
zoo FAQ

zoo Development Team

Abstract

This is a collection of frequently asked questions (FAQ) about the zoo package together
with their answers.

Keywords: irregular time series, ordered observations, time index, daily data, weekly data,
returns.

1. I know that duplicate times are not allowed but my data has them.
What do I do?
zoo objects should not normally contain duplicate times. If you try to create such an object
using zoo or read.zoo then warnings will be issued but the objects will be created. The user
then has the opportunity to fix them up – typically by using aggregate.zoo or duplicated.
Merging is not well defined for duplicate series with duplicate times and rather than give
an undesired or unexpected result, merge.zoo issues an error message if it encounters such
illegal objects. Since merge.zoo is the workhorse behind many zoo functions, a significant
portion of zoo will not accept duplicates among the times.
Typically duplicates are eliminated by (1) averaging over them, (2) taking the last among
each run of duplicates or (3) interpolating the duplicates and deleting ones on the end that
cannot be interpolated. These three approaches are shown here using the aggregate.zoo
function. Another way to do this is to use the aggregate argument of read.zoo which will
aggregate the zoo object read in by read.zoo all in one step.
Note that in the example code below that identity is the identity function (i.e. it just
returns its argument). It is an R core function:
A "zoo" series with duplicated indexes

> z <- suppressWarnings(zoo(1:8, c(1, 2, 2, 2, 3, 4, 5, 5)))
> z

1 2 2 2 3 4 5 5
1 2 3 4 5 6 7 8

Fix it up by averaging duplicates:

> aggregate(z, identity, mean)

1 2 3 4 5
1.0 3.0 5.0 6.0 7.5

2 zoo FAQ

Or, fix it up by taking last in each set of duplicates:

> aggregate(z, identity, tail, 1)

1 2 3 4 5
1 4 5 6 8

Fix it up via interpolation of duplicate times

> time(z) <- na.approx(ifelse(duplicated(time(z)), NA, time(z)), na.rm = FALSE)

If there is a run of equal times at end they wind up as NAs and we cannot have NA times.

> z[!is.na(time(z))]

1 2 2.3333 2.6667 3 4 5
1 2 3 4 5 6 7

The read.zoo command has an aggregate argument that supports arbitrary summarization.
For example, in the following we take the last value among any duplicate times and sum
the volumes among all duplicate times. We do this by reading the data twice, once for each
aggregate function. In this example, the first three columns are junk that we wish to suppress
which is why we specified colClasses; however, in most cases that argument would not be
necessary.

> Lines <- "1|BHARTIARTL|EQ|18:15:05|600|1
+ 2|BHARTIARTL|EQ|18:15:05|600|99
+ 3|GLENMARK|EQ|18:15:05|238.1|5
+ 4|HINDALCO|EQ|18:15:05|43.75|100
+ 5|BHARTIARTL|EQ|18:15:05|600|1
+ 6|BHEL|EQ|18:15:05|1100|11
+ 7|HINDALCO|EQ|18:15:06|43.2|1
+ 8|CHAMBLFERT|EQ|18:15:06|46|10
+ 9|CHAMBLFERT|EQ|18:15:06|46|90
+ 10|BAJAUTOFIN|EQ|18:15:06|80|100"
> library("zoo")
> library("chron")
> tail1 <- function(x) tail(x, 1)
> cls <- c("NULL", "NULL", "NULL", "character", "numeric", "numeric")
> nms <- c("", "", "", "time", "value", "volume")
> z <- read.zoo(text = Lines, aggregate = tail1,
+ FUN = times, sep = "|", colClasses = cls, col.names = nms)
> z2 <- read.zoo(text = Lines, aggregate = sum,
+ FUN = times, sep = "|", colClasses = cls, col.names = nms)
> z$volume <- z2$volume
> z

zoo Development Team 3

value volume
18:15:05 1100 217
18:15:06 80 201

If the reason for the duplicate times is that the data is stored in long format then use read.zoo
(particlarly the split argument) to convert it to wide format. Wide format is typically a
time series whereas long format is not so wide format is the suitable one for zoo.

> Lines <- "Date Stock Price
+ 2000-01-01 IBM 10
+ 2000-01-02 IBM 11
+ 2000-01-01 ORCL 12
+ 2000-01-02 ORCL 13"
> stocks <- read.zoo(text = Lines, header = TRUE, split = "Stock")
> stocks

IBM ORCL
2000-01-01 10 12
2000-01-02 11 13

2. When I try to specify a log axis to plot.zoo a warning is issued. What
is wrong?

Arguments that are part of ... are passed to the panel function and the default panel
function, lines, does not accept log. Either ignore the warning, use suppressWarnings (see
?suppressWarnings) or create your own panel function which excludes the log:

> z <- zoo(1:100)
> plot(z, log = "y", panel = function(..., log) lines(...))

3. How do I create right and a left vertical axes in plot.zoo?

The following shows an example of creating a plot containing a single panel and both left and
right axes.

> set.seed(1)
> z.Date <- as.Date(paste(2003, 02, c(1, 3, 7, 9, 14), sep = "-"))
> z <- zoo(cbind(left = rnorm(5), right = rnorm(5, sd = 0.2)), z.Date)
> plot(z[,1], xlab = "Time", ylab = "")
> opar <- par(usr = c(par("usr")[1:2], range(z[,2])))
> lines(z[,2], lty = 2)
> axis(side = 4)
> legend("bottomright", lty = 1:2, legend = colnames(z), bty="n")
> par(opar)

4 zoo FAQ

Feb 01 Feb 03 Feb 05 Feb 07 Feb 09 Feb 11 Feb 13

−
0.

5
0.

0
0.

5
1.

0
1.

5

Time

−
0.

15
−

0.
05

0.
05

left
right

Figure 1: Left and right plot.zoo axes.

4. I have data frame with both numeric and factor columns. How do I
convert that to a "zoo" object?
A "zoo" object may be (1) a numeric vector, (2) a numeric matrix or (3) a factor but may
not contain both a numeric vector and factor. The underlying reason for this constraint is
that "zoo" was intended to generalize R’s "ts" class, which is also based on matrices, to
irregularly spaced series with an arbitrary index class. The main reason to stick to matrices
is that operations on matrices in R are much faster than on data frames.
If you have a data frame with both numeric and factor variables that you want to convert to
"zoo", you can do one of the following.
Use two "zoo" variables instead:

> DF <- data.frame(time = 1:4, x = 1:4, f = factor(letters[c(1, 1, 2, 2)]))
> zx <- zoo(DFx, DFtime)
> zf <- zoo(DFf, DFtime)

These could also be held in a "data.frame" again:

> DF2 <- data.frame(x = zx, f = zf)

Or convert the factor to numeric and create a single "zoo" series:

> z <- zoo(data.matrix(DF[-1]), DF$time)

zoo Development Team 5

5. Why does lag give slightly different results on a "zoo" and a "zooreg"
series which are otherwise the same?
To be definite let us consider the following examples, noting how both lag and diff give a
different answer with the same input except its class is "zoo" in one case and "zooreg" in
another:

> z <- zoo(11:15, as.Date("2008-01-01") + c(-4, 1, 2, 3, 6))
> zr <- as.zooreg(z)
> lag(z)

2007-12-28 2008-01-02 2008-01-03 2008-01-04
12 13 14 15

> lag(zr)

2007-12-27 2008-01-01 2008-01-02 2008-01-03 2008-01-06
11 12 13 14 15

> diff(log(z))

2008-01-02 2008-01-03 2008-01-04 2008-01-07
0.08701138 0.08004271 0.07410797 0.06899287

> diff(log(zr))

2008-01-03 2008-01-04
0.08004271 0.07410797

lag.zoo and lag.zooreg work differently. For "zoo" objects the lagged version is obtained
by moving values to the adjacent time point that exists in the series but for "zooreg" objects
the time is lagged by deltat, the time between adjacent regular times.
A key implication is that "zooreg" can lag a point to a time point that did not previously
exist in the series and, in particular, can lag a series outside of the original time range whereas
that is not possible in a "zoo" series.
Note that lag.zoo has an na.pad= argument which in some cases may be what is being
sought here.
The difference between diff.zoo and diff.zooreg stems from the fact that diff(x) is
defined in terms of lag like this: x-lag(x,-1).

6. How do I subtract the mean of each month from a "zoo" series?
Suppose we have a daily series. To subtract the mean of Jan 2007 from each day in that
month, subtract the mean of Feb 2007 from each day in that month, etc. try this:

> set.seed(123)
> z <- zoo(rnorm(100), as.Date("2007-01-01") + seq(0, by = 10, length = 100))
> z.demean1 <- z - ave(z, as.yearmon(time(z)))

6 zoo FAQ

This first generates some artificial data and then employs ave to compute monthly means.
To subtract the mean of all Januaries from each January, etc. try this:

> z.demean2 <- z - ave(z, format(time(z), "%m"))

7. How do I create a monthly series but still keep track of the dates?

Create a S3 subclass of "yearmon" called "yearmon2" that stores the dates as names on
the time vector. It will be sufficient to create an as.yearmon2 generic together with an
as.yearmon2.Date methods as well as the inverse: as.Date.yearmon2.

> as.yearmon2 <- function(x, ...) UseMethod("as.yearmon2")
> as.yearmon2.Date <- function(x, ...) {
+ y <- as.yearmon(with(as.POSIXlt(x, tz = "GMT"), 1900 + year + mon/12))
+ names(y) <- x
+ structure(y, class = c("yearmon2", class(y)))
+ }

as.Date.yearmon2 is inverse of as.yearmon2.Date

> as.Date.yearmon2 <- function(x, frac = 0, ...) {
+ if (!is.null(names(x))) return(as.Date(names(x)))
+ x <- unclass(x)
+ year <- floor(x + .001)
+ month <- floor(12 * (x - year) + 1 + .5 + .001)
+ dd.start <- as.Date(paste(year, month, 1, sep = "-"))
+ dd.end <- dd.start + 32 - as.numeric(format(dd.start + 32, "%d"))
+ as.Date((1-frac) * as.numeric(dd.start) + frac * as.numeric(dd.end),
+ origin = "1970-01-01")
+ }

This new class will act the same as "yearmon" stores and allows recovery of the dates using
as.Date and aggregate.zoo.

> dd <- seq(as.Date("2000-01-01"), length = 5, by = 32)
> z <- zoo(1:5, as.yearmon2(dd))
> z

Jan 2000 Feb 2000 Mar 2000 Apr 2000 May 2000
1 2 3 4 5

> aggregate(z, as.Date, identity)

2000-01-01 2000-02-02 2000-03-05 2000-04-06 2000-05-08
1 2 3 4 5

zoo Development Team 7

8. How are axes added to a plot created using plot.zoo?
On single panel plots axis or Axis can be used just as with any classic graphics plot in R.
The following example adds custom axis for single panel plot. It labels months but uses the
larger year for January. Months, quarters and years should have successively larger ticks.

> z <- zoo(0:500, as.Date(0:500))
> plot(z, xaxt = "n")
> tt <- time(z)
> m <- unique(as.Date(as.yearmon(tt)))
> jan <- format(m, "%m") == "01"
> mlab <- substr(months(m[!jan]), 1, 1)
> axis(side = 1, at = m[!jan], labels = mlab, tcl = -0.3, cex.axis = 0.7)
> axis(side = 1, at = m[jan], labels = format(m[jan], "%y"), tcl = -0.7)
> axis(side = 1, at = unique(as.Date(as.yearqtr(tt))), labels = FALSE)
> abline(v = m, col = grey(0.8), lty = 2)

A multivariate series can either be generated as (1) multiple single panel plots:

> z3 <- cbind(z1 = z, z2 = 2*z, z3 = 3*z)
> opar <- par(mfrow = c(2, 2))
> tt <- time(z)
> m <- unique(as.Date(as.yearmon(tt)))
> jan <- format(m, "%m") == "01"
> mlab <- substr(months(m[!jan]), 1, 1)
> for(i in 1:ncol(z3)) {
+ plot(z3[,i], xaxt = "n", ylab = colnames(z3)[i], ylim = range(z3))
+ axis(side = 1, at = m[!jan], labels = mlab, tcl = -0.3, cex.axis = 0.7)
+ axis(side = 1, at = m[jan], labels = format(m[jan], "%y"), tcl = -0.7)
+ axis(side = 1, at = unique(as.Date(as.yearqtr(tt))), labels = FALSE)
+ }
> par(opar)

or (2) as a multipanel plot. In this case any custom axis must be placed in a panel function.

> plot(z3, screen = 1:3, xaxt = "n", nc = 2, ylim = range(z3),
+ panel = function(...) {
+ lines(...)
+ panel.number <- parent.frame()$panel.number
+ nser <- parent.frame()$nser
+ # place axis on bottom panel of each column only
+ if (panel.number %% 2 == 0 || panel.number == nser) {
+ tt <- list(...)[[1]]
+ m <- unique(as.Date(as.yearmon(tt)))
+ jan <- format(m, "%m") == "01"
+ mlab <- substr(months(m[!jan]), 1, 1)
+ axis(side = 1, at = m[!jan], labels = mlab, tcl = -0.3, cex.axis = 0.7)

8 zoo FAQ

+ axis(side = 1, at = m[jan], labels = format(m[jan], "%y"), tcl = -0.7)
+ axis(side = 1, at = unique(as.Date(as.yearqtr(tt))), labels = FALSE)
+ }
+ })

9. Why is nothing plotted except axes when I plot an object with many
NAs?
Isolated points surrounded by NA values do not form lines:

> z <- zoo(c(1, NA, 2, NA, 3))
> plot(z)

So try one of the following:
Plot points rather than lines.

> plot(z, type = "p")

Omit NAs and plot that.

> plot(na.omit(z))

Fill in the NAs with interpolated values.

> plot(na.approx(z))

Plot points with lines superimposed.

> plot(z, type = "p")
> lines(na.omit(z))

Note that this is not specific to zoo. If we plot in R without zoo we get the same behavior.

10. Does zoo work with Rmetrics?
Yes. timeDate class objects from the timeDate package can be used directly as the index of
a zoo series and as.timeSeries.zoo and as.zoo.timeSeries can convert back and forth
between objects of class zoo and class timeSeries from the timeSeries package.

> library("timeDate")
> dts <- c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")
> tms <- c("23:12:55", "10:34:02", "08:30:00", "11:18:23")
> td <- timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S")
> library("zoo")
> z <- zoo(1:4, td)
> zz <- merge(z, lag(z))
> plot(zz)
> library("timeSeries")
> zz

zoo Development Team 9

z lag(z)
1989-09-28 23:12:55 1 4
1990-02-09 11:18:23 4 2
2001-01-15 10:34:02 2 3
2004-08-30 08:30:00 3 NA

> as.timeSeries(zz)

GMT
z lag(z)

1989-09-28 23:12:55 1 4
1990-02-09 11:18:23 4 2
2001-01-15 10:34:02 2 3
2004-08-30 08:30:00 3 NA

> as.zoo(as.timeSeries(zz))

z lag(z)
1989-09-28 23:12:55 1 4
1990-02-09 11:18:23 4 2
2001-01-15 10:34:02 2 3
2004-08-30 08:30:00 3 NA

11. What other packages use zoo?

A DEIS dependency means that a package lists zoo in the Depends, Enhances, Imports or
Suggests clause of their DESCRIPTION file. As of September 27, 2011 there are 65 packages
on CRAN with DEIS dependencies on zoo and 207 packages which either have direct DEIS
dependencies or a DEIS dependency on a package which in turn has a DEIS dependency
on zoo. This suggests that packages that have a DEIS dependency on zoo are themselves
popular. If one recursively calculates DEIS dependencies to all depths then 2127 packages on
CRAN have direct or indirect DEIS dependencies on zoo. That is over half of CRAN. Below
are 74 packages which include those with direct DEIS dependencies as well as packages that
are often used with zoo:

Some packages depend on zoo indirectly listing such a relationship to a package which in
turn has such a dependency on zoo. There are 207 packages which There are 74 other CRAN
packages that are or can be used with zoo (and possibly more in other repositories):

10 zoo FAQ

Depends
AER Applied Econometrics with R
BootPR Bootstrap Prediction Intervals and Bias-Corrected Forecasting
DMwR Functions and data for "Data Mining with R"
FinTS Companion to Tsay (2005) Analysis of Financial Time Series
MFDF Modeling Functional Data in Finance
Modalclust Hierarchical Modal Clustering
PerformanceAnalytics Econometric tools for performance and risk analysis
RBloomberg R/Bloomberg
RghcnV3 Global Historical Climate Network Version 3
StreamMetabolism Stream Metabolism-A package for calculating single station

metabolism from diurnal Oxygen curves
TSfame Time Series Database Interface extensions for fame
TShistQuote Time Series Database Interface extensions for get.hist.quote
TSxls Time Series Database Interface extension to connect to spread-

sheets
VhayuR Vhayu R Interface
delftfews delftfews R extensions
dyn Time Series Regression
dynlm Dynamic Linear Regression
fda Functional Data Analysis
forecast Forecasting functions for time series
fractalrock Generate fractal time series with non-normal returns distribution
fxregime Exchange Rate Regime Analysis
glogis Fitting and Testing Generalized Logistic Distributions
hydroTSM Time series management, analysis and interpolation for hydrolog-

ical modelling
lmtest Testing Linear Regression Models
meboot Maximum Entropy Bootstrap for Time Series
mlogit multinomial logit model
party A Laboratory for Recursive Partytioning
quantmod Quantitative Financial Modelling Framework
rdatamarket Data access API for DataMarket.com
sandwich Robust Covariance Matrix Estimators
sde Simulation and Inference for Stochastic Differential Equations
solaR Solar Photovoltaic Systems
spacetime classes and methods for spatio-temporal data
strucchange Testing, Monitoring, and Dating Structural Changes
tawny Provides various portfolio optimization strategies including ran-

dom matrix theory and shrinkage estimators
termstrc Zero-coupon Yield Curve Estimation
tgram Functions to compute and plot tracheidograms
tripEstimation Metropolis sampler and supporting functions for estimating ani-

mal movement from archival tags and satellite fixes
tseries Time series analysis and computational finance
wq Exploring water quality monitoring data
xts eXtensible Time Series

zoo Development Team 11

Enhances
chron Chronological objects which can handle dates and times
hydroTSM Time series management, analysis and interpolation for hydrolog-

ical modelling
lubridate Make dealing with dates a little easier
tis Time Indexes and Time Indexed Series
Imports
fxregime Exchange Rate Regime Analysis
glogis Fitting and Testing Generalized Logistic Distributions
hydroGOF Goodness-of-fit functions for comparison of simulated and ob-

served hydrological time series
openair Tools for the analysis of air pollution data
rasterVis Visualization methods for the raster package

Suggests
MeDiChI MeDiChI ChIP-chip deconvolution library
RQuantLib R interface to the QuantLib library
TSAgg Time series Aggregation
TSMySQL Time Series Database Interface extensions for MySQL
TSPostgreSQL Time Series Database Interface extensions for PostgreSQL
TSSQLite Time Series Database Interface extentions for SQLite
TSdbi Time Series Database Interface
TSodbc Time Series Database Interface extensions for ODBC
TSzip Time Series Database Interface extension to connect to zip files
UsingR Data sets for the text "Using R for Introductory Statistics"
Zelig Everyone’s Statistical Software
gsubfn Utilities for strings and function arguments
latticeExtra Extra Graphical Utilities Based on Lattice
mondate Keep track of dates in terms of months
playwith A GUI for interactive plots using GTK+
pscl Political Science Computational Laboratory, Stanford University
quantreg Quantile Regression
tframePlus Time Frame coding kernel extensions

Uses or Used with
timeDate Rmetrics date and time functions: timeDate usable with zoo
grid Graphics infrastructure: use with xyplot.zoo
its Irregular time series: as.its.zoo, as.zoo.its
lattice grid-based graphics: use with xyplot.zoo
timeSeries Rmetrics time series functions: as.timeSeries.zoo,

as.zoo.timeSeries
YaleToolkit Data exploration tools from Yale University: accepts "zoo" input

12. Why does ifelse not work as I expect?
The ordinary R ifelse function only works with zoo objects if all three arguments are zoo

12 zoo FAQ

objects with the same time index. zoo provides an ifelse.zoo function that should be used
instead. The .zoo part must be written out since ifelse is not generic.

> z <- zoo(c(1, 5, 10, 15))
> # wrong !!!
> ifelse(diff(z) > 4, -z, z)

2 3 4
1 -5 -10

> # ok
> ifelse.zoo(diff(z) > 4, -z, z)

1 2 3 4
NA 5 -10 -15

> # or if we merge first we can use ordinary ifelse
> xm <- merge(z, dif = diff(z))
> with(xm, ifelse(dif > 4, -z, z))

1 2 3 4
NA 5 -10 -15

> # or in this case we could also use orindary ifelse if we
> # use fill = NA to ensure all three have same index
> ifelse(diff(z, fill = NA) > 4, -z, z)

2 3 4
1 -5 -10

13. In a series which is regular except for a few missing times or for
which we wish to align to a grid how is it filled or aligned?

> # April is missing
> zym <- zoo(1:5, as.yearmon("2000-01-01") + c(0, 1, 2, 4, 5)/12)
> g <- seq(start(zym), end(zym), by = 1/12)
> na.locf(zym, xout = g)

Jan 2000 Feb 2000 Mar 2000 Apr 2000 May 2000 Jun 2000
1 2 3 3 4 5

A variation of this is where the grid is of a different date/time class than the original series.
In that case use the x argument. In the example that follows the series z is of "Date" class
whereas the grid is of "yearmon" class:

zoo Development Team 13

> z <- zoo(1:3, as.Date(c("2000-01-15", "2000-03-3", "2000-04-29")))
> g <- seq(as.yearmon(start(z)), as.yearmon(end(z)), by = 1/12)
> na.locf(z, x = as.yearmon, xout = g)

Jan 2000 Feb 2000 Mar 2000 Apr 2000
1 1 2 3

Here is a chron example where we wish to create a 10 minute grid:

> Lines <- "Time,Value
+ 2009-10-09 5:00:00,210
+ 2009-10-09 5:05:00,207
+ 2009-10-09 5:17:00,250
+ 2009-10-09 5:30:00,193
+ 2009-10-09 5:41:00,205
+ 2009-10-09 6:00:00,185"
> library("chron")
> z <- read.zoo(text = Lines, FUN = as.chron, sep = ",", header = TRUE)
> g <- seq(start(z), end(z), by = times("00:10:00"))
> na.locf(z, xout = g)

(10/09/09 05:00:00) (10/09/09 05:10:00) (10/09/09 05:20:00) (10/09/09 05:30:00)
210 207 250 193

(10/09/09 05:40:00) (10/09/09 05:50:00) (10/09/09 06:00:00)
193 205 185

What is the difference between as.Date in zoo and as.Date in the core of
R?

zoo has extended the origin argument of as.Date.numeric so that it has a default of
origin="1970-01-01" (whereas in the core of R it has no default and must always be spec-
ified). Note that this is a strictly upwardly compatible extensions to R and any usage of
as.Date in R will also work in zoo.
This makes it more convenient to use as.Date as a function input. For example, one can
shorten this:

> z <- zoo(1:2, c("2000-01-01", "2000-01-02"))
> aggregate(z, function(x) as.Date(x, origin = "1970-01-01"))

2000-01-01 2000-01-02
1 2

to just this:

> aggregate(z, as.Date)

14 zoo FAQ

2000-01-01 2000-01-02
1 2

As another example, one can shorten

> Lines <- "2000-01-01 12:00:00,12
+ 2000-01-02 12:00:00,13"
> read.zoo(text = Lines, sep = ",", FUN = function(x) as.Date(x, origin = "1970-01-01"))

2000-01-01 2000-01-02
12 13

to this:

> read.zoo(text = Lines, sep = ",", FUN = as.Date)

2000-01-01 2000-01-02
12 13

Note to package developers of packages that use zoo: Other packages that work with zoo and
define as.Date methods should either import zoo or else should fully export their as.Date
methods in their NAMESPACE file, e.g. export(as.Date.X), in order that those methods be
registered with zoo’s as.Date generic and not just the as.Date generic in base.

15. How can I speed up zoo?
The main area where you might notice slowness is if you do indexing of zoo objects in an
inner loop. In that case extract the data and time components prior to the loop. Since most
calculations in R use the whole object approach there are relatively few instances of this.
For example, the following shows two ways of performing a rolling sum using only times nearer
than 3 before the current time. The second one eliminates the zoo indexing to get a speedup:

> n <- 50
> z <- zoo(1:n, c(1:3, seq(4, by = 2, length = n-3)))
> system.time({
+ zz <- sapply(seq_along(z),
+ function(i) sum(z[time(z) <= time(z)[i] & time(z) > time(z)[i] - 3]))
+ z1 <- zoo(zz, time(z))
+ })

user system elapsed
0.007 0.000 0.008

> system.time({
+ zc <- coredata(z)
+ tt <- time(z)
+ zr <- sapply(seq_along(zc),
+ function(i) sum(zc[tt <= tt[i] & tt > tt[i] - 3]))
+ z2 <- zoo(zr, tt)
+ })

zoo Development Team 15

user system elapsed
0.003 0.000 0.003

> identical(z1, z2)

[1] TRUE

Affiliation:
zoo Development Team
R-Forge: http://R-Forge.R-project.org/projects/zoo/
Comprehensive R Archive Network: http://CRAN.R-project.org/package=zoo

http://R-Forge.R-project.org/projects/zoo/
http://CRAN.R-project.org/package=zoo

	1. I know that duplicate times are not allowed but my data has them. What do I do?
	2. When I try to specify a log axis to plot.zoo a warning is issued. What is wrong?
	3. How do I create right and a left vertical axes in plot.zoo?
	4. I have data frame with both numeric and factor columns. How do I convert that to a "zoo" object?
	5. Why does lag give slightly different results on a "zoo" and a "zooreg" series which are otherwise the same?
	6. How do I subtract the mean of each month from a "zoo" series?
	7. How do I create a monthly series but still keep track of the dates?
	8. How are axes added to a plot created using plot.zoo?
	9. Why is nothing plotted except axes when I plot an object with many NAs?
	10. Does zoo work with Rmetrics?
	11. What other packages use zoo?
	12. Why does ifelse not work as I expect?
	13. In a series which is regular except for a few missing times or for which we wish to align to a grid how is it filled in or aligned?
	14. What is the difference between as.Date in zoo and as.Date in the core of R?
	15. How can I speed up zoo?

