
Making use of pre-calibrated weights

March 28, 2025

Public-use data sets often come with weights that have been adjusted by
post-stratification, raking, or calibration. It is standard practice to ignore this
fact and treat the weights as if they were sampling weights. An alternative
approach is to calibrate the weights again in R. This might seem impossible:
calibration needs the population totals. But we know the population totals,
because the effect of calibration is precisely that the estimated population totals
match the true population totals.

From version 4.2, the svydesign function has an option calibrate.formula
to specify (as a model formula) the variables that the weights are already cal-
ibrated on. The weights will be recalibrated using this formula, to population
totals estimated from the sample. The weights will not change — they were
already calibrated — but information will be added to the survey design ob-
ject to describe the calibration constraints and standard errors of estimates will
change.

Consider, for example, the apiclus1 example. This is a cluster sample of
15 school districts in California

> library(survey)
> data(api)
> dclus1 <- svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

The sampling weights pw are already calibrated to sum to the known number
of schools in the population, 6194, but R does not know this:

> sum(weights(dclus1))

[1] 6194

> dim(apipop)

[1] 6194 37

> dclus1<-update(dclus1, one=rep(1,nrow(dclus1)))
> svytotal(~one,dclus1)

total SE
one 6194 1442.9

1



The standard error should be zero, because the calibration procedure ensures
that the the estimated total is exactly 6194.

We could use calibrate() on the design object

> cal_dclus1<-calibrate(dclus1, formula=~1, population=sum(weights(dclus1)))
> svytotal(~one,cal_dclus1)

total SE
one 6194 0

The standard errors have changed, but the weights haven’t

> summary(weights(cal_dclus1)/weights(dclus1))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1 1

With the new option to svydesign we can do the same thing when the
object is created

> precal_dclus1<-svydesign(id = ~dnum, weights = ~pw, data = apiclus1,
+ fpc = ~fpc, calibrate.formula=~1)
> precal_dclus1<-update(precal_dclus1, one=rep(1,nrow(dclus1)))
> svytotal(~one,precal_dclus1)

total SE
one 6194 0

Calibrating to the population size simplifies the standard error relationship
between mean and total

> (enroll_t<-svytotal(~enroll, dclus1))

total SE
enroll 3404940 932235

> (enroll_m<-svymean(~enroll, dclus1))

mean SE
enroll 549.72 45.191

> SE(enroll_m)

enroll
enroll 45.19137

> SE(enroll_t)/6194

enroll
enroll 150.5061

2



> (cenroll_t<-svytotal(~enroll, precal_dclus1))

total SE
enroll 3404940 279915

> (cenroll_m<-svymean(~enroll, precal_dclus1))

mean SE
enroll 549.72 45.191

> SE(cenroll_m)

enroll
enroll 45.19137

> SE(cenroll_t)/6194

enroll
enroll 45.19137

Because calibration in this way changes the standard errors but not the point
estimates, it’s critical that you only use it when the weights are in fact already
calibrated. If not, the standard errors will be wrong. In particular, it is not
valid to take a subset of a data set with calibrated weights and then pretend
the subset was also calibrated on the same variables.

3


