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Abstract

In this note, we explain how f(a) = log(1—e~*) = log(1 —exp(—a)) can be computed
accurately, in a simple and optimal manner, building on the two related auxiliary functions
logip(x) (=log(1+x)) and expml(x) (= exp(z) —1 = e® —1). The cutoff, ag, in use in
R since 2004, is shown to be optimal both theoretically and empirically, using Rmpfr high
precision arithmetic. As an aside, we also show how to compute log(l + e‘”) accurately
and efficiently.
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1. Introduction: Not log() nor exp(), but loglp() and expm1()

In applied mathematics, it has been known for a very long time that direct computation of
log(1 + x) suffers from severe cancellation (in “1 4+ z”) whenever |z| < 1, and for that reason,
we have provided loglp(x) in R, since R version 1.0.0 (released, Feb. 29, 2000). Similarly,
loglp() has been provided by C math libraries and has become part of C language standards
around the same time, see, for example, IEEE and Open Group (2004).

Analogously, since R 1.5.0 (April 2002), the function expm1 (x) computes exp(z) —1 =¢e* —1
accurately also for |x| < 1, where e® = 1 is (partially) cancelled by “— 1.

In both cases, a simple solution for small |z| is to use a few terms of the Taylor series, as

loglp(z) =log(1 +z) =2 —2%/2+2°/3 —+..., for |z| <1, (1)
expml(z) = exp(z) — 1 =z 4+ 2%/2! + 23/31 + ..., for |z <1, (2)

and n! denotes the factorial.

We have found, however, that in some situations, the use of logip() and expml() may not
be sufficient to prevent loss of numerical accuracy. The topic of this note is to analyze the
important case of computing log (1 — e*) = log(1 — exp(z)) for < 0, computations needed
in accurate computations of the beta, gamma, exponential, Weibull, t, logistic, geometric and
hypergeometric distributions, and even for the logit link function in logistic regression. For the
beta and gamma distributions, see, for example, DiDonato and Morris (1992)!, and further
references mentioned in R’s ?pgamma and 7pbeta help pages. For the logistic distribution,

n the Fortran source, file “708”, also available as http://www.netlib.org/toms/708, the function AL-
NREL() computes loglp() and REXP() computes expm1().


http://www.netlib.org/toms/708
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p

Fr(x) = %, the inverse, aka quantile function is gr(p) = logit(p) := log ;. If the

argument p is provided on the log scale, p := log p, hence p < 0, we need
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qlogis(p, log.p = TRUE) = qr, (eﬁ) = logit (eﬁ) = log =p—log (1 — eﬁ) . (3)

and the last term is exactly the topic of this note.

2. loglp() and expml() for log(1 - exp(x))

Contrary to what one would expect, for computing log (1 — e*) = log(1 — exp(z)) for z < 0,
neither

log(1 — exp(z)) = log(—expml(x)), nor (4)
log(1 — exp(x)) = loglp(— exp(z)), ()

are uniformly sufficient for numerical evaluation. In (5), when z approaches 0, exp(z)
approaches 1 and loglp(—exp(x)) loses accuracy. In (4), when x is large, expml(z) ap-
proaches —1 and similarly loses accuracy. Because of this, we will propose to use a function
logimexp (x) which uses either expm1 (4) or loglp (5), where appropriate. Already in R 1.9.0
(R Development Core Team (2004)), we have defined the macro R_D_LExp (x) to provide these
two cases automatically?.

To investigate the accuracy losses empirically, we make use of the R package Rmpfr for
arbitrarily accurate numerical computation, and use the following simple functions:

R> library(Rmpfr)
R> t3.11e <- function(a)

{
c(def = log(l - exp(-a)),
expml = log( -expml(-a)),
loglp = loglp(-exp(-a)))

}

R> ##' The relative Error of loglmexp computations:

R> relE.1lle <- function(a, precBits = 1024) {
stopifnot(is.numeric(a), length(a) == 1, precBits > 50)
da <- t3.11le(a) ## double precision
a. <- mpfr(a, precBits=precBits)
## high precision *and* using the correct case:
mMa <- if(a <= log(2)) log(-expmi(-a.)) else loglp(-exp(-a.))
structure(as.numeric(1 - da/mMa), names = names(da))

}

where the last one, relE.11e () computes the relative error of three different ways to compute
log(1 — exp(—a)) for positive a (instead of computing log(1 — exp(z)) for negative x).

R> a.s <- 27seq(-55, 10, length = 256)

R> ra.s <- t(sapply(a.s, relE.lle))

R> cbind(a.s, ra.s) # comparison of the three approaches

a.s def expml loglp
[1,]1 2.7756e-17 -Inf -7.9755e-17 —-Inf

”

2look for “log(1-exp(x))” in http://svn.r-project.org/R/branches/R-1-9-patches/src/mmath/dpq.h


http://CRAN.R-project.org/package=Rmpfr
http://svn.r-project.org/R/branches/R-1-9-patches/src/nmath/dpq.h
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,]1 3.3119e-17 -Inf -4.9076e-17 -Inf
[3,]1 3.9520e-17 -Inf -7.8704e-17 -Inf
[4,] 4.7157e-17 -Inf -4.5998e-17 -Inf

,] 5.6271e-17 1.8162e-02 -7.3947e-17 1.8162e-02

,] 6.7145e-17 1.3504e-02 -4.4921e-17 1.3504e-02
[7,] 8.0121e-17 8.8009e-03 -1.2945e-17 8.8009e-03

[251,] 4.2329e+02 1.0000e+00 1.0000e+00 -3.3151e-17
[252,] 5.0509e+02 1.0000e+00 1.0000e+00 2.9261e-17
[253,] 6.0270e+02 1.0000e+00 1.0000e+00 1.7377e-17
[254,] 7.1917e+02 1.0000e+00 1.0000e+00 -4.7269e-12
[255,] 8.5816e+02 1.0000e+00 1.0000e+00 1.0000e+00
[256,] 1.0240e+03 1.0000e+00 1.0000e+00 1.0000e+00

This is revealing: Neither method, loglp or expml, is uniformly good enough. Note that
for large a, the relative errors evaluate to 1. This is because all three double precision
methods give 0, and that is the best approximation in double precision (but not in higher
mpfr precision), hence no problem at all, and we can restrict ourselves to smaller a (smaller
than about 710, here).

What about really small a’s? Note here that
R> t3.11e(1e-20)

def expml loglp
-Inf -46.052 -Inf

R> as.numeric(t3.1lle(mpfr(1e-20, 256)))
[1] -46.052 -46.052 -46.052

both the default and the loglp method return -Inf, so, indeed, the expml method is abso-
lutely needed here.

Figure 1 visualizes the relative errors® of the three methods. Note that the default basically
gives the maximum of the two methods’ errors, whereas the final logimexp() function will
have (approximately) minimal error of the two.
R> matplot(a.s, abs(ra.s), type = "1", log = "xy",
col=cc, lty=1t, lwd=11, xlab = "a", ylab = "", axes=FALSE)
R> legend("top", leg, col=cc, lty=1t, lwd=11, bty="n")
R> draw.machEps <- function(alpha.f = 1/3, col = adjustcolor("black", alpha.f)) {
abline(h = .Machine$double.eps, col=col, lty=3)
axis(4, at=.Machine$double.eps, label=quote(epsilon[c]), las=1, col.axis=col)
}
R> eaxis(1); eaxis(2); draw.machEps(0.4)
In Figure 2 below, we zoom into the region where all methods have about the same (good)
accuracy. The region is the rectangle defined by the ranges of a. and ra2:
R> a. <- (1:400)/256

R> ra <- t(sapply(a., relE.1lle))
R> ra2 <- ral,-1]

In addition to zooming in Figure 1, we want to smooth the two curves, using a method

3 Absolute value of relative errors, |(f(a) — f(a))/f(a)’ = ‘1 — f(a)/f(a)‘, where f(a) = loglmexp(a) (7)
is computed accurately by a 1024 bit Rmpfr computation
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Figure 1: Relative errors* of the default, log(l — %), and the two methods “expm1”
log(—expml(—a)) and “loglp” loglp(—exp(—a)). Figure 2 will be a zoom into the gray

rectangular region where all three curves are close.

assuming approximately normal errors. Notice however that neither the original, nor the
log-transformed values have approximately symmetric errors, so we use MASS: :boxcox() to
determine the “correct” power transformation,

R> da <- cbind(a = a., as.data.frame(ra2))

R> library(MASS)
R> bcl <- boxcox(abs(expml) ~ a, data = da, lambda = seq(0,1, by=
seq(0,1, by=.01), plotit=.plot.BC)

R> bc2 <- boxcox(abs(loglp) ~ a, data

R> c(with(bcl, x[which.max(y)]),
with(bc2, x[which.max(y)]))## optimal powers

da, lambda =

[1] 0.38 0.30

R> ## ==> taking ~ (1/3)
R> s1 <- with(da, smooth.spline(a, abs(expml1)~(1/3), df

R> s2 <- with(da, smooth.spline(a, abs(loglp)~(1/3), df

i.e, the optimal boxcox exponent turns out to be close to %, which we use for smoothing in a
“zoom—in” of Figure 1. Then, the crossover point of the two curves already suggests that the

9))
9))

cutoff, ag = log 2 is empirically very close to optimal.
= c(-1,1)*1e-12,

R> matplot(a., abs(ra2), type = "1", log = "y", # ylim =
col=cc[-1], 1wd=11[-1], lty=1t[-1],

.01), plotit=.plot.BC)



Martin Méchler

ylim = yl, xlab = "a", ylab = "", axes=FALSE)
R> legend("topright", leg[-1], col=cc[-1], 1wd=11[-1], 1ty=1t[-1], bty="n")
R> eaxis(1); eaxis(2); draw.machEps()
R> lines(a., predict(s1)$y ~ 3, col=cc[2], 1wd=2)
R> lines(a., predict(s2)$y ~ 3, col=cc[3], 1wd=2)
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Figure 2: A “zoom in” of Figure 1 showing the region where the two basic methods, “expm1”
and “loglp” switch their optimality with respect to their relative errors. Both have small
relative errors in this region, typically below €. :=.Machine$double.eps = 2792 ~ 2.22-10716.
The smoothed curves indicate crossover close to a = ag := log 2.

Why is it very plausible to take ap := log2 as approximately optimal cutoff?
Already from Figure 2, empirically, an optimal cutoff ag is around 0.7. We propose to compute

f(a) =log (1 —e"?) =log(l — exp(—a)), a>0, (6)

by a new method or function logimexp(a). It needs a cutoff ap between choosing expm1 for
0 < a < agp and loglp for a > ag, i.e.,
log(— 1(— 0<a< :=log 2 ~ 0.693
f(a) = loglmexp(a) := og(—expml(=a)) asa (= log ) (7)
loglp(— exp(—a)) a > agp.

The mathematical argument for choosing ag is quite simple, at least informally: In which
situations does 1 — e~ loose bits (binary digits) entirely independently of the computational
algorithm? Well, as soon as it “spends” bits just to store its closeness to 1. And that is as
soon as e~ < % = 271 because then, at least one bit cancels. This however is equivalent to
—a < log(27!) = —log(2) or a > log2 =: ay.
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3. Computation of log(14+exp(x))

Related to loglmexp(a) = log(1 —e™?) is the log survival function of the logistic distribution
log(1 — Fr(z)) = log H% = —log(1 4 €*) = —g(x), where

g(x) := log(1 + ¢*) = loglp(e”), (8)

which has a “4”” instead of a “—”, compared to loglmexp, and is easier to analyze and
compute, its only problem being large x’s where e® overflows numerically.* As g(z) = log(1+
e”) =log(e®(e ™™ 4+ 1)) =z +log(1 + ™), we see from (1) that

g(z) = +log(l+e™") =z +e "+ 0((e™)?), (9)

for  — oo. Note further, that for x — —oo, we can simplify g(x) = log(1 + €*) to €.

A simple picture quickly reveals how different approximations behave, where we have used
uniroot() to determine the zero crossing, but will use slightly simpler cutoffs zg = 37, z;
and x2, in (10) below:

R> ## Find x0, such that exp(x) =.= g(x) for x < x0 :

R> f0 <- function(x) { x <- exp(x) - loglp(exp(x))
x[x==0] <- -1 ; x }

R> u0 <- uniroot(f0, c(-100, 0), tol=1e-13)

R> str(u0, digits=10)

List of 5
$ root : num -36.39022698
$ f.root : num 2.465190329e-32
$ iter : int 81
$ init.it : int NA
$ estim.prec: num 7.815970093e-14
R> x0 <- uO[["root"]] ## -36.39022698 --- note that ~= \log(\eps_C)
R> all.equal(x0, -52.5 * log(2), tol=1e-13)
[1] TRUE
R> ## Find x1, such that x + exp(-x) =.= g(x) for x > x1 :

R> f1 <- function(x) { x <- (x + exp(-x)) - loglp(exp(x))
x[x==0] <- -1 ; x }

R> ul <- uniroot(f1, c(1, 20), tol=1e-13)

R> str(ul, digits=10)

List of 5
$ root : num 16.40822612
$ f.root : num 3.552713679e-15
$ iter : int 18
$ init.it : int NA
$ estim.prec: num 5.684341886e-14

R> x1 <- ul[["root"]] ## 16.408226

R> ## Find x2, such that x =.= g(x) for x > x2 :

R> f2 <- function(x) { x <- loglp(exp(x)) - x ; x[x==0] <- -1 ; x }
R> u2 <- uniroot(f2, c(5, 50), tol=1e-13)

R> str(u2, digits=10)

“Indeed, for 2 = 710, —g(z) = log(1 — F(z)) = plogis(710, lower=FALSE, log.p=TRUE), underflowed to
-Inf in R versions before 2.15.1 (June 2012) from when on (10) has been used.
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List of 5

$ root : num 33.2783501

$ f.root : num 7.105427358e-15
$ iter : int 9

$ init.it : int NA

$ estim.prec: num 6.394884622e-14

R> x2 <- u2[["root"]] ## 33.27835

R> par(mfcol= 1:2, mar = c(4.1,4.1,0.6,1.6), mgp = c(1.6, 0.75, 0))
R> curve(x+exp(-x) - loglp(exp(x)), 15, 25, n=2"11); abline(v=x1, 1ty=3)

R> curve(loglp(exp(x)) - x, 33.1, 33.5, n=2"10); abline(v=x2, 1ty=3)
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Using double precision arithmetic, a fast and accurate computational method is to use

exp(z) x < =37
loglp(exp(z)) —37 <z <z :=18,
r+exp(—z) 1 <z <wg:=33.3,

x T > X9,

3(x) = loglpexp(x) = (10)

where only the cutoff z; = 18 is important and the other cutoffs just save computations.’
Figure 3 visualizes the relative errors of the careless “default”, log(1+ €%), its straightforward
correction loglp(e®), the intermediate approximation z 4+ e~*, and the large = (= x), i.e., the
methods in (10), depicting that the (easy to remember) cutoffs z; and z3 in (10) are valid.
Note that the default method is fully accurate on this x range and only problematic when e”®
begins to overflow, i.e., £ > epnax, Which is

R> (eMax <- .Machine$double.max.exp * log(2))

[1] 709.78
R> exp(eMax * c(1, 1+1le-15))
[1] 1.7977e+308 Inf

where we see that indeed ey,x —eMax is the maximal exponent without overflow.

4. Conclusion

We have used high precision arithmetic (R package Rmpfr) to empirically verify that com-

Ssee plot curve(logip(exp(x)) - x, 33.1, 33.5, n=2"10) above, revealing a somewhat fuzzy cutoff z.
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Figure 3: Relative errors (via Rmpfr, see footnote of Fig. 1) of four different ways to numeri-
cally compute log(1+e*). Vertical bars at x1 = 18 and 29 = 33.3 visualize the (2nd and 3rd)
cutpoints of (10).

puting f(a) = log (1 — e~ %) is accomplished best via equation (7). In passing, we have also
shown that accurate computation of g(z) = log(1 + e*) can be achieved via (10). Note that
a version of this note is available as vignette (in Sweave, i.e., with complete R source) from
the Rmpfr package vignettes.

Session Information

R> toLatex(sessionInfo(), locale=FALSE)

R version 4.5.0 Patched (2025-04-24 r88177), x86_64-pc-linux-gnu

¢ Running under: Debian GNU/Linux 12 (bookworm)
e Matrix products: default
e BLAS: /srv/R/R-patched/build.25-04-26/1ib/1ibRblas.so

o LAPACK: /srv/R/R-patched/build.25-04-26/1ib/1ibRlapack.so; LAPACK
versiond.12.1

o Base packages: base, datasets, grDevices, graphics, methods, stats, utils
e Other packages: MASS 7.3-65, Rmpfr 1.0-1, gmp 0.7-5, polynom 1.4-1, sfsmisc 1.1-20

o Loaded via a namespace (and not attached): compiler 4.5.0, tools 4.5.0
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