1538263

Here is an illustration of the prediction with model based confidence intervals for the rates
of insulin start (model mI), alongside predictions based on samples from the posterior

distribution of the parameters in the model:

> str(ci.lin(mI, nd, sample = 4))
num [1:201, 1:4] -1.01 -1.2 -1.39 -1.57 -1.76 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:201] "O" "0.05" "O0.1" "0.15" ...

..$ : NULL
> head(cbind(ci.pred(mI, nd), exp(ci.lin(mI, nd, sample = 4))))
Estimate 2.5% 97.5%

0 0.3425874 0.3111484 0.3772030 0.3542825 0.3503058 0.3431391 0.3784217

0.05 0.2874359 0.2630855 0.3140401 0.2941846 0.2903514 0.2894193 0.3123394

0.1 0.2411669 0.2221042 0.2618657 0.2442853 0.2406626 0.2441134 0.2578015

0.15 0.2023535 0.1871526 0.2187890 0.2028578 0.1994859 0.2059075 0.2127957

0.2 0.1697982 0.1573575 0.1832226 0.1684676 0.1653675 0.1736930 0.1756604

0.25 0.1424958 0.1319999 0.1538263 0.1399229 0.1371016 0.1465341 0.1450233

Note that we use exp(ci.lin(...—this is because the sample= argument does not work

with ci.exp.

The simulation (parametric bootstrapping) is taking place at the parameter level and the
transformation to survival and cumulative risks is simply by a function applied to each
simulated set of rates.

3.1 Common parameters across cause-specific rates

Note that we have implicitly been assuming that the transitions are being modeled
separately. If some transitions are modeled jointly—for example assuming that the rates of
0AD and Ins are proportional as functions of time since entry, we are in trouble, because we
then need one sample from the posterior generating two different predictions, one for each
of the transitions modeled together. Moreover the model will have to be a model fitted to a
stack.Lexis object, so a little more complicated to work with.

A simple way to program this would be to reset the seed to the same value before
simulating with different values of nd, this is what is intended to be implemented, but is
not yet. This is mainly the complication of having different prediction frames for different
risks in this case.

However, this is not a very urgent need, since the situation where you want common
parameters for different rates out of a common state is quite rare. It would for example be
quite odd to assume the the M/W rate ratio were the same across different cauese of death.
By that token the facility is not likely to be implemented anytime soon, if ever.

3.2 Simulation based confidence intervals

The parametric bootstrap is implemented in the function ci.Crisk (confidence intervals
for Cumulative risks) in the Epi package:
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We can now run the function using the model objects for the three competing events,
using a common prediction data frame, nd for the rates. The time points in the frame must
be so closely spaced that it makes sense to assume the rates constant in each interval; here
we use intervals of length 1/20 years, in real applications we would use 1/50 (about 1
week) or less:

> res <- ci.Crisk(1ist(0AD = mO,

+ Ins = mI,

+ Dead = mD),

+ nd = data.frame(tfd = seq(0, 10, 1/20)),
+ nB = 500,

+ perm = 4:1)

NOTE: Times are assumed to be in the column tfd at equal distances of 0.05
> str(res)

List of 4
$ Crisk: num [1:201, 1:4, 1:3] 1 0.959 0.923 0.892 0.864 ...
..- attr(x, "dimnames")=List of 3
..$ tfd : chr [1:201] "O" "0.05" "O.1" "0.15" ...
..$ cause: chr [1:4] "Surv" "QOAD" "Ins" "Dead"
o008 : chr [1:3] "50%" "2.5%" "97.5%"
$ Srisk: num [1:201, 1:3, 1:3] 0 0.0034 0.00662 0.00968 0.01259 ...
..- attr(x, "dimnames")=List of 3
..$ tfd : chr [1:201] "O"™ "0.05" "0.1" "O0.15" ...
..$ cause: chr [1:3] "Dead" "Dead+Ins" "Dead+Ins+0AD"
o008 : chr [1:3] "50%" "2.5%" "97.5%"
$ Stime: num [1:201, 1:4, 1:3] 0 0.049 0.096 0.141 0.185 ...
..- attr(*, "dimnames")=List of 3
..$ tfd : chr [1:201] "O" "0.05" "O.1" "0O.15" ...
..$ cause: chr [1:4] "Surv" "QOAD" "Ins" "Dead"
o008 : chr [1:3] "50%" "2.5%" "97.5%"
$ time : num [1:201] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 ...
- attr(*, "int")= num 0.05

As we see, the returned object (res) is a list of length 4, the first 3 components are 3-way
arrays, and the last the vector of times of the first dimension of the arrays. The latter is
mainly for convenience in further processing—it is easier to write res$time than
as.numeric(dimnames (res$Crisk) [[1]]).

The three first components of res represent:

e Crisk: Cumulative risks for each state
e Srisk: Stacked cumulative risks across states
e Stime: Sojourn times in each state, truncated at each point of the time dimension.

The first dimension of each array is time corresponding to endpoints of intervals of
length int, (normally assumed starting at 0, but not necessarily). The second dimension is
states (or combinations thereof). The last dimension of the arrays is the type of statistic;
50% is the median of the samples, and the bootstrap confidence intervals as indicated;
taken from the alpha argument to ci.Crisk (defaults to 0.05).

The argument perm governs in which order the state probabilities are stacked in the
Srisk element of the returned list, the default is the states in the order given in the list of
models in the first argument to ci.Crisk followed by the survival.
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If we want the bootstrap samples to make other calculations we can ask the function to
return the bootstrap samples of the rates by using the argument sim.res = ’rates’
(defaults to *none’):

> rsm <- ci.Crisk(1ist(0OAD = mO,

+ Ins = mI,

+ Dead = mD),

+ nd = data.frame(tfd = seq(0, 10, 1/20)),
+ nB = 500,

+ sim.res = 'rates')

NOTE: Times are assumed to be in the column tfd at equal distances of 0.05
> str(rsm)

num [1:201, 1:3, 1:500] 0.436 0.416 0.397 0.379 0.362 ...
- attr(*, "dimnames")=List of 3
..$ time: chr [1:201] "O0" "0.05" "O.1" "O.15" ...
..$ mod : chr [1:3] "OAD" "Ins" "Dead"
..$ sim : chr [1:500] "im mom n3n nwgnw |
- attr(*, "int")= num 0.05
- attr(x, "time")= num [1:201] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 ...

This is 500 bootstrap samples (defined by nB=) of the rates evaluated at the 201 endpoints
of the intervals (defined in nd).

Alternatively we can get the bootstrap samples of the cumulative risks by setting
sim.res = ’crisk’:

> csm <- ci.Crisk(1ist(0OAD = mO,

+ Ins = mI,

+ Dead = mD),

+ nd = data.frame(tfd = seq(0, 10, 1/20)),
+ nB = 500,

+ sim.res = 'crisk')

NOTE: Times are assumed to be in the column tfd at equal distances of 0.05
> str(csm)

num [1:201, 1:4, 1:500] 1 0.959 0.923 0.892 0.863 ...
- attr(*, "dimnames")=List of 3

..$ tfd : chr [1:201] "O" "0.05" "0.1" "O.15"

..$ cause: chr [1:4] "Surv" "OAD" "Ins" "Dead"

..$ sim : chr [1:500] "im mQm n3gm wgn
- attr(*, "int")= num 0.05

These are 500 simulated samples of the cumulative risks evaluated at the 201 endpoints of
the intervals, and also includes the survival probability in the first slot of the 2"¢ dimension
of csm.

3.3 Simulated confidence intervals for rates
In figure 2.3 we showed the rates with confidence intervals from the model. But in rsm we

have 500 parametric bootstrap samples of the occurrence rates, so we can derive the
bootstrap medians and the bootstrap c.i.s:
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> Brates <- aperm(apply(rsm,

+ 1:2,

+ quantile,

+ probs = c(.5, .025, .975)),
+ c(2, 3, 1))

> str(Brates)

num [1:201, 1:3, 1:3] 0.461 0.438 0.417 0.397 0.378 ...
- attr(*, "dimnames")=List of 3

..$ time: chr [1:201] "O0" "0.05" "O.1" "O.15" ...

..$ mod : chr [1:3] "OAD" "Ins" "Dead"

.8 : chr [1:3] "50%" "2.5%" "97.5%"

(aperm permutes the dimensions of the array). Then we can plot the bootstrap estimates
on top of the estimates based on the normal approximation to distribution of the
parameters. They are—mnot surprisingly—in close agreement since they are both based on
an assumption of normality of the parameters on the log-rate scale:

500
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Figure 3.1: Estimated rates from the DM state, estimates are from gam models fitted to data
split in 1 month intervals (1/12 year, that is). The white dotted curves are the bootstrap
medians, black dotted curves are the bootstrap 95% c.i.s. ./crisk-rates-ci

> matshade (nd$tfd, cbind(ci.pred(mD, nd),

+ ci.pred(mI, nd),

+ ci.pred(m0, nd)) * 1000,

+ ylim = ¢(0.1,500), yaxt = "n",

+ ylab "Rates per 1000 PY",

+ xlab = "Time since DM diagnosis (years)",
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col = c("black", "red", "blue"), log = "y", lwd = 3, plot = TRUE)
matlines (nd$tfd,
cbind(Brates[, "Dead", ],
Brates[, "Ins" , ],
Brates[, "OAD" , ]) * 1000,
col = c("white", "black", "black"), 1ty = 3, lwd = c(3,1,1))
axis(side = 2, at = 11 <- outer(c(1,2,5), -2:3, function(x, y) x * 107y),
labels = formatC(1l1l, digits = 4), las = 1)
axis(side = 2, at = outer(c(1.5, 2:9), -2:3, function(x, y) x * 107y),
labels = NA, tcl = -0.3)
text (0, 0.5 * 0.67c(1,2,0),
c("Dead", “IIIS”, HOADH)’
col = c("black", "red", "blue"), adj = 0, font = 2)

+ +V+VFEVE+F+V+

3.4 Confidence intervals for cumulative risks

In the Crisk component of res we have the cumulative risks as functions of of time, with
bootstrap confidence intervals, so we can easily plot the three cumulative risks:

0.4
OAD
Dead
2
%03— Ins
Qo
o
S
(]
2
s
20.2-
>
8]
0.1
0.0 T T T T |
0 2 4 6 8 10

Time since DM diagnosis (years)

Figure 3.2: Cumulative risks for the three types of events, with 95% bootstrap-based confidence
intervals as shades. ./crisk-crates

> matshade (res$time,
+ cbind(res$Crisk[, "Dead", ],
+ res$Crisk[,"Ins" ,],
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text(8, 0.3 + c(1, 0, 2) / 25,
C(”Dead", ”Insll’ HOAD”)’
col = c("black", "red", "blue"), adj = 0)

+ res$Crisk[,"0AD" ,]1), plot = TRUE,

+ xlim = ¢(0,10), xaxs = "i", yaxs = "i", las = 1,
+ xlab = "Time since DM diagnosis (years)",

+ ylab = "Cumulative probability",

+ col = c("black","red", "blue"))

>

+

+

3.5 Confidence intervals for stacked cumulative risks

Unlike the single cumulative risks where we have a confidence interval for each cumulative
risk, when we want to show the stacked probabilities we must deliver the confidence
intervals for the relevant sums, they are in the Srisk component of res.

> str(res$Crisk)
num [1:201, 1:4, 1:3] 1 0.959 0.923 0.892 0.864 ...
- attr(*, "dimnames")=List of 3
..$ tfd : chr [1:201] "O"™ "O0.05" "O.1" "O.15"
..$ cause: chr [1:4] "Surv" "QAD" "Ins" "Dead"
.$ : chr [1:3] "50%" "2.5%" "97.5%"

> str(res$Srisk)

num [1:201, 1:3, 1:3] 0 0.0034 0.00662 0.00968 0.01259 ...
- attr(*, "dimnames")=List of 3
..$ tfd : chr [1:201] "O"™ "O0.05" "O.1" "O.15"
..$ cause: chr [1:3] "Dead" "Dead+Ins" "Dead+Ins+0AD"
.$ : chr [1:3] "50%" "2.5%" "97.5%"

But we start out by plotting the stacked probabilities using mat2pol (matrix to polygon),
the input required is the single components from the Crisk component. Then we add the
confidence intervals as white shades (using matshade):

> zz <- mat2pol(res$Crisk[,c("Dead", "Imns", "OAD", "Surv"),1],

+ x = res$time,

+ xlim = ¢(0, 10), xaxs = "i", yaxs = "i", las = 1,

+ xlab = "Time since DM diagnosis (years)",

+ ylab = "Probability",

+ col = c("black","red","blue", "forestgreen") )

> text (9, mp(zz["9",]), c("Dead", "Ins", "OAD", "DM"), col = "white" )
> matshade (res$time,

+ cbind(res$Srisk([, 1, ],

+ res$Srisk([, 2, 1,

+ res$Srisk[, 3, 1),

+ col = 'transparent', col.shade = "white", alpha = 0.4)

3.6 Sojourn times

From the Stime component of the res we can derive the estimated time spent in each state
during the first, say, 5 or 10 years:

When referring to the times, we use character values—5 and 10 years are not necessarily
at the 5™ and 10" positions of the first dimension of the Stime array:
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Figure 3.3: Probabilities of being in the 4 different states as a function of time since diag-
nosis. Note that 0AD means that OAD was initiated first, and similarly for Ins. We are not
concerned about what occurs after these events. Dead means dead without being on any drug.
The white shadings around the borders between coloured areas represent the 95% confidence
intervals for the (sum of) probabilities. ./crisk-stack-ci

> s510 <- res$Stime[c("5", "10"),,]
> dimnames(s510) [[1]] <- c(" 5 yr","10 yr")
> round(ftable(s510, row.vars=1:2), 2)
50% 2.5% 97.5%
tfd cause

5 yr Surv = 2.77 2.72 2.82
0AD 1.45 1.40 1.50
Ins 0.40 0.37 0.43
Dead 0.39 0.36 0.42
10 yr Surv  4.32 4.22 4.42
0AD 3.64 3.54 3.75
Ins 0.84 0.78 0.90
Dead 1.20 1.13 1.27

So we see that the expected life lived without pharmaceutical treatment during the first 10
years after DM diagnosis is 4.31 years with a 95% CI of (4.21; 4.41), and during the first 5
years 2.77 (2.72; 2.82).



Chapter 4

A simple illustration of ci.Crisk

The following is a terse cook-book illustration of how to use the ci.Crisk function.

4.1 Data

For illustration we simulate some causes of death in the DMlate data set; first we sample
numbers 1, 2, 3 representing 3 different causes of death in DMlate:
> data(DMlate)

> set.seed(7465)
> wh <- sample(1:3, nrow(DMlate), replace = T, prob = c(4, 2, 6))

Those not dead are changed to 0:
> wh([is.na(DMlate$dodth)] <- 0

Define a factor in DMlate defining exit status as either alive or one of the three causes of
death, and check by a table that all dead have a cause:

> DMlate$codth <- factor(wh, labels = c("Alive", "CVD", "Can", "Oth"))
> with(DMlate, table(codth, isDead = !is.na(dodth)))
isDead
codth FALSE TRUE
Alive 7497 0

CVD 0 815
Can 0 401
O0th 0 1287

It is important that the "Alive" state is the first level if the factor codth; the Lexis
function will assign this the all persons at start of follow-up.

DMlate now looks like a typical data set with cause of death in a separate variable; in
this case we also added a state, Alive, for those without a recorded death:

> str(DMlate)

'data.frame': 10000 obs. of 8 wvariables:

sex : Factor w/ 2 levels "M","F": 2122121121 ...

dobth: num 1940 1939 1918 1965 1933 ...

dodm : num 1999 2003 2005 2009 2009 ...

dodth: num NA NA NA NA NA ...

dooad: num NA 2007 NA NA NA ...

doins: num NA NA NA NA NA NA NA NA NA NA ...

dox : num 2010 2010 2010 2010 2010 ...

codth: Factor w/ 4 levels "Alive","CVD",..: 1111141141 ...

€ D P P P P BHLBH

20
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> head(DMlate, 12)

sex dobth dodm dodth dooad doins dox codth
50185 F 1940.256 1998.917 NA NA NA 2009.997 Alive
307563 M 1939.218 2003.309 NA 2007.446 NA 2009.997 Alive
294104 F 1918.301 2004.552 NA NA NA 2009.997 Alive
336439 F 1965.225 2009.261 NA NA NA 2009.997 Alive
245651 M 1932.877 2008.653 NA NA NA 2009.997 Alive
216824 F 1927.870 2007.886 2009.923 NA NA 2009.923 Oth
24969 M 1946.498 2007.216 NA 2007.248 NA 2009.997 Alive
325465 M 1940.475 2006.674 NA 2006.674 NA 2009.997 Alive
430048 F 1937.083 1998.956 2008.464 NA NA 2008.464 Oth
362980 M 1933.154 2009.784 NA NA NA 2009.997 Alive
279976 F 1928.300 2000.949 NA NA NA 2009.997 Alive
279271 M 1951.213 2008.114 NA 2009.743 NA 2009.997 Alive

4.2 A Lexis object with 3 causes of death

With cause of death in a separate variable it is easy to set up a Lexis object:

> dmL <- Lexis(entry = list(per = dodm,
age = dodm - dobth,
tfD = 0),
exit = list(per = dox),
exit.status = codth,
+ data = DMlate)
NOTE: entry.status has been set to "Alive" for all.
NOTE: Dropping 4 rows with duration of follow up < tol

> summary(dmL, t = T)

+ 4+ + +
[
I

Transitions:
To
From Alive CVD Can O0Oth Records: Events: Risk time: Persons:
Alive 7497 814 400 1285 9996 2499 54273.27 9996
Timescales:
per age tfD

We can show the overall rates (the default boxes is very primitive):

> boxes (dmL, boxpos = TRUE)

4.3 Models for the rates

In order to model the cause-specific mortality rates by sex and time from diagnosis (t£D),
we first split the data in 6-month intervals

> sL <- splitLexis(dmL, time.scale = "age", breaks = seq(0, 120, 1/2))
> summary (sL)
Transitions:
To
From Alive CVD Can 0Oth Records: Events: Risk time: Persons:
Alive 115974 814 400 1285 118473 2499 54273.27 9996
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Figure 4.1: Transitions from live to different causes of death. You probably want to explore

the other arguments to boxes.

> mCVD <- gamLexis(sL, ~ s(tfD, by=sex), to =
mgcv::gam Poisson analysis of Lexis object sL
Rates for the transition:

Alive->CVD

> mCan <- gamLexis(sL, ~ s(tfD, by=sex), to =
mgcv: :gam Poisson analysis of Lexis object sL
Rates for the transition:

Alive->Can

> mOth <- gamLexis(sL, ~ s(tfD, by=sex), to =
mgcv::gam Poisson analysis of Lexis object sL

Rates for the transition:
Alive->0th

4.4 Derived measures

./crisk-boxes

n CVD H)
with log link:

ucan u)
with log link:

HUth H)
with log link:

With these three models for the occurrence rates we can compute the cumulative risks of
dying from each of the causes. We need a prediction data frame that gives the rates at
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closely spaced times, in this case for men. For women the code would be practically the
same:

> nm <- data.frame(tfD = seq(0, 15, 1/20), sex = "M")

Note that we can rename the states as we please by naming the entries in the list of models
we supply to ci.Crisk:

> cR <- ¢i.Crisk(1ist(CVD = mCVD,

+ Can = mCan,
+ Other = mOth),
+ nB = 500,
+ nd = nm)

NOTE: Times are assumed to be in the column tfD at equal distances of 0.05
> str(cR)

List of 4
$ Crisk: num [1:301, 1:4, 1:3] 1 0.997 0.993 0.99 0.987 ...
..—- attr(*, "dimnames")=List of 3
..$ tfD : chr [1:301] "O" "0.05" "O0.1" "0.15"
..$ cause: chr [1:4] "Surv" "CVD" "Can" "Other"
o008 : chr [1:3] "50%" "2.5%" "97.5%"
$ Srisk: num [1:301, 1:3, 1:3] 0 0.00179 0.00353 0.00523 0.00688 ...
..- attr(x, "dimnames")=List of 3
..$ tfD : chr [1:301] "O" "0.05" "O.1" "Q.15"
..$ cause: chr [1:3] "Other" "Other+Can" "Other+Can+CVD"
... 8 : chr [1:3] "BO%" "2.5%" "97.5%"
$ Stime: num [1:301, 1:4, 1:3] 0 0.0499 0.0997 0.1492 0.1987 ...
..- attr(x, "dimnames")=List of 3
..$ tfD : chr [1:301] "O" "0.05" "O0.1" "0.15"
..$ cause: chr [1:4] "Surv" "CVD" "Can" "Other"
o008 : chr [1:3] "50%" "2.5%" "97.5%"
$ time : num [1:301] 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 ...
- attr(x, "int")= num 0.05

Note that we get three arrays: Crisk, the cumulative risks; Srisk, the stacked risks and
Stime, the sojourn times in each state. Finally, for convenience we also have the
component time, the times at which the cumulative risks are computed. It is also available
as the clumpy expression as.numeric(dimnames (cR$Crisk) [[1]]), but cR$time is easier.

4.4.1 Cumulative risks

We can plot the cumulative risks for death from each of the three causes, note we use the
colors from last. Note that the time points are in the time component of the Crisk object:

> clr <- c("black", "orange", "limegreen")
> matshade (cR$time, cbind(cR$Crisk[, "CVD" , ],
+ cR$Crisk[, "Can" , ],
cR$Crisk[, "Other", ]),
col = clr, 1ty = 1, 1wd = 2,
plot = TRUE, ylim = c(0, 1/3), yaxs = "i")
text (0, 1/3 - ¢(2,3,1)/30, c("CVvD", "Can'", "Oth"),
col = clr, adj = 0, font = 2)

+ VvV + + +

We also have the stacked probabilities so we can show how the population is distributed
across the states at any one time:
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Figure 4.2: Cumulative risks of each cause of death based on gam models for the cause-specific
rates. ./crisk-cR

4.4.2 Stacked cumulative risks

We also get the stacked probabilities in the order that we supplied the models, so that if we
plot these we get the probabilities of being dead from each cause as the difference between
the curves. And the confidence intervals are confidence intervals for the cumulative sums of
probabilities.

> matshade (cR$time, cbind(cR$Srisk[,1,],

+ cR$Sriskl[,2,],

+ cR$Srisk[,3,]1),

+ col = "black", 1ty = 1, 1wd = 2,

+ plot = TRUE, ylim = c(0,1), xaxs = "i", yaxs = "i")
> text (14, mp(c(0, cR$Srisk["14", , 1], 1)),

+ rev(c(dimnames (cR$Crisk) [[2]]1)))

> box(bty = "o")

It is not a good idea to color these curves, they do not refer to the causes of death, it is
the areas between the curves that refer to causes. By the same token, since the quantity of
interest is the area between the curves and horizontal lines at 0 and 1, it is important that
the horizontal axes are placed at precisely 0 and 1 on the vertical axis. This is what yaxs
= "i" achieves.

It would be more logical to color the areas between the curves. which can be done by
mat2pol (matrix to polygons) using the Crisk component. We can then superpose the
confidence intervals for the sum of the state probabilities using matshade by adding white
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Figure 4.3: Stacked cumulative risks. ./crisk-Sr1
shades:
> zz <- mat2pol (cR$Crisk[, c("Other", "Can", "CVD", "Surv"), "50%"],
+ x = cR$time,
+ xlim = ¢(0,15), xaxs = "i", yaxs = "i", las = 1,
+ xlab = "Time since DM diagnosis (years)",
+ ylab = "Probability",
+ col = c("gray", "red", "blue", "limegreen") )
> matshade (cR$time, cbind(cR$Srisk([,1,],
+ cR$Srisk[,2,],
+ cR$Srisk([,3,]),
+ col = "transparent", col.shade = "white", alpha = 0.4)
> text (14, mp(c(0, cR$Srisk["14", , 1], 1)),
+ rev(c(dimnames (cR$Crisk) [[2]])), col = "white")

4.4.3 Sojourn times

The third component of the result, Stime is an array of sojourn times over intervals
starting at 0 and ending at the time indicated by the first dimension:

> ftable(round(cR$Stime[paste(1:5 * 3), , ], 1), row.vars = 1)

cause Surv CVD Can Other
50% 2.5% 97.5% 50% 2.5% 97.5% 50% 2.5% 97.5% 50% 2.5% 97.5%

tfD
2.8 2.8 2.8 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1
6 5.3 5.2 5.3 0.2 0.2 0.3 0.1 0.1 0.1 0.4 0.4 0.4
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Figure 4.4: Stacked cumulative risks with coloring of states and overlaid with confidence

intervals for the probabilities shown; that is the relevant sums. ./crisk-Sr2
9 7.4 7.4 7.5 0.5 0.5 0.6 0.3 0.2 0.3 0.8 0.8 0.9
12 9.3 9.2 9.4 0.9 0.8 0.9 0.4 0.4 0.5 1.4 1.3 1.5
15 10.9 10.7 11.0 1.3 1.3 1.5 0.7 0.6 0.7 2.1 2.0 2.2

The sojourn times in the three dead states can be taken as the years of life lost to each of
the causes, the sum of the medians for the three causes equals the time frame (5, 10, 15)
minus the Surv component.

So we see that during the first 15 years after diagnosis of diabetes, the expected years
alive is 10.9 years. The distribution of lifetime lost between the causes is bogus in this case
as the causes of death were randomly generated.

4.4.4 Comparing groups

Finally, we may want to see the difference (or ratio) of survival probabilities between men
and women, say. This can be derived from two bootstrap samples using different prediction
frames (the argument nd= to ci.Crisk). But the two bootstrap samples of parameters
must be the same, i.e. come from the same stream of samples from the multivariate
normal. This can be obtained by explicitly setting the seed for the random number
generator to the same value before calling ci.Crisk with each of the two different
prediction frames as nd argument:

"M)

"E")

> nm <- data.frame (tfD
> nw <- data.frame (tfD

seq(0, 15, 1/20), sex
seq(0, 15, 1/20), sex
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> # set the seed
> set.seed(1952)
> mR <- ci.Crisk(1ist(CVD = mCVD,

+ Can = mCan,
+ Other = mOth),
+ nd = nm,

+ nB = 500,

+ sim.res = "crisk" )

NOTE: Times are assumed to be in the column tfD at equal distances of 0.05

> # REset the seed
> set.seed(1952)
> wR <- ci.Crisk(1ist(CVD = mCVD,

+ Can = mCan,
+ Other = mOth),
+ nd = nw,

+ nB = 500,

+ sim.res = "crisk" )

NOTE: Times are assumed to be in the column tfD at equal distances of 0.05
> str(wR)

num [1:301, 1:4, 1:500] 1 0.997 0.994 0.991 0.988 ...
- attr(*, "dimnames")=List of 3

..$ tfD : chr [1:301] "O" "0.05" "O.1" "O.15"

..$ cause: chr [1:4] "Surv" "CVD" "Can" "Other"

..$ sim : chr [1:500] "1 mom n3gn ngn
- attr(x, "int")= num 0.05

The two samples are now from identical streams of random numbers, so we can get
differences and ratios of the survival curves between men and women:

> dS <- mR[,"Surv",] - wR[,"Surv",]
> dS <- apply(dS, 1, quantile, probs = c(.5, .025, .975)) * 100
> str(dS)
num [1:3, 1:301] 0 0 0 -0.0319 -0.0877 ...
- attr(*, "dimnames")=List of 2
.3 : chr [1:3] "50%" "2.5%" "97.5%"
..$ tfD: chr [1:301] "O0" "0.05" "0.1" "0.15"

> rS <- mR[,"Surv",] / wR[,"Surv",]
> rS <- apply(rS, 1, quantile, probs = c(.5, .025, .975))

We can then plot the differences and the ratios of the probabilities—note that the
dimension of the function applyed becomes the first dimension of the result:

> par(mfrow = c(1,2))

> matshade (as.numeric(colnames(dS)), t(dS), plot = TRUE,
+ lwd = 3, ylim = c(-5, 5),

+ xlab = "Time since DM diagnosis (years)",

+ ylab = "Men - Women survival difference (})")
> abline(h = 0)

> matshade (as.numeric(colnames(rS)), t(rS), plot = TRUE,
+ lwd = 3, ylim = c(1/1.2, 1.2), log ="y",

+ xlab = "Time since DM diagnosis (years)",

+ ylab = "Men - Women survival ratio")

>

abline(h = 1)
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Figure 4.5: Differences and ratios of survival between men and women, derived from the
same set of bootstrap samples from the parameter vector. ./crisk-difrat

To illustrate the effect of not pairing the random samples we can generate a fresh sample
for women from a different stream (by not setting the seed) and do the calculations to
illustrate the excess we get from not aligning samples.

> fR <- ci.Crisk(1ist(CVD = mCVD,
+ Can = mCan,
+ Other = mOth),
+ nd = nw,

+ nB = 500,

+ sim.res = "crisk" )

NOTE: Times are assumed to be in the column tfD at equal distances of 0.05

> dxS <- mR[,"Surv",] - fR[,"Surv",]
dxS <- apply(dxS, 1, quantile, probs = c(.5, .025, .975)) * 100
rxS <- mR[,"Surv",] / fR[,"Surv",]

rxS <- apply(rxS, 1, quantile, probs

vV Vv Vv

c(.5, .025, .975))

par (mfrow = c(1,2))
matshade (as.numeric(colnames(dS)), t(dS), plot = TRUE,
lwd = 3, ylim = c(-5, 5),
xlab = "Time since DM diagnosis (years)",
ylab = "Men - Women survival difference (7)")
matshade (as.numeric (colnames (dxS)), t(dxS), 1ty = 3, col = "forestgreen")
abline(h = 0)
matshade (as.numeric(colnames(rS)), t(rS), plot = TRUE,

V VYV + + + VYV
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+ lwd = 3, ylim = c(1/1.2, 1.2), log ="y",

+ xlab = "Time since DM diagnosis (years)",

+ ylab = "Men - Women survival ratio")

> matshade (as.numeric(colnames(rxS)), t(rxS), lty = 3, col = "forestgreen")

> abline(h = 1)

1.2+

1.1+

o
Men — Women survival ratio

Men — Women survival difference (%)

0.9-

[ I I | [ I I 1
0 5 10 15 0 5 10 15

Time since DM diagnosis (years) Time since DM diagnosis (years)

Figure 4.6: Differences and ratios of survival between men and women, derived from separate
bootstrap samples. The outer confidence bands are from bootstrap samples not properly paired
between men end women. ./crisk-difratx

Start time: 2025-06-30, 19:50:14
End time: 2025-06-30, 19:51:20
Elapsed time: 1.11 minutes
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