CloneFinder

Mark Zucker Kevin R. Coombes
November, 2018

Contents

1 Introduction 1

2 Simulated Tumor Containing Multiple Clones 1
2.1 Simulating Tumor Data 3

3 Finding Clones 5
3.1 Finding Clones from Copy Number Data 7
3.2 Sequencing Data 8
3.3 Both Sequencing and SNP Array Data 8

1 Introduction

Tumors often consist of multiple distinct subpopulations or clones. Information about the number
of clones present in a tumor can be inferred using either mutation allele frequency data, from
sequencing studies, or from copy number varants (CNVs), derived either from sequencing or
from SNP array data. The CloneFinder package can be applied to SNP array data, sequencing
data, or both, from tumor cells from a cancer patient. CloneFinder can determine the number
of clones, the distribution of cells among clones, and the copy number variations and mutations
(depending on the available data sources) that occur in each clone. The presence of multiple
detectable clones is called “clonal heterogeneity” in the literature.

Clonal heterogeneity likely plays an important role in the clinical course of a cancer. It is
possible, for example, that the tumor cells that will eventually become the refractory cancer after
treatment are present as a minor subclone in the tumor early on.

First, we load the CloneFinder package:

> library(CloneFinder)

2 Simulated Tumor Containing Multiple Clones

In order to illustrate the algorithms, we are going to simulate data where we know the true
structure. Specifically, we will simulate copy number and mutation data for a tumor with three
clones. We start with an object that represents the Tumor at a somewhat abstract level.

> set.seed(21303) # for reproducibility
> simTumor <- Tumor(c(5, 3, 2), rounds = 100,
+ nu = 10, pcnv = 0.8, norm.contam = FALSE)

The first argument to the Tumor constructor is a vector that specifies the relative proportions of
cells belonging to each clone; the length of the vector determines the number of clones. These
values are automatically converted to fractions that add up to one:

> simTumor@psi

An object of class "WeightVector"
Slot "psi":
[1] 0.5 0.3 0.2

The second argument, rounds, specifies the number of generations through which the tumor
clones are evolved. The idea is that new abnormalities, either in the form of mutations or
copy number variants (CNVs), are acquired at each evolutionary step from some parent cell.
The parameter nu is the expected number of new mutations and the parameter pcnv is the
probability of a new CNV at each step. The final parameter, norm. contam, is a logical indicator
of whether the tumor sample is assumed to include a subset of cells that represent non-cancerous
“normal contamination”.

The resulting simulated tumor contains descriptions of each individual clone. In the current
implementation, these are stored as a list of clones.

> class(simTumor@clones)

[1] "list"

> length(simTumor@clones)

[11 3

Individual clones contain descriptions of both CNVs and mutations.

> oneClone <- simTumor@clones[[1]]
> class(oneClone)

[1] "list"

> length(oneClone)
[11 2

> names (oneClone)
[1] "ecn" "seq"

The copy number data includes the chromosome, with start and end positions, the number
of copies of the A and B alleles, an arbitrary “segment” identifier, and (as a residual from the
simulated evolutionary history), a “parent” identifier.

> dim(oneClone$cn)
[1] 320 7

> summary (oneClone$cn)

chr start end A
Min. : 1.000 Min. : 1 Min. : 512228 Min. 01
1st Qu.: 4.000 1st Qu.: 41806795 1st Qu.: 58350286 1st Qu.:1
Median : 9.000 Median :117639946 Median :139678132 Median :1
Mean : 9.756 Mean :114603107 Mean 1133296903 Mean 01
3rd Qu.:15.000 3rd Qu.:181197780 3rd Qu.:208210950 3rd Qu.:1
Max. :24.000 Max. 1248891168 Max. 1249250621 Max. 01
B seg parent.index
Min. :0 Min. : 1.00 Min. :5
1st Qu.:1 1st Qu.: 80.75 1st Qu.:5
Median :1 Median :160.50 Median :5
Mean 01 Mean :160.50 Mean :5
3rd Qu.:1 3rd Qu.:240.25 3rd Qu.:5
Max. 12 Max. :320.00 Max. :5

The mutation data has a chromosomal location, arbitrary segment and mutation identifiers, the
number of mutated and wild type copies for each mutation, and the affected allele.

> dim(oneClone$seq)
(1] 12 7

> oneClone$seq

chr start seg mut.id mutated.copies allele normal.copies
1 1 30402443 6 26 1 B 1
2 1 62695072 10 27 1 B 1
3 2 35569893 32 28 1 B 1
4 4 106054079 81 911 1 B 1
5 4 167504306 88 912 1 B 1
6 5 152937009 106 913 1 B 1
7 8 20376073 147 914 1 A 1
8 14 86900273 232 29 1 B 1
9 14 93651071 232 30 1 B 1
10 21 12282334 291 31 1 A 1
11 23 55921166 306 915 1 B 1
12 24 45378979 318 916 1 B 1

2.1 Simulating Tumor Data

Now that we have the tumor in place, we can simulate data arising from a sudy of that tumor.

>
+
+
+
+
+
+
+

For a description of the many parameters to the generateTumorData function, see the man
page. The first two arguments are size parameters. The first, snp.seq, determines the number
of germline variants to simulate; in the absence of separate copy number data, these are used to
provide a crude estimate. The second, snps.cgh, represents the number of SNP locations on the
simulated SNP chip from which copy number segments are derived. The remaining parameters

simData <- generateTumorData (simTumor,

snps.seq = 10000,

snps.cgh = 600000,
mu = 70,

sigma.reads = 25,
sigmaO.lrr = 0.15,
sigmaO.baf = 0.03,
density.sigma = 0.1)

control the simulated read depth and variabilty.

As with individual clones, the simulated data is structured as a list with separate data frames

for the CNVs and mutations.

> class(simData)
[1] "list"

> length(simData)
[1] 2

> names (simData)

[1] "cn.data" ‘"seq.data"

The simulated copy number data includes chromosomal locations along with estimated log R
ratios (LRR), B allele frequencies (BAF), separate intensity values for the two parental alleles (X

and Y), and the number of SNPs in each segment (markers).

> cnDat <- simData$cn.data

> dim(cnDat)
[1] 320 7

> summary (cnDat)

chr
Min. : 1.000
1st Qu.: 4.000
Median : 9.000
Mean : 9.756
3rd Qu.:15.000
Max. :24.000

X

seg

Min. :
1st Qu.:
Median
Mean

3rd Qu.:
Max.

.00
80.
:160.
:160.
240.
:320.

75
50
50
25
00

LRR

Min. :-0
1st Qu.:-0.
Median : O.
Mean :=0
3rd Qu.: O
Max. : 0.

markers

.1225427

0024157
0000065

.0006059
.0024774

0949327

BAF

Min.
1st Qu.:
Median :
Mean
3rd Qu.:
Max.

O O O O O O

.3335
.4995
.5000
.5009
.5005
.6670

Min. :0.5031 Min. :0.5083 Min. : 852
1st Qu.:0.9950 1st Qu.:0.9941 1st Qu.:1592
Median :0.9999 Median :1.0001 Median :1884
Mean :1.0012 Mean :0.9970 Mean 11875
3rd Qu.:1.0057 3rd Qu.:1.0054 3rd Qu.:2107
Max. :1.4959 Max. :1.0459 Max. 12971

The simulated sequencing data, in addition to chromosomal locations, has read counts for
the number of reference alleles, alternate (meaning varianmt or mutated) alleles, total counts,
the variant allele frequency (VAF), and a status indicator of whether the variant is believed to be
germline or somatic.

> dim(simData$seq.data)
[1] 10071 8

> seqDat <- simData$seq.data
> dim(seqDat)

[1] 10071 8

> summary (seqDat)

chr seg mut.id refCounts
Min. : 1.000 Min. : 1.0 Min. : 1.0 Min. : 22.00
1st Qu.: 4.000 1st Qu.: 83.0 1st Qu.: 85.5 1st Qu.: 61.00
Median : 9.000 Median :162.0 Median :159.0 Median : 70.00
Mean : 9.864 Mean :162.1 Mean :280.2 Mean : 70.29
3rd Qu.:15.000 3rd Qu.:242.0 3rd Qu.:504.5 3rd Qu.: 80.00
Max. :24.000 Max. :320.0 Max. :916.0 Max. :161.00

NA's :10000
varCounts VAF totalCounts status

Min. : 8.0 Min. :0.05714 Min. . 46 Length:10071
1st Qu.: 60.0 1st Qu.:0.47099 1st Qu.:123 Class :character
Median : 70.0 Median :0.50000 Median :140 Mode :character
Mean : 69.7 Mean :0.49789 Mean 1140
3rd Qu.: 79.0 3rd Qu.:0.52996 3rd Qu.:157
Max. :130.0 Max. :0.74468 Max. 1233

> table(seqDat$status)
germline somatic

10000 71
3 Finding Clones

To run CloneFinder, we will need a starting set of ¥ vectors as inputs, where ¥ records the
fraction of cells belonging to each clone. For each 1 vector, the algorithm will compute the most

probable copy number state for each clone at each segment. The maximum posterior probability
is computed for each input ¥ vector, and these probabilities are used to resample new potential
1 vectors. We usually start by considering every possible decomposition of the tumor into five
clones, where the fraction assigned to each clone is a multiple of 1/20 = 0.05. We can generate
this initial matrix of 1 vectors as follows:

> psis <- generateSimplex(20, 5)
> dim(psis)

[1] 192

> head(psis)

[1,]
[2,]
(3,]
[4,]
(5,1
(6,1

> tail(psis)

[187,]
[188,]
[189,]
[190,]
[191,]
[192,]

O O O O O+ M

O O O O O O M

5

,1]
.25
.25
.25
.25
.25
.20

-

O O O O O O m

[,2]
.25
.25
.25
.25
.20
.20

O O O O O O

00

.05
.00
.05

B

[
0
0
0.
0
0
0

3]

.25
.25

20

.20
.20
.20

0

O O O O O

B

4]

.20
.15
.20
.15
.20
.20

[,3] [,4]1 [,5]
0.00
0.00
.10 0.
0
0
0

O O O O O O

[,5]
.05
.10
.10
.15
.15
.20

O O O O O O

For SNP array data, we also need, as input, a set of possible clonal segment copy number

states.

If none exists the function will automatically generate one. The version used here

considers all possible copy number states from 0 to 5 copies, but it imposes a strong prior belief
that two different clones cannot both gain and lose the same segment.

cnmodels <- expand.grid(rep(list(0:5),5))

include <- sapply(1:nrow(cnmodels), function(i) {
length(which(cnmodels[i,] >= 1))==5 | length(which(cnmodels[i,] <= 1)) ==

»

cnmodels <- cnmodels[include,]

Now we will define the other algorithm parameters:

pars <- list(sigma0 =

ktheta
theta
mtheta

0.9,

5,

SNP-wise standard deviation

0.3, # geometric prior parameter on number of clones

geometric prior parameter on copy number changes

0.9, # gemoetric prior parameter on point mutations

+ alpha = 0.5, # parameter for a symmetric Dirichlet prior on psi

+ thresh = 0.04, # smallest possible detectble clone

+ cutoff = 100, # filter out copy number segments supported by fewer SNPs
+ Q = 100, # number of new psi vectors resamples at each iteration
+ iters = 4) # number of iterations

3.1 Finding Clones from Copy Number Data

The findClones function can estimate the clonal architecture from copy number data, or from
mutation and variant data, or jointly from both kinds of data. In this section, we will run the
algorithm using only the copy number data. To do that, we set the varData argument to
NULL.

> resCN <- findClones(cndata = cnDat, vardata = NULL,
+ cnmodels = cnmodels, psiset = psis, pars = pars)

Here are the results of the “CNV only” analysis of this sample:

> resCN$psi
(1] 0.5 0.3 0.2 0.0 0.0
> simTumor@psi

An object of class "WeightVector"
Slot "psi":
[1] 0.5 0.3 0.2

In this case, CloneFinder accurately estimates not only the number of clones but also the clonal
fractions. Let’s look at the clonal copy number assignments as well:

trueCN_Assignments <- t(sapply(l:nrow(resCN$filtered.data$cndata.filt),
function(i) {

index <- rownames (simTumor@clones[[1]]$cn) ==
rownames (resCN$filtered.data$cndata.filt) [i]
sapply(1:length(simTumor@clones) ,function (j){
simTumor@clones[[jl]cnA[index] + simTumor@clones[[j]]cnB[index]

1)
inferredCN_Assignments <- (resCN$A+resCN$B)[,1:length(simTumor@clones)]
colnames (inferredCN_Assignments) <- colnames (trueCN_Assignments) <-
paste("C", 1:3)
data.frame (Truth
Infer

trueCN_Assignments,

>
+
+
+
+
+
+ P
+
>
>
+
>
+ inferredCN_Assignments)

Truth.C.1 Truth.C.2 Truth.C.3 Infer.C.1 Infer.C.2 Infer.C.3
22 2 2 2 2 2 2
24 2 3 2 2 3 2

128 2 2 1 2 2 2
170 1 2 2 1 2 2
226 2 1 2 2 1 2
244 3 2 2 3 2 2
248 2 1 1 1 2 2
297 2 3 2 2 3 2
315 2 1 2 2 1 2

Although not perfect, the algorithm managed to correctly estimate most of the segment-wise
allelic copy numbers of different clones.

3.2 Sequencing Data

Now, let’s illustrate the use of CloneFinder in analyzing mutation data (by which we mean
variant data such as one would find in a .vcf file) to find clones. This time, we run the
CloneFinder algorithm with the cndata argument set to NULL.

> resMut <- findClones(cndata = NULL, vardata = seqDat,
+ cnmodels = cnmodels, psiset = psis, pars = pars)

Here the results aren’t as good; at least one of the actual clones has been split into separate
pieces.

> resMut$psi
[1] 0.53443247 0.19437358 0.10946443 0.10387835 0.05785117
> simTumor@psi

An object of class "WeightVector"
Slot "psi":
[1] 0.5 0.3 0.2

3.3 Both Sequencing and SNP Array Data

Finally, we illustrate running CloneFinder on a sample for which there is both SNP array and
mutation data.

> resBoth <- findClones(cndata = cnDat, vardata = somatic,
+ cnmodels = cnmodels, psiset = psis, pars = pars)

And we can look at the inferred allocation of tumor fraction to clones:
> resBoth$psi

[1] 0.45 0.30 0.15 0.05 0.05

> simTumor@psi

An object of class "WeightVector"
Slot "psi":
[1] 0.5 0.3 0.2

Surprisingly, the results here are similar to the overaggressive results obtained using just the
sequencing data rather than the simpler and correct results obtained when using just the copy
number data.

In conclusion, CloneFinder can be applied effectively to cases where one has SNP array data,
(processed) sequencing data, or both.

