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1 Introduction

The R sampSurf package (Gove, 2012b) allows the simulation of forest sampling methods by build-
ing “sampling surfaces” that show the density surface of an attribute such as volume or basal
area, over a tract. The trees that populate the tract may be synthetically generated, or they can
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be imported into the system from actual mapped plots or stands. The same is true for downed
coarse woody debris populations. There are approximately three dozen different sampling meth-
ods, including different protocols within certain methods, that can be simulated in sampSurf. The
package itself has grown to be quite large and is relatively mature in the sense that there is more
than enough present in the way of class structures and methods such that the addition of more
functionality at this point has been deemed by the author to make it somewhat unwieldy in size.
This is not to say that additional functionality will be completely excluded in the future, only that
it is a fairly complete package and additions should be done with some thought to necessity and the
possibility of creating a system that may be intimidating to potential users (including the author).

Another option is to leave sampSurf in its relatively stable phase, changing it only for corrections,
minor extensions, or simplification of use, and to place new functionality that is not necessary to
the core sampSurf module (package) itself in separate packages that are dependent on the sampSurf
class and methods structure. This is the approach that was taken in the additional R ssWavelets
package, that facilitates the application of elementary wavelet filtering to sampling surfaces (Gove,
2017b). Anyone desiring to apply wavelets in a manner similar to what was done in Gove (2017a),
can simply use this add-on package; those who want just the base sampSurf functionality can
ignore this and use the standard classes and methods defined in sampSurf.

The current package, ssExtra, or sampSurf extras has been initiated to handle new additions that
don’t easily fall within the purview of the extant sampSurf class and methods structure. It also is
envisioned that it can accommodate miscellaneous functions that may be written for illustration.
The main additions to this package at present involve classes and methods that will facilitate double
sampling strategies in sampSurf, including a Monte Carlo (MC) extension for repeated sampling.
A few miscellaneous methods are also included; for example, methods that demonstrate how one
might create a synthetic tract and population of trees to be used with sampSurf.

The ssExtra package is made available either using library(ssExtra) or by. . .

R> require(ssExtra, quietly = TRUE, warn.conflicts = FALSE)

where the last argument will suppress the message about masking other symbols (to keep the above
uncluttered) and may be omitted in general. To view all potential conflicts, use conflicts(detail
= TRUE). This will automatically load the sampSurf package as well if it is not already loaded.
Not all of the classes and methods are described in detail in this document. For more information
please use R’s help system on this package; i.e.,

R> package?ssExtra

This package also contains code for the new point-based Delta Method (PBDM) variance estimator,
which will be discussed in more detail in § 8. The new method is described in detail by Lynch et al.
(2020).
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A note on usage. In this vignette there are several places in the example code “chunks” where
it was necessary to prepend calls to methods with ‘ssExtra::’ in order for the methods to be
found from within the environment that is created when running knitr.1 This seems to happen for
methods that are derived from S3 generic functions defined in the R base or graphics packages.
These commands will run fine at the R command line without the ‘ssExtra::’ qualifier, but for
some reason that I have not been able to deduce, they require the extra ‘ssExtra::’ when run
from within knitr.

2 Creating a Tract and Tree Population

There a several routines included in ssExtra that might be of some guidance in creating a synthetic
tree population on a tract of a given size. One can easily create a tree population, plot the trees
relative to each other and look at all their attributes without creating a “tract” to hold them.
However, sampSurf requires that the population be coupled with an enclosing area, composed of a
raster surface, to hold the tree population. Please keep in mind that, in general, anything that can
be done with a tree population can also be done with a population of down coarse woody debris;
however, only tree populations are discussed here. In addition, if actual mapped stand data are
available, sampSurf is fully capable of using such data. Alternatively, any combination of the two
is also acceptable; for example, Gove et al. (2020) used dendrometry measurements from eastern
white pine trees in different stands and matched these to synthetic spatial locations to collect them
into one semi-synthetic stand, as it were.

2.1 Initializing a buffered tract

A buffered tract is one where there is an internal plot that holds the tree population, and an
external buffer that is normally wide enough to allow all inclusions zones for trees near the border
of the internal plot to lie completely within the full tract plus buffer region. For this reason, it
sometimes takes a few calculations or a little trial and error to get the buffer region just right for
a given population of trees and sampling method.

A sampSurf “Tract” object has extents (normally beginning at zero) and a raster cell size. A one
meter square raster cell size is often convenient and provides enough coverage to produce useful
results from the simulations. The sampSurf package provides methods for the creation of different
types of tracts (Gove, 2013b), and the process is simple enough, but the following method combines
just a couple steps to make the process a little simpler in general for creating “bufferedTract”
objects. Note that a “bufferedTract” also requires a buffer size in addition to the extents and the
raster size.

1knitr is the R routine that is used to create this document along with LATEX.
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R> args(initTract)

function (extents = c(x = 150, y = 150), cellSize = 1, bufferWidth = 14,

units = "metric", ...)

NULL

R> buffTr = initTract(c(x = 178, y = 178), bufferWidth = 18,

+ description = 'Northern Harwoods buffered tract')

R> buffTr

------------------------------------------------------------

Northern Harwoods buffered tract

------------------------------------------------------------

Measurement units = metric

Area in square meters = 31684 (3.1684 hectares)

class : bufferedTract

dimensions : 178, 178, 31684 (nrow, ncol, ncell)

resolution : 1, 1 (x, y)

extent : 0, 178, 0, 178 (xmin, xmax, ymin, ymax)

crs : NA

source : memory

names : surf

values : 0, 0 (min, max)

Buffer width = 18

R> (plotArea = (178 - 2*18)^2/10000) #internal area in ha

[1] 2.0164

The full tract area including the buffer is 31,684 m2, or 3.1684 ha. The internal portion of the tract
that will be populated by trees is therefore: (178− 2 ∗ 18)2/10000 = 2.0164 ha. Since sampSurf places
a sample point at the center of each raster cell on the tract, there are also 31,684 total sample
points on the tract.
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2.2 Creating the tree population

As noted above, a tree population and tract to place it on with total sampling intensity defined
as the number of raster cells (sample points) in the tract, are two of the necessary components for
generating a sampling surface. Now we concentrate on the creating a synthetic tree population to
eventually be coupled with the buffered tract created in § 2.1.

The methods described are for a mixed northern hardwood stand (or plot) with a given basal area
and three-parameter Weibull diameter distribution. The specification of these parameters is enough
to determine the stand diameter distribution and retrieve the number of trees and quadratic mean
stand diameter through the relationship

B = D̄2
qNκ

where B be the stand basal area, N is the number of trees, D̄q is the quadratic mean stand diameter,
and κ converts from diameter-squared to basal area. Now, if we let (ξ, β, γ) be the three-parameter
Weibull location (effectively the minimum DBH), scale and shape parameters, then it can easily be
shown (Gove and Patil, 1998) that D̄2

q ≡ µ′2, the second raw moment of a distribution in general.
Applying these to the three-parameter Weibull we have. . .

µ′2 = β2Γ(2/γ + 1) + 2βξΓ(1/γ + 1) + ξ2

which gives us D̄q =
√
µ′2 in terms of only the Weibull parameters; hence, solving for the number

of trees

N =
B

κD̄2
q

The above process is a simple method to generate a stand with N trees according to the desired
basal area and Weibull diameter distribution model. An example follows in which we will replace
(ξ, β, γ) by (a, b, c) to make programming a little simpler. In the following the main quantities are
input in “English” units (since the author still thinks in such terms) and converted to metric. . .

R> sfa2smh = 1/4.356 #ft^2/acre to m^2/ha

R> kappa = pi/(4*10000) #ba conversion metric

R> (B = 100*sfa2smh) #basal area in m^2/ha

[1] 22.956841

R> a = 4*2.54 #location parameter in cm

R> b = 8*2.54 #scale parameter in cm

R> c = 2 #shape parameter

R> mu2 = b^2*gamma(2/c+1) + 2*b*a*gamma(1/c+1) + a^2 #qmsd^2

R> (Dbarq = sqrt(mu2)) #qmsd
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[1] 29.699381

R> (N = B/(kappa*mu2)) #number of trees/ha

[1] 331.38089

2.2.1 drawTreePop for northern hardwoods

The ssExtra package has a method called drawTreePop that is setup to do the above calculations
for a northern hardwoods tract. We can duplicate the above with the following. . .

R> args(drawTreePop)

function (tract = buffTr, solidTypes = c(1.5, 3), topDiams = c(0,

0), B = 80, hgt.sd = 6, a = 4, b = 8, c = 2, inhibitDist = 3,

showPlot = TRUE, startSeed = 144, runQuiet = FALSE, ...)

NULL

R> tp = drawTreePop(buffTr, B = 100, hgt.sd = 8, a = 4, b = 8, c = 2,

+ startSeed = 355, main = NA)

Input specs...

Number of trees/acre = 134

Quadratic msd = 11.69267 in

Basal area/acre = 100

Weibull shape = 2

Weibull scale = 8 in

Weibull shift = 4 in

Output specs...

units = metric

Number of trees/ha = 331

Quadratic msd = 29.699381 cm

Basal area/ha = 22.956841

Weibull scale = 20.32 cm

Weibull shift = 10.16 cm

Totals for the tract...

Thursday 3rd September, 2020 Draft: Please do not distribute 10:01am



knitr Vignettes. . . §2 Creating a Tract and Tree Population Gove 7

--Tract area (inside the buffer) = 2.0164

--Total N for above area = 667.4284

--Height perturbations with sd = 2.4384 meters added.

--Total Basal area sampled = 48.370658

R> head(tp)

species height dbh topDiam solidType x y units

1 NHdwds 17.859360 17.664423 0 2.0 149.552999 89.918926 metric

2 NHdwds 23.455572 52.055242 0 1.6 26.391240 38.404951 metric

3 NHdwds 17.497384 22.907154 0 2.6 26.720776 53.124171 metric

4 NHdwds 25.957319 36.436657 0 2.5 134.459547 66.727826 metric

5 NHdwds 16.614532 19.546530 0 2.6 80.744292 29.933990 metric

6 NHdwds 20.146507 28.151105 0 1.5 95.704550 79.859052 metric

The first command shows the default arguments for the function if called with only a “buffered-
Tract” object. The second line runs the function with the parameters used in Gove et al. (2020).
Compare the results of the output to those in the previous code snippet where we calculated the
main stand quantities for illustration. Note that the final part of the output titled “Totals for the
tract” presents a summary based on the full tract. In summary, the following steps (not necessarily
in this order) are performed in drawTreePop to generate these results. . .

1. Convert the input arguments to metric if necessary (they are converted to metric of the
“bufferedTract” object is in metric) and calculate the missing stand parameters as was done
above.

2. Expand the per hectare quantities up to the total tract size based on the internal area of
2.0164 ha.

3. Draw a random diameter from the three-parameter Weibull function for each of the N = 667
trees.

4. Calculate a height for each tree using the “all species” height equation given in Fast and
Ducey (2011). Add a height perturbation, ε, to these mean heights using random draws from
a normal distribution with standard deviation equal to the σ = hgt.sd argument passed in
the call; i.e., ε ∼ N (0, σ2).

5. Determine the spatial coordinates for each tree using the SSI function in the R spatial

package with an inhibition distance as given by the inhibitDist argument. In this case the
default distance was used, and be careful to note that his is always specified in the same units
as the “bufferedTract” object.
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6. Lastly, plot the diameter distribution from the realized population as a histogram and su-
perimpose the Weibull model on this. Note that the argument main = NA is passed to the
hist function through the ... argument, suppressing the default title. The result is found
in Figure 1.
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Figure 1: Histogram showing the synthetic diameter distribution of N = 667 trees with the theo-
retical three-parameter Weibull distribution (red line).

The third line in the above code simply shows the first few records of the data frame returned from
drawTreePop holding the synthetic tree population.2

2.3 The Full Process for Northern Hardwoods

The above routines are designed to be used individually to create the different components required
for a tract and ‘synthetic’ tree population, specifically for northern hardwoods. These routines have

2For more information on the solidType and topDiam columns—and indeed on how trees are represented within
sampSurf —please see Gove (2011).
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been combined into a simple method called makePop that automate the above steps. Specifically,
it will. . .

1. Create a “bufferedTract” object with initTract (§ 2.1).

2. Create a ‘synthetic’ northern hardwoods tree population within the internal extents of the
tract with drawTreePop (§ 2.2.1).

3. Take the data frame output from drawTreePop and create a “standingTrees” object (see, e.g.,
Gove, 2011).

The following will help solidify the idea. . .

R> args(makePop)

function (extents = c(x = 150, y = 150), cellSize = 1, bufferWidth = 14,

units = "metric", description = "Tract and northern hardwoods population",

...)

NULL

R> nh.pop = makePop(c(x = 178, y = 178), bufferWidth = 18, B = 100,

+ hgt.sd = 8, startSeed = 355)

Creating tract...

Creating tree population...

Input specs...

Number of trees/acre = 134

Quadratic msd = 11.69267 in

Basal area/acre = 100

Weibull shape = 2

Weibull scale = 8 in

Weibull shift = 4 in

Output specs...

units = metric

Number of trees/ha = 331

Quadratic msd = 29.699381 cm

Basal area/ha = 22.956841

Weibull scale = 20.32 cm

Weibull shift = 10.16 cm

Totals for the tract...
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--Tract area (inside the buffer) = 2.0164

--Total N for above area = 667.4284

--Height perturbations with sd = 2.4384 meters added.

--Total Basal area sampled = 48.370658

Creating standingTrees object...

Adding to data frame...

R> str(nh.pop, 1)

List of 3

$ btr :Formal class 'bufferedTract' [package "sampSurf"] with 17 slots

$ strees:Formal class 'standingTrees' [package "sampSurf"] with 5 slots

$ trees :'data.frame': 667 obs. of 12 variables:

The first point to notice is that one can and should pass arguments for any of the above three
functions that are called in makePop through the call to this routine. In the above call the tract
size arguments are sent to initTract, while the basal area (B) and standard deviation of height
(hgt.sd) are passed on to drawTreePop. The third line of the code above shows a summary of the
results that are returned from the routine in a list structure3.

The second point to notice in the above code is that makePop adds more information to the data
frame of trees (returned in nh.pop$trees). This is easily seen by comparing the first few records
of the corresponding data frames. . .

R> head(tp)

species height dbh topDiam solidType x y units

1 NHdwds 17.859360 17.664423 0 2.0 149.552999 89.918926 metric

2 NHdwds 23.455572 52.055242 0 1.6 26.391240 38.404951 metric

3 NHdwds 17.497384 22.907154 0 2.6 26.720776 53.124171 metric

4 NHdwds 25.957319 36.436657 0 2.5 134.459547 66.727826 metric

5 NHdwds 16.614532 19.546530 0 2.6 80.744292 29.933990 metric

6 NHdwds 20.146507 28.151105 0 1.5 95.704550 79.859052 metric

R> head(nh.pop$trees)

3Note that there is much more to these objects, which can be seen by passing, e.g., 2 rather than 1 to the str

method.
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species height dbh topDiam solidType x y

tree.1 NHdwds 17.859360 17.664423 0 2.0 149.552999 89.918926

tree.2 NHdwds 23.455572 52.055242 0 1.6 26.391240 38.404951

tree.3 NHdwds 17.497384 22.907154 0 2.6 26.720776 53.124171

tree.4 NHdwds 25.957319 36.436657 0 2.5 134.459547 66.727826

tree.5 NHdwds 16.614532 19.546530 0 2.6 80.744292 29.933990

tree.6 NHdwds 20.146507 28.151105 0 1.5 95.704550 79.859052

units id vol ba vbar

tree.1 metric tree:6c2pgz15 0.17117562 0.024506924 6.9847861

tree.2 metric tree:1s574yod 1.65813126 0.212823128 7.7911234

tree.3 metric tree:e28t3mn5 0.32208958 0.041212804 7.8152794

tree.4 metric tree:fi9xg236 1.13547213 0.104271812 10.8895405

tree.5 metric tree:1m4k0s6v 0.22424118 0.030007460 7.4728477

tree.6 metric tree:861isrg3 0.41273156 0.062241605 6.6311202

R> identical(tp, nh.pop$trees)

[1] FALSE

The information through the units column is all identical, but four other columns have been added
to the data frame, in addition to a tree number in the row names. The interested reader may want
to verify the VBARs in the last column (e.g., (1)). The check for exact duplication of the two data
frames obviously fails because of the differing dimensions and rownames.

3 Big BAF sampling

3.1 A quick review of big BAF sampling

A simple review/overview with notation used in this document follows.4 Let Fc and Fv (m2 ha−1)
be the basal area factors for the selection of count and volume trees, respectively. Thus, the BAFc

sample of trees are selected with the Fc gauge, while the BAFv sample uses the Fv gauge to select
the trees for volume. Notably, Fc < Fv, and possibly Fc � Fv.

The double sampling big BAF estimator begins by forming the volume to basal area ratios for each
tree in the BAFv sample of n points (e.g., Kershaw et al., 2016, p. 377); i.e., for the ith tree on a

4This is the same notation used in Gove et al. (2020).
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given sample point we have. . .

Vi =
vi
bi

(1)

and, averaging over all trees on the BAFv sample gives

V̄ =
1

mv

n∑
s=1

mvs∑
i=1

Vi (2)

where v is some estimate of tree volume and b is tree basal area. Here mvs is the number of BAFv

trees measured for volume on the sth point; it follows that the total number of trees sampled for
volume is therefore mv =

∑n
s=1mvs .

The full set of counts with BAFc on all n points provides an estimate of the mean basal area, B̂c.
The estimator for average basal area per hectare based on the count sample is

B̂c =
Fc

n
mc

= m̄cFc (3)

where mc =
∑n

s=1mcs is the number of BAFc “in” trees on all n sample points, and mcs is the
number of BAFc trees tallied on the sth point. Similarly, the estimator for the total is simply
B̂c = m̄cAFc, where A is the area of the tract in hectares. Note that B̂c can refer to either the total
or per unit area estimate according to the context. Because the sampling surfaces are in terms of
totals, that will be the main use throughout.

The product of the mean VBAR and basal area gives an estimate of the volume under big BAF
as. . .

V̂B = V̄× B̂c (4)

It is important to realize that in (2) the total number of VBAR trees must include replicates for
any tree sampled on more than one point. The double sum ensures that the summation over the
s sample points will include multiple counts on the point-wise tallies. An alternate but equivalent
way to calculate V̄ is given in G&V (8.34a),5 which is simply the ratio of the expanded total volumes
to total basal areas from the big BAF sample. This form makes it clear that we must include trees
sampled more than once on different points.

5Throughout the rest of this document, G&V should understood as Gregoire and Valentine (2008). And equations
of the form (8.34a) refer to their equation of that number.
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3.1.1 Estimated variances

The variances corresponding to (2) and (3) are (e.g., Gregoire, 2009, p. 3, (12) & (13)) as follows. . .

v̂ar
(
V̄
)

=
1

mv(mv − 1)

n∑
s=1

mvs∑
i=1

(
Vi − V̄

)2
(5)

and

v̂ar
(
B̂c

)
=

1

n(n− 1)

n∑
s=1

(
Fcmcs − B̂c

)2

=
F2
c

n(n− 1)

n∑
s=1

(mcs − m̄c)
2 (6)

Kershaw et al. (2016, p. 380) provide equivalent estimators. The standard error estimates corre-

sponding to (5) and (6) are given as ŝe
(
V̄
)

=
√

v̂ar
(
V̄
)

and ŝe
(
B̂c

)
=

√
v̂ar
(
B̂c

)
, respectively.

3.1.2 Ratio variance estimator

In addition to the normal sample variance estimator given in (5), G&V (8.42) & (8.43) provide an
alternative ratio variance estimator for V̄. To be consistent with this reference, the estimators below
are defined for the total quantities on a tract of area A. In addition, we will need to differentiate
quantities such as basal area that can be computed under both BAFs. As previously noted, in
both the above and in what follows the context will distinguish whether the per unit area or total
estimates are used, and the same notation is adopted for each; thus, the estimator for the total
basal area from the BAFc inventory is simply B̂c = m̄cAFc. Likewise, the total basal area for the
big BAF sample is similarly defined as B̂v = m̄vAFv. The variance for the total basal area over the
tract scales (6) by A2. In sampSurf all cell-wise (point-wise) and summary statistics are calculated
based on totals rather than per unit area values for objects of class “sampSurf”, thus the above
arises by default.

The VBAR variances (5) are not scaled as they are based on the number of sampled trees. However,
there is an alternate variance estimator for VBAR that is based on the ratio of total volume to
basal area. In general, for either the count or big BAF sample, let. . .

V̂s = FA
ms∑
i=1

Vi
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and

V̂ =
1

n

n∑
s=1

V̂s

G&V (8.33) note that multiplying by B/B, total volume can be written using this ratio-based
quantity as. . .

V̂ = B̂

(
V̂

B̂

)
This is a general (i.e., outside double sampling) motivation for using the product variances to be
discussed in the following sections.

However, if we use the big BAF double sampling estimates for volume (V̂v) and basal area (B̂v) in
the ratio portion of V̂ , we can write this as. . .

V̂ = B̂c

(
V̂v

B̂v

)
(7)

= B̂c × V̄R (8)

where

V̄R =
V̂v

B̂v

(9)

The ratio quantity, V̄R, comes from the big BAF sample and it is scaled by the basal area estimate
from the count sample. G&V (8.34) note that the ratio quantity, V̄R, is equivalent to V̄ in (2)6.
Thus, they posit that one could alternatively use the following variance estimator for the ratio
V̄R = V̂v/B̂v for the variance of the VBAR trees in (5).

The alternative ratio variance estimator for V̄ ≡ V̄R given by G&V (8.42) is. . .

v̂arR
(
V̄
)

= v̂ar

(
V̂v

B̂v

)

=
1

B̂2
v

s2r
n

(10)

where

s2r =
1

n− 1

n∑
s=1

(
V̂vs − V̄B̂vs

)2
6We will use the latter in most cases, but keep in mind that V̄R ≡ V̄ so that it can be calculated either by (2) or

from the ratio (9).
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Of course, it is the variance of volume, V̂ , that is of ultimate interest. As can be seen in (4) and
(8), the big BAF estimate of volume comes from a product of means. The following section looks
at some ways to estimate this variance.

4 Variance Estimation

As noted above, there are several possible variance estimators that can be compared for big BAF.
These are discussed in more detail below and in § 8.

4.1 Non-parametric estimators

The two most likely candidates for use in this category include the jackknife and bootstrap estima-
tors. Both bootstrapping (with BCa intervals) and jackknifing are included in the ssExtra package
for big BAF, within the MC context (§ 6). The R bcaboot package (Efron and Narasimhan, 2018)
is used for the calculation of bootstrap and jackknife sample statistics; but refer to § A in the
Appendix for a some observations on the R packages available for these methods.

4.2 Exact variance of a product

As noted above, we can see from (4) that the big BAF estimator is the product of two random
variables (estimators really). Goodman (1960) presented the formulas for the variance of the
product of two random variables as well as those for estimators. It is the latter that we are
interested in, hence Goodman’s formula (6) applies here. . .

Var(x̄ȳ) = E[x]2 Var(ȳ) + E[y]2 Var(x̄) + Var(x̄) Var(ȳ) (11)

Goodman also presents an “unbiased estimate” [estimator] for (11), which is suggested in Gregoire
and Valentine (2008, p. 258, (8.36)) as a “design unbiased estimator” for the variance of a product.
This is given by Goodman’s equation (9) as. . .

v̂arG(x̄ȳ) = x̄2v̂ar(ȳ) + ȳ2v̂ar(x̄)− v̂ar(x̄) v̂ar(ȳ) (12)

where, e.g., var(x̄) is the usual variance of the mean.

Let the random variables x̄ ≡ V̄ and where ȳ ≡ B̂c. Then for big BAF sampling we have from
(12). . .

v̂arG

(
V̄B̂c

)
= V̄2v̂ar

(
B̂c

)
+ B̂2

c v̂ar
(
V̄
)
− v̂ar

(
V̄
)

v̂ar
(
B̂c

)
(13)

where the appropriate variances are given in (5) and (6). Note that (13) is equally applicable when
B̂c is the expanded total basal area, or when it represents basal area per unit area. In all cases, V̄
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is a tree-wise statistic and so it is never scaled by area. As noted above, sampSurf represents the
sampling surface and all statistics as totals rather than per unit area values.

4.3 The Delta Method approximation to the big BAF sampling variance

The Delta Method is a method based on Taylor Series that gives an approximation to the variance,
in this case the variance of a product. Gove et al. (2020) give a historical summary of this method
and demonstrate its connection to Bruce’s method (§ 4.3.1). They note that in the historical devel-
opment that the Delta Method seems to have been well-known at the time. For example, Goodman
(1960, p. 708) refers to “the usual formula” for the variance of a product as an “approximation”
and cites “Yates (1953, p. 198)” as one source for this formula. An alternate source that covered
the Delta Method and was commonly available at the time was Cramér (1946, p. 353).7 For more
information see Gove et al. (2020) and the accompanying supplementary material.

The volume estimator given in (4) is the product estimator V̂B = V̄ × B̂c. The Delta Method
approximation for this product variance is given as (Gove et al., 2020). . .

v̂arδ

(
V̂B

)
= v̂ar

(
V̄
)
B̂2

c + v̂ar
(
B̂c

)
V̄2 (14)

where the two estimated variance terms for the mean VBAR and basal area are computed using
the formulas presented in (5) and (6), respectively. When the assumption of independence is not
tenable, including the covariance term in (14) will give a first-order approximation to the variance
for big BAF as. . .

v̂arδ

(
V̂B

)
= v̂ar

(
V̄
)
B̂2

c + v̂ar
(
B̂c

)
V̄2 + 2 ĉov

(
V̄, B̂c

)
· V̄ · B̂c (15)

4.3.1 Bruce’s method

It is straightforward to show that Bruce’s method is simply the Delta method approximation. It
was evidently first used in forest sampling by Bell and Alexander (1957) and it is uncertain whether
these authors derived it or acquired it from another source, such as those listed above. Later, Bruce
(1961, p. 26) used this and evidently popularized it—hence the name. Again, Bruce gave no hint
as to the source.

The Delta Method variance estimator written in terms of V̄ and B is, from (14). . .

v̂arδ

(
V̄B̂c

)
= v̂ar

(
V̄
)
B̂2

c + v̂ar
(
B̂c

)
V̄2 (16)

7Note that Cramér provides a proof of the Delta Method for the mean and variance, but his notation can be
difficult.
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and dividing both sides by B̂2
c V̄2 gives. . .

v̂arδ

(
V̄B̂c

)
B̂2

c V̄2
=

v̂ar
(
V̄
)
B̂2

c

B̂2
c V̄2

+
v̂ar
(
B̂c

)
V̄2

B̂2
c V̄2

taking the square root of both sides and converting to percent with v̂arδ

(
V̄B̂c

)
≡ v̂arδ

(
V̂B

)
gives

ŝe%
(
V̂B

)
=

√
ŝe%

(
V̄
)2

+ ŝe%
(
B̂c

)2
(17)

Recall that in the above that the v̂ar(·) terms are the variance of the mean so that (17) is written
in terms of the standard error.

4.3.2 Deconstructing the Delta Method

The form of the Delta Method given in (16) is composed of two ‘weighted’ variance terms. We
think (correctly so) of both basal area and VBAR as random variables. However, consider the
implication if one of the two are treated as known. For example, for each variance term, treat the
mean multiplier as a constant. Then we have the following interpretation.

1. The first term in (16) can be written using (5) as. . .

B̂2
c v̂ar

(
V̄
)

=
B̂2

c

mv(mv − 1)

n∑
s=1

mvs∑
i=1

(
Vi − V̄

)2
=

1

mv(mv − 1)

n∑
s=1

mvs∑
i=1

(
B̂cVi − B̂cV̄

)2
(18)

Note that any product of a VBAR with basal area yields an estimate of volume. Thus, both
terms inside the summation are in terms of volume, yielding a variance in volume. In fact,
the ‘mean’ volume in the variance term is our estimate of big BAF volume given by V̂B in
(4).

2. Similarly, the second term in (16) can be written using (6) as. . .

V̄2v̂ar
(
B̂c

)
=

V̄2

n(n− 1)

n∑
s=1

(
Fcmcs − B̂c

)2

=
1

n(n− 1)

n∑
s=1

(
V̄Fcmcs − V̄B̂c

)2
(19)
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Again, we have the terms within the summation written as a product of basal area and VBAR,
yielding a variance in volume. Similarly, the ‘mean’ estimate of volume in the variance term
is also V̂B here as well.

The fact that the two Delta Method variance terms are both variances of volume is unremarkable,
as it is clear that the Delta Method is a weighted sum of variances as noted above and clearly shown
in (14). It has also been pointed out (and is clear from (17) in terms of the standard errors from
Bruce’s method) that (18) is based on the number of VBAR trees selected by the BAFv subsample
of points, and is therefore a variance in estimated volume of the VBAR trees only. The second term,
(19) is somewhat less apparent from Bruce’s formula, where it is interpreted (quite correctly) as the
(squared) standard error (as a percent of the mean) of basal area over all n sample points. Writing
this in the variance form demonstrates that the term is also identifiable as a estimated variance
in volume over all sample points. However, it does contrast with the usual identification of (17)
being composed of the sum of VBAR and basal area relative variances of the mean. The algebra in
going from (16) to (17) is enough to disguise the original interpretation of Bruce’s Method as being
one of the sum of volume variances. Both interpretations are correct, relative to their associated
formulæ.

Beginning with Bruce (1961, p. 26) a number of authors (e.g., Bell et al., 1983; Desmarais, 2002;
Marshall et al., 2004; Kershaw et al., 2016, p. 380; Yang et al., 2017) have made the point that the
two variance terms can be quite different in magnitude. Consequently, reducing the component of
greatest magnitude will have the largest affect on shrinking the overall Delta Method variance; of
course this was before the actual big BAF method was proposed, but the idea is the same. All
authors agree that under big BAF sampling any increased sampling effort should be concentrated
on reducing the second component by adding more points, rather than more VBAR trees, which
parallels the recommendations of Bruce. The simulations in § 6.4 will corroborate this recommen-
dation.

4.4 Horvitz-Thompson (H-T) variance

As noted above, (Gregoire, 2009, p. 3) and G&V (p. 259) suggests that his equation (14) might be
preferred as a variance estimator because it is design-unbiased. The estimator is the usual variance
of the mean volume. . .

v̂ar
(
V̂
)

=
1

n(n− 1)

n∑
s=1

(
V̂s − ˆ̄V

)2
(20)

where V̂s is the volume estimate on the sth sample point, and n is the total number of points as
defined above in the inventory. Because n will include a number of zero-volume points under the
big BAF design, it is anticipated that this variance will be high. As noted below, the simulations
will have volume calculated on a larger proportion of the n sample points under the BAFc sample,
so this will enable a comparison using (20) on both the count and BAFv samples.
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5 Double Sampling in sampSurf

The sampSurf package was created to simulate simple sampling methods used in forestry that are
applied individually to a population of trees or down logs. As such, it was never envisioned to be
extended to multi-stage or multi-phase sampling schemes. Such schemes can differ extensively in
their design and execution, all but negating a general double sampling class (in an object-oriented
sense) from being developed. The big BAF method is one example of a double sampling method
that is somewhat unique in the sense that both primary and secondary samples are conducted
on the same sample units, where in most familiar double sampling designs there are two different
sample sizes with a larger primary and smaller secondary sample being taken. In addition, these
designs rely on a two different but related variables (attributes) in their application. However, in
sampSurf, different sampling surfaces are required for each different attribute if multiple attributes
are to be simulated. How these may then be combined or used is application specific.

The fact that sampSurf was really designed to look at the efficiency of different methods over the
entire population makes double sampling a different sort of creature. It is in the drawing of samples
from the overall population that these designs find their application, not at the full population level
(i.e., the entire sampling surface). Therefore, their applicability comes in sampling from the full
population of sample points (grid cell centers) based on the protocols of the method in question.
This then puts the application of double sampling designs largely in the realm of Monte Carlo
(Monte Carlo) sampling from the population.

The ssExtra package does, however, have a new “virtual” double sampling class from which specific
protocols can be established. A virtual class is in a sense a base class8 in the S4 objected oriented
system within R; and it is one from which no objects can be directly created. Its use is in the
establishment of a common minimum degree of functionality that will be shared by all subsequent
subclass definitions. Please see Chambers (2008, Chapter 9) or Gentleman (2008, Chapter ??) for
more information on S4 classes and object-oriented programming in R in general.

In the following, the virtual class for double sampling (“ssDoubleSampling”) and its child class
definition for big BAF sampling (“ssBigBAF”) are described in detail. Subsequently, an example is
presented that demonstrates how to work with the different object components—known as “slots”
in S4 class definition parlance.

5.1 The R “ssDoubleSampling” class

The virtual class used to extend sampSurf for double sampling applications is the “ssDoubleSam-
pling” class. Because of the flexibility of double sampling designs, it is a simple class with only one

8This is playing a little loose with the terminology. It is ‘base’ in the sense of direct descendants with single
inheritance, but is only one of possible several ‘base’ classes in the sense of multiple inheritance—i.e., with multiple
parents.
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slot9 and currently no methods. The class looks like this. . .

R> showClass('ssDoubleSampling')

Virtual Class "ssDoubleSampling" [package "ssExtra"]

Slots:

Name: description

Class: character

Known Subclasses: "ssBigBAF"

The above shows us that the only slot common to this virtual class and all subclasses is a character
description for the created object—it is a pretty minimal class at this point. In addition, we see
that there is currently only one subclass: “ssBigBAF”.

5.2 “ssBigBAF:” Big BAF sampling class

As noted earlier, the sampSurf package is structured in such a way as to accommodate sampling
methods that are based on a single sampling surface containing one attribute, which has inclusion
zones appropriate for the method of sampling being studied. A simple example would be inclusion
zones of fixed area for fixed area circular plot sampling. Big BAF sampling is somewhat different
in that its context as a form of double sampling requires that we have not one sampling surface,
but three; i.e., one surface for the basal area count sample, and then both basal area and volume
surfaces (to create the VBARs) for the volume sample. However, since this is simulation and
extra surfaces cost nothing but a little extra computer time to generate, a fourth surface is also of
interest and part of this class, that of the count volume surface. Having this last surface allows
one to determine what the volume estimate would be for a given BAFc on the full sample of points
from the surface; this is particularly useful in the Monte Carlo experiments.

A subclass of “ssDoubleSampling” is available to create objects that can be used in applying the
big BAF sampling method in a Monte Carlo context. The class structure is described as follows. . .

R> showClass('ssBigBAF')

Class "ssBigBAF" [package "ssExtra"]

9Please note that this may change in the future.
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Slots:

Name: ss.bb.vol ss.bb.ba ss.ct.ba ss.ct.vol

Class: sampSurf sampSurf sampSurf sampSurf

Name: csl.bb csl.ct description

Class: ssCellStemList ssCellStemList character

Extends: "ssDoubleSampling"

5.2.1 Class slots

• ss.bb.vol: An object of class “sampSurf” for the big BAF volume surface.

• ss.bb.ba: An object of class “sampSurf” for the big BAF basal area surface.

• ss.ct.ba: An object of class “sampSurf” for the count basal area surface.

• ss.ct.vol: An object of class “sampSurf” for the count volume surface.

• csl.bb: An object of class “ssCellStemList” for the two big BAF surfaces.

• csl.ct: An object of class “ssCellStemList” for the two count surfaces.

• description: A character description of the object if desired (a default is given for the
class in the constructor method). Note that his slot is inherited from the “ssDoubleSampling”
parent class.

The above is a seemingly simple class structure, containing only seven slots. However, because four
full sampSurf objects must be created for the constructor (§ 5.3), it can take some time on large
populations. In addition, the class contains slots for another new class: “ssCellStemList”. These
objects also require time to build in the creation of the required list objects for the class.

5.2.2 A note on the “ssCellStemList” class

This class, while necessary for the implementation of big BAF sampling via Monte Carlo exper-
iments, is not essential to fully understand in order to use the system. A short explanation is
that the Monte Carlo subsampling will select samples of size n from the four populations. In the
process of calculating the required statistics and summary information, it is necessary to have a
list of the trees that are sampled in each cell (i.e., at each sample point) comprising a given Monte
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Carlo sample. This class builds the list objects for every cell in each sampling surface pair10

to provide this information. It also builds a list that is its complement, identifying which cells
(sample points) on the sampling surface lie within each tree’s inclusion zone. For more information
on the structure of these objects and their use in general please type class?ssCellStemList at
the command prompt and follow the links there to the constructor method if desired.

5.3 An example

As noted above, in order to create an object of class “ssBigBAF” one should use the object con-
structor of the same name: ssBigBAF. The constructor takes as input the first four slots described
in § 5.2.1. It follows that one must first create the four sampling surfaces to fill the four samp-
Surf object slots (§ 5.2.1). Thus, the job of the “ssBigBAF” object constructor is simply to do the
required work to complete the two remaining “ssCellStemList” slots and build the object. The con-
structor is detailed in the help file, which can be access using methods?ssBigBAF at the command
prompt. In summary, simply create the four sampSurf objects and pass them to the constructor.
Note that the four objects passed must be conformable with each other; that is, they must have the
same tract dimensions, units of measure, tree population, and the two count surfaces must share
the same BAFc, while the big BAF surfaces likewise must share the same BAFv. These constraints
are rigorously enforced through a validity check of the newly created object.

The above is simple enough and assumes that one already has a tree population, common “buffered-
Tract” to place it on, and specification (e.g., the angle gauges) for the inclusion zones associated
with each of the two BAFs (BAFc and BAFv) used. In order to provide more help to essentially
automate the procedure, one last function has been included that will combine all the steps through
“makePop” (§ 2.3), then create the four sampling surfaces from this information, and finally run the
constructor, ssBigBAF, on these results to create a return object of class “ssBigBAF”. An example
follows using the results for a smaller, more manageable tract size than the prior examples.

R> args(createBBNH)

function (extents = c(x = 178, y = 178), cellSize = 1, bufferWidth = 18,

units = "metric", baf.ct = 4, baf.bb = 10, startSeed = 355,

...)

NULL

R> ssBB = createBBNH(c(x=100, y=100), bufferWidth = 14, B = 60, baf.bb = 20)

Creating tract...

10Because the inclusion zones are determined only by the tree size and BAF, and both of these are constant for
the two count and two big BAF surfaces, only two objects are required—one for count and one for volume.
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Creating tree population...

Input specs...

Number of trees/acre = 80

Quadratic msd = 11.69267 in

Basal area/acre = 60

Weibull shape = 2

Weibull scale = 8 in

Weibull shift = 4 in

Output specs...

units = metric

Number of trees/ha = 198

Quadratic msd = 29.699381 cm

Basal area/ha = 13.774105

Weibull scale = 20.32 cm

Weibull shift = 10.16 cm

Totals for the tract...

--Tract area (inside the buffer) = 0.5184

--Total N for above area = 102.6432

--Height perturbations with sd = 1.8288 meters added.

--Total Basal area sampled = 7.0688455

Creating standingTrees object...

Adding to data frame...

Creating standingtreeIZs...

Creating sampling surfaces...

---Big BAF volume...

Number of trees in collection = 102

Heaping tree: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,

---Big BAF basal area...

Number of trees in collection = 102

Heaping tree: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,

---Count volume...

Number of trees in collection = 102

Heaping tree: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,

---Count basal area...

Number of trees in collection = 102

Heaping tree: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,
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Creating ssBigBAF object...

Creating the big BAF surface cell-stem IZ list...

Creating the count surface cell-stem IZ list...

***>Be careful to heed any warning about partial inclusion zones lying outside the tract!

This warning means you need to increase the buffer size for this population!

R> class(ssBB)

[1] "ssBigBAF"

attr(,"package")

[1] "ssExtra"

The final line of output verifies that we have created an object of the correct class. Please remem-
ber to keep in mind that those arguments that are being passed through the ... argument to
drawTreePop should be in “English” units (i.e., basal area per acre, B), while all other units in the
above are metric.

The northern hardwoods tract used in Gove et al. (2020) is larger than the example used here, but
it has the same tree population as is found in § 2.2.1. The actual command that can be used to
create the “ssBigBAF” object used in the simulations for a BAF pair (Fc,Fv) = (4, 20) m2 ha−1is
given as. . .

R> ssBB.all = createBBNH(B = 100, hgt.sd = 8, baf.bb = 20, startSeed = 355,

+ runQuiet = TRUE)

Please note in the above that some of the argument default values are taken, not only in createBBNH,
but also in the routines that it calls as discussed in the previous sections.

A summary of the “ssBigBAF” object shows the various main components in the object slots. . .

R> ssBB

Object of class: ssBigBAF

------------------------------------------------------------

Big BAF sampling surface object

------------------------------------------------------------

Sampling surface slot contents/estimates...

ss.bb.vol: Big BAF volume surface, horizontalPointIZ, 20 BAF (metric)
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ss.bb.ba: Big BAF basalArea surface, horizontalPointIZ, 20 BAF (metric)

ss.ct.ba: Count BAF basalArea surface, horizontalPointIZ, 4 BAF (metric)

ss.ct.vol: Count BAF volume surface, horizontalPointIZ, 4 BAF (metric)

Number of stems = 102

Mean BA surface-based sampling ratio count:bb = 4.9830843

True baf-based sampling ratio count:bb = 5

Please use "summary" on individual components (slots) for more details.

R> ntrees = length(ssBB@ss.bb.vol@izContainer@iZones)

R> baf.c = ssBB@ss.ct.vol@izContainer@iZones[[1]]@angleGauge@baf

R> baf.v = ssBB@ss.bb.vol@izContainer@iZones[[1]]@angleGauge@baf

R> baf.ratio = baf.v/baf.c

R> n.bb = ssBB@ss.bb.ba@surfStats$mean/baf.v

R> n.ct = ssBB@ss.ct.ba@surfStats$mean/baf.c

R> (ss.ratio = n.ct/n.bb)

[1] 4.9830843

From the summary above we see that there are 102 trees in the population. Also, a BAFc of
Fc = 4 m2 ha−1 was used on the count surfaces, while a BAFv of Fv = 20 m2 ha−1 was used on the
big BAF surfaces. Finally, the theoretical ratio of count to VBAR trees is given by the ratio of the
BAFs; thus, in this case we have an expected ratio of count to volume trees of 20/4 = 5. However,
an estimate of the ratio given the sampling surface tract size, resolution (i.e., grid size) and the
juxtaposition of the stems in the current population is based on the total number of trees sampled
over all points on the count surface to those in the volume surface; this estimate turns out to be
4.983. This is an unbiased estimate and will converge as the cell size decreases (number of points
increases), just like other statistics.

The code in the above snippet demonstrates how one can extract different quantities out of an
“ssBigBAF” object and use them for the basis of other calculations if desired. Note that all of
the above quantities derive from one or more of the individual sampling surfaces. Of course we
already know what the value of the two BAFs were, because we created the objects, but the above
simply shows how to extract these from the object. There is much more to the individual sampSurf
objects, which is explained in detail in Gove (2012b). Furthermore, recall that the individual tree
inclusion zones are objects within a larger “container” object of class “izContainer” (Gove, 2013a).
These zones will be exactly the same for both counts surfaces, since the same BAFc is used; likewise,
they will be exactly the same for both big BAF surfaces due to the same BAFv having been used.
Note that if one were to use the population totals in the above estimated ratio, it would essentially
be exact; viz.,
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R> nt.bb = ssBB@ss.bb.ba@surfStats$popTotal/baf.v

R> nt.ct = ssBB@ss.ct.ba@surfStats$popTotal/baf.c

R> nt.ct/nt.bb

[1] 5

It will be left as an exercise for the reader to reason out why this is so.

One final comment that may be obvious from the above little analysis. Since each of the four
sampling surface slots hold a valid object of class “sampSurf”, any methods that can be applied to
such objects can be applied to the objects in these four slots. Examples would be using the plot

and hist methods on these individual objects; while summaries of the individual sampling surfaces
can be generated by, e.g., summary(ssBB@ss.ct.vol) for the count volume surface. In addition,
there is a plot method that operates on the entire “ssBigBAF” object as shown in the following. . .

R> plot(ssBB, whichSS = c('ss.bb.ba','ss.bb.vol','ss.ct.ba','ss.ct.vol'),

+ useImage = FALSE)

Note in Figure 2 that the titles are the slot names from the object by default. The top row shows
the BAFv surfaces for basal area and volume, and the second row the corresponding BAFc surfaces.
The difference in the number of cells (sample points) covered by inclusion zones is quite apparent
between the two BAF’s from the figure. It is worth pointing out that the whichSS argument
allows one to pick the sampling surfaces that are to be displayed by slot name; from one to all
four may be chosen with the default being all four displayed in the order in which the slots are
stored in the object.11 This argument name must be specified because the second argument in
the plot generic function is the “y” argument (the first is the “x” argument, which corresponds
to the “ssBigBAF” object), and in this method developed for objects of class “ssBigBAF” the
second argument (while still there in the call to plot) is always missing (NA). This may take a
little pondering.12 The argument useImage derives from the plot method for a “Tract” object
(see methods?sampSurf::plot and find the “Tract” method); thus we again see how arguments in
‘...’ are passed through until resolved in the line of function calls.13

A summary of the big BAF volume surface gives14. . .

11This is why I have explicitly specified them so that they align both horizontally (by BAF) and vertically (by
attribute).

12See the argument list in the plot generic ?graphics::plot for the key to this if need be. All methods based on
this generic share the first two arguments, others can also be defined, like whichSS; e.g., see methods?ssExtra::plot.

13There you will see that the plot method for a “Tract” object is actually using the plot method for a “raster”
class object, which is the parent class of “Tract”—an on it goes.

14The “sampSurf::” package qualifier is required in order for this command to run within the knitr environment
(which creates this document in R); it is not required in general at the command line.
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Figure 2: The four sampling surfaces in an example “ssBigBAF” object. The top row displays the
basal area and volume surfaces (left to right) for the larger BAFv. The second row displays the
same information but for the smaller BAFc.

R> zz = sampSurf::summary(ssBB@ss.bb.vol)

Object of class: sampSurf

------------------------------------------------------------

sampling surface object

------------------------------------------------------------

Inclusion zone objects: horizontalPointIZ

Measurement units = metric

Number of trees = 102

True tree volume = 59.845463 cubic meters

True tree basal area = 7.0688455 square meters
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True tree surface area = 1030.6119 square meters

True tree biomass = NA

True tree carbon = NA

Estimate attribute: volume

Surface statistics...

mean = 60.061252

bias = 0.21578921

bias percent = 0.36057739

sum = 600612.52

var = 11649.502

st. dev. = 107.93286

cv % = 179.70464

surface max = 700.09283

total # grid cells = 10000

grid cell resolution (x & y) = 1 meters

# of background cells (zero) = 7152

# of inclusion zone cells = 2848

R> tractArea = area(ssBB@ss.bb.vol@tract)/10000 #in ha

R> ncells = ssBB@ss.bb.vol@surfStats[['nc']] #same for both

R> ncz.ct = freq(ssBB@ss.ct.vol@tract, 0, digits=15) #BAFc background cells

R> ncIZ.ct = ncells - ncz.ct #BAFc covered by IZones

Hence each tract15 has an area of 1 ha covered by 10,000 grid cells (i.e., total sample points), 2,848
of which are covered by inclusion zones using BAFv. Running the same command on the other
three objects will show that the same trees with exact same volume, &c., are used in each one.
However, the number of cells covered by inclusion zones will be different for the count surfaces,
where 6,511 cells are within the zones due to the smaller BAFc used. The high CV% = 179.7 is
evidently due to the small tract and low basal area, yielding large number of zero (background)
cells.

The population basal area may seem low for a tract of 1 ha. Remember, however, that there are no
trees in the boundary area. The area of the internal “plot” can be derived for this “bufferedTract”
object using the same methods as in § 2.1;16 i.e.,. . .

R> (bb = bbox(ssBB@ss.bb.vol@tract)) #Tract bounding box

min max

15Recall, one can get a summary of the “Tract” object by typing ssBB@ss.bb.vol at the R prompt.
16Note that the calculations err on the side of caution; for example, subtracting off the lower bound of the

“bufferedTract” bounding box, which is zero—but need not be in general—to get the buffer width.
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x 0 100

y 0 100

R> (bw = ssBB@ss.bb.vol@tract@bufferRect['x',1] - bb['x',1]) #buffer width

[1] 14

R> (plotArea.mc = (bb['x',2] - 2*bw)^2) #internal area in m^2

[1] 5184

R> (popBA = ssBB@ss.bb.ba@surfStats[['popTotal']]) #total BA of trees

[1] 7.0688455

R> (ba.pha = 10000*popBA/plotArea.mc) #ba/ha

[1] 13.63589

The internal tract area inside the buffer can be easily calculated as in the above; viz., (100 − 2 ∗
14)2/10000 = 0.52 ha. Thus, the total basal area on the tract interior, when expanded to a ha−1

basis is therefore 13.6 m2 ha−1; this translates to 59.4 ft2ac−1, which is very close to the basal area
specified in the creation of the ssBB “ssBigBAF” object using createBBNH in § 5.3.

5.4 The big BAF sampling surface

One might wonder why there is no associated big BAF sampling surface, but only four individual
sampling surfaces available in the “ssBigBAF” class object. This is a legitimate question and the
answer may not be obvious at first glance. The reason is that big BAF is a sampling protocol that
is performed on a sample of individual points that are combined into the estimate of volume for
the total. The way a sampling surface works, each individual grid cell receives a point estimate
from the sampling method/protocol that is implemented for the surface. Thus, each grid cell has
an effective sample size of n = 1, as it were. If we apply the big BAF estimator in (7) to each
cell, for example, then that cell (or sample point) receives the big BAF estimate of the volume
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from the trees whose BAFs overlap that sample point (grid cell center). This is a sample size of
n = 1, and the ratio, V̄R, for instance, is the ratio of volume to basal area on the BAFv sample (for
that point). Further multiplication by the basal area estimate from the BAFc count on that point
gives the volume for that point. Now if we took a sample of size n = 20 points for example from
a surface so constructed, and summed the volume estimates of these points, we would not get the
same value as we would from a sample of the same size taken from the individual sampling surfaces
at the same sample points, where the ratio V̄R and basal area estimate B̂c are now determined
from the combined 20-point sample. The estimates will differ. The same reasoning applies to the
entire sampling surface, because taken in the ‘limit’, the sampling surface is, in a sense, a sample
of all grid cells (points) in the population of cells. Thus, if we constructed a sampling surface
estimate of cells where the big BAF estimator has been applied individually to each sample point,
what we would have is a larger version of the example just described. The volume would not sum
to the total volume of the tract because the estimates for individual grid cells are not the correct
quantities to use.

An example may help make this clear. . .

R> Vv = ssBB@ss.bb.vol@tract@data@values

R> Bv = ssBB@ss.bb.ba@tract@data@values

R> Bc = ssBB@ss.ct.ba@tract@data@values

R> # create Big BAF `sampling surface'...

R> ssBBpt = Bc * ifelse(is.nan(Vv/Bv), 0, Vv/Bv)

R> mean(ssBBpt)

[1] 33.07976

R> ssBB@ss.ct.vol@surfStats$mean #count surface volume

[1] 59.834057

In the first three lines above we retrieve the surface-wide values V̂v, B̂v, and B̂c required for
application of (7) to each individual grid cell, which is then applied in the next line to get the faux
big BAF sampling surface that is created in ssBBpt;17 this surface has a volume of 33.08 m3, while
the actual volume estimate for the count surface is 59.83 m3. As a reminder, the population tree
volume is equal to 59.85 m3.

This may all seem obvious to some, but is not universally so: hence the qualification and explanation
given. For the above reasons, the correct way to implement big BAF sampling in the sampling
surface context then is to draw individual samples of size n and calculate the estimator using (7) for

17The is.nan function is necessary because there will be many points where the denominator, B̂v, is equal to
zero—a divide by zero yields a NaN value in R.
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that sample of points. This is what is described with replication in the Monte Carlo implementation
in § 6. With some further reflection it may be acknowledged that what was done above is essentially
a Monte Carlo experiment with a sample size of n = 1, replicated 10,000 times—i.e., without
replacement over the full sampling surface of available grid cells (sample points)—resulting in a
rather poor Monte Carlo average estimate of the true population volume.

6 Monte Carlo Sampling

6.1 When is n sufficiently large?

The well-worn title of this section derives from Jim Barrett (e.g. Barrett and Goldsmith, 1976), and
perhaps continuing to use it is a nice tribute to Jim.18 The sampSurf package has a set of classes
and methods that allow sampling from the population of grid cells comprising the surface. These
are derived from the “monte” class and monte generic function defined within the package, and
include methods for objects of different S4 classes. Ideally it would have been nice to build on the
available class structure and generics for the new double sampling applications (§ 5), but no clear
way availed itself to directly inherit from the extant monte methods. In addition, a completely new
class structure (§ 6) was required in the more complex double sampling context. However, it was
possible to create a new method of the sampSurf::monte generic for objects of class “ssBigBAF”
that allows drawing individual replicate (Monte Carlo) samples from each of the four individual
surfaces for a given sample size (e.g., n = 20, 40, 100, . . .). The statistics from the replicate samples
such as confidence interval capture rates are available for each sample size. The capture rates
facilitate approximating an answer to the sample size question (“when is n sufficiently large?”) for
the given population and sampling design parameters (i.e., BAFs).

The technical reason why the sampSurf “monte” class structure could not be inherited from directly
may not be clear at this point. Suffice it to say, without going deeply into the code, that the “monte”
class was designed to sample and retain results from a single sampling surface. Now, as noted in
§ 5.2, there are four sampling surfaces to both sample from, and retain results from. Objects of class
“monte” use data frames19 in the slot structure to store the results of a run. However, the multiple
sampling surfaces in the double sampling context require lists of data frames for the results. In
addition, multiple variances were desired to be compared in the double sampling context, whereas
only one variance (bootstrapping notwithstanding) is of concern in the single sampling surface runs.
Suffice it to say that one can compare the class structure presented below (§ 6.3) with that of the
“monte” class structure in sampSurf (see, e.g., Gove, 2012a) if one wants to study the differences
in more depth—the details are really immaterial to the use of these methods.

18For those unfamiliar with it, Jim also wrote a set of Basic programs for his book (Barrett and Nutt, 1979), one
of which was the program monte for answering the question posed in the section title.

19Through the subclasses of the “MonteSample” class.

Thursday 3rd September, 2020 Draft: Please do not distribute 10:01am



knitr Vignettes. . . §6 Monte Carlo Sampling Gove 32

6.2 The R “monteDoubleSampling” class

The “monteDoubleSampling” class is another virtual class that is used to form the basis for sub-
classes that will more specifically address different double sampling methods in the MC application
of such methods. It is much like the virtual “ssDoubleSampling” discussed in § 5.1 in this sense.
The simple class structure is defined as. . .

R> showClass('monteDoubleSampling')

Virtual Class "monteDoubleSampling" [package "ssExtra"]

Slots:

Name: description estimate

Class: character character

Known Subclasses: "monteBigBAF"

6.2.1 Class slots

• description: A character description of the object.

• estimate: A character identifier for characterizing the attribute that the sampling surface(s)
represent in terms of the double sampling estimator(s). When a subclass object has been
instantiated, this slot must be a legal attribute from a “sampSurf” object.

Again, inasmuch as this is a virtual class, these are simply placeholders for any subclass objects
such as the following.

6.3 “monteBigBAF:” Big BAF sampling class

The “monteBigBAF” class builds on the “monteDoubleSampling” class by adding the structure
necessary to enable studying the big BAF sampling method through MC experiments. The class
structure is. . .

R> showClass('monteBigBAF')

Class "monteBigBAF" [package "ssExtra"]
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Slots:

Name: mcSamples n fpc alpha replace ranSeed

Class: numeric numeric numeric numeric logical numeric

Name: t.values boot numBSS means vars stDevs

Class: numeric logical numeric list list list

Name: varMeans stErrs lowerCIs upperCIs caught otherVarms

Class: list list list list list list

Name: n.tvbar corrs covs gm.all sm.all mc.samples

Class: list list list list list list

Name: description estimate

Class: character character

Extends: "monteDoubleSampling"

6.3.1 Class slots

The number of slots in the “monteBigBAF” class is rather large as can be seen from the output
above. The following definitions for each slot are also long and perhaps tedious. They are presented
for completeness in documentation, and not for casual reading (as a perusal will quickly verify).

• mcSamples: The (scalar) number of MC replications drawn for each sample size, n.

• n: A vector of samples sizes, n, to be drawn from the population surfaces comprising an
“ssBigBAF” object—replicated mcSamples times.

• fpc: The finite population correction factors for each sample size n. The correction is:
fc = (N − n)/N . These are calculated and stored, but are not applied at this point because
our interest is mainly in the product variances, and it is not at all clear how these relate.

• alpha: The two-tailed alpha level for which confidence intervals have been calculated. I.e., for
the 95% confidence level (α = 0.05) alpha = 0.05 (the default—see the method arguments).

• replace: TRUE if the samples have been drawn from the population with replacement, FALSE
otherwise.

• ranSeed: The random number seed as a numeric vector. Please see the R documentation on
.Random.seed for information on the format of this slot. Note that it is not a simple scalar

Thursday 3rd September, 2020 Draft: Please do not distribute 10:01am



knitr Vignettes. . . §6 Monte Carlo Sampling Gove 34

integer “seed”, but a vector of integers containing the state of the random number generator
at the beginning of the simulations.

• t.values: The t
1−α/2
n−1 Student’s t values for each sample size n with two-tailed α-level alpha.

• boot: TRUE: include jackknife and bootstrap estimates; FALSE: do not include these.

• numBSS: The number of bootstrap samples to be drawn from each MC replicate and sample
size if boot = TRUE.

• means: A list of data frames each containing the individual means for all mcSamples by
length(n) samples drawn from the population.20 The following data frames (each a different
estimated attribute) are contained in this list with component names. . .

vol.bb: The big BAF sample means for volume; i.e., the volume estimated using the big
BAF estimator V̂B in (4) on the sample points drawn out of the BAFv surface.

ba.bb: The big BAF sample means for basal area estimated from the big BAF sample
points.

ba.ct: The count sample means for basal area estimate on the BAFc count sample points.

vol.ct: The count means for volume from the sample points drawn out of the count BAFc

surface. Note that this is the usual volume estimate over all points.

tvbar: The mean tree VBARs for “in” trees on big BAF points, where the mean tree VBAR,
V̄, is calculated by (2) from the BAFv sample points.

If boot == TRUE then the following two components are appended to the above. . .

boot: The bootstrap mean estimates of the volume V̂B from (4).

jack: The jackknife mean estimates of the volume V̂B from (4).

Note: The next ten slots contain lists whose data frames have the same dimensions as
the means slot data frames above. Note, however, that only some of these have the same
component names in the list.

• vars: A list of data frames each containing the individual variances for all mcSamples by
length(n) samples drawn from the population where: s2 = 1

n−1
∑n

i=1(yi − ȳ)2. Note that
the list component names are the same as for the means slot (just substitute “variance” for
“mean” in the slot definitions).

• stDevs: A list of data frames each containing the individual standard deviations for all
mcSamples by length(n) samples drawn from the population where: s =

√
s2. Note that

the list component names are the same as for the means slot (just substitute “standard
deviation for “mean” in the slot definitions).

20In other words the dimensions of each data frame are mcSamples rows × length(n) columns, where length(n)

is the number of different sample sizes, n.
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• varMeans: A list of data frames each containing the individual variances of the mean for
all mcSamples by length(n) samples drawn from the population. The following data frames
(each a different estimated variance for volume) are contained in this list with component
names. . .

delta: The Delta Method product variance estimates (14).

goodm: Goodman’s exact product variance estimates (13).

delta.r: The Delta Method product variance estimates given in (16), but using the ratio
variance estimator for VBARs given in (10) rather than (5).

goodm.r: Goodman’s exact product variance estimates given in (13), but using the ratio
variance estimator for VBARs given in (10) rather than (5).

vol.bb: The big BAF sample variances of the mean for volume using the H-T variance for
volume, (20), from the BAFv samples.

vol.ct: The count sample variances of the mean for volume using the H-T variance for
volume, (20), from the BAFc samples.

If boot == TRUE then the following two components are appended to the above. . .

boot: The bootstrap variance estimates of the volume V̂B from (4). Recall that the so-called
BCa intervals are calculated exclusively.

jack: The jackknife variance estimates of the volume V̂B from (4).

pbDelta: The PBDM variance estimates of the volume V̂B given in (22) (see § 8 for details).

pbdelta: The simplified PBDM variance estimates of the volume V̂B given in (29) (see § 8
for details).

• stErrs: A list of data frames each containing the individual standard errors of the mean
for all mcSamples by length(n) samples drawn from the population. Note that the list

component names are the same as for the varMeans slot (just substitute “standard error” for
“variance” in the slot definitions).

• lowerCIs: A list of data frames each containing the individual lower limit confidence interval
endpoints for all mcSamples by length(n) samples drawn from the population. Note that
the list component names are the same as for the varMeans slot (just substitute “lower limit
confidence interval endpont” for “variance” in the slot definitions).

• upperCIs: A list of data frames each containing the individual upper limit confidence
interval endpoints for all mcSamples by length(n) samples drawn from the population. Note
that the list component names are the same as for the varMeans slot (just substitute “upper
limit confidence interval endpont” for “variance” in the slot definitions).

• caught: A list of data frames each containing the individual confidence interval percent
catch statistics for all mcSamples by length(n) samples drawn from the population. Note
that the list component names are the same as for the varMeans slot (just substitute “con-
fidence interval catch statistic” for “variance” in the slot definitions). Please also note that
this list differs from the preceding varMeans through upperCIs, in that each data frame
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in the caught list is composed entirely of entries of class “logical,” with values TRUE if the
confidence interval catches the population mean and FALSE otherwise.

• otherVarms: A list of data frames each containing other individual variances of the mean for
all mcSamples by length(n) samples drawn from the population. The following data frames
(each a different estimated attribute variance) are contained in this list with component
names. . .

ba.bb: The big BAF sample variances of the mean estimates for basal area using BAFv.

ba.ct: The count sample variance of the mean estimates for basal area using BAFc.

tvbar: The variance estimates for BAFv sample tree VBARs, v̂ar
(
V̄
)
, given in (5).

tvbar.r: The ratio variance estimates for BAFv sample tree VBARs, v̂arR
(
V̄
)
, given in

(10).

dm.tvbar: The volume component of the Delta Method variance estimates (16) as given by
(18). This uses the tree VBAR variances given in (5).

dm.tvbar.r: The same as dm.tvbar above, except using the ratio estimator for the variance
of tree VBARs given in (10) rather than (5).

dm.ba: The basal area component of the Delta Method variance estimates (16) as given by
(19).

• n.tvbar: A list of data frames each containing the number of VBAR trees sampled on each
individual big BAF sample replicate for all mcSamples by length(n) samples drawn from the
population. The following data frames are contained in this list with component names. . .

count: The number of BAFc count sample trees, mc.

bb: The number of BAFv count sample trees, mv.

• corrs: A list of data frames each containing individual sets of correlations computed on
different combinations of measurements for all mcSamples by length(n) samples drawn from
the population. The definitions for each of the first set of components listed below are found
in § 7. The following data frames (each a different estimated attribute correlation between
VBAR and basal area) are contained in this list with component names. . .

tvbar.ba: Based on individual tree VBARs and basal area of the measured trees in the full
sample (over all points). These are tree-based, with no expansion. (See item 1 in § 7.)

Tvbar.ba: Point-wise correlation based on aggregate tree-based VBARs and basal area at
each sample point. (See item 2 in § 7.)

pvbar.ba: Point-wise correlation on aggregate tree VBARs from the big BAF sample with
basal area counts from the BAFc count sample. (See item 3 in § 7.)

mvbar.ba: Point-wise correlation on tree VBARs from the big BAF sample with mean basal
area counts from the BAFc count sample. (See item 4 in § 7.)

Pvbar.ba: Point-wise correlation on aggregate tree VBARs from the big BAF sample with
basal area counts also from the big BAF sample. (See item 5 in § 7.)
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Mvbar.ba: Similar to mvbar.ba, these are the point-wise correlations on mean tree VBARs
and basal area tally (not unexpanded tree basal area), with both from the big BAF
sample. (See item 6 in § 7.)

Please see § 8 for details on the following. . .

BcVv.cor: Point-wise correlations for count basal area (Bc) vs. big BAF volume (Vv) as
given in (26).

BcBv.cor: Point-wise correlations for count basal area (Bc) vs. big BAF basal area (Bv) as
given in (28).

VvBv.cor: Point-wise correlations for big BAF volume (Vv) vs. big BAF basal area (Bv) as
given in (27).

• covs: A list of data frames each containing individual sets of paired PBDM covariances.
The covariances corresponding to the approximate component correlations calculated above
in corrs (i.e., all but the last three PBDM quantities) are not contained in this list object
as they are readily calculable from the correlations and respective standard errors. Rather,
this list contains the following covariances required for the PBDM for all mcSamples by
length(n) samples drawn from the population21. . .

BcVv.cov: Point-wise covariances for count basal area (Bc) vs. big BAF volume (Vv) as
given in (23).

BcBv.cov: Point-wise covariances for count basal area (Bc) vs. big BAF basal area (Bv) as
given in (25).

VvBv.cov: Point-wise covariances for big BAF volume (Vv) vs. big BAF basal area (Bv) as
given in (24).

• gm.all: This is a list of “grand” means by sample size. Each component is a matrix object
containing means for rows that are the defined in the list objects for the slots above from
means through corrs, while the columns of each matrix are sample size.22

• sm.all: This is a list of two data frames. The data frames contains the sampling variance
and standard errors of the means (from the means slot as rows), over the sample size, n,
as columns. These are the “normal theory” estimates of these quantities calculated over
all Monte Carlo samples.23 Note that if boot = TRUE, the normal theory estimates for the
bootstrap means will also be included here (irrespective of their overall usefulness).

• mc.samples: This is a list of data frames. Each component of the list corresponds to a
sample size from the vector of slots n. Thus, the list has length length(n). The rows in each
data frame hold the cell (point) numbers that were selected in each of the n individual sample
points, sorted in ascending order for a given MC replicate sample. The MC replicates are given
by the columns. Thus, the data frames for each list component are defined by the sample

21For a complete explanation of these quantities, please see § 8.
22These means are calculated using the non-exported “hidden” function ssExtra:::.grandMeans; see the code for

documentation.
23These estimates are calculated using the non-exported “hidden” function ssExtra:::.samplingVarMeans; see

the code for documentation.
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size for that component, n, for the rows. However, every data frame has mcSamples columns
of MC replicates. The dimensions of the data frame are therefore n rows by mcSamples

columns, where n is different for each list component.

6.4 An example

Having now gone through all the component classes that will allow Monte Carlo subsampling from
a sampling surface, it is time to present an example of its use. Here we employ the “ssBigBAF”
object created in § 5.3 using the monte function to construct an object of class “monteBigBAF”. . .

R> ssBB.mc = monte(ssBB, n = c(25, 50, 75, 100), mcSamples = 250, boot= TRUE,

+ startSeed = 355)

n=25, 50, 75, 100,

Population of 102 trees...

Population size N = 10000 (number of cells)

Sample size = 25 50 75 100

Sampling fraction n/N = 0.0025 0.005 0.0075 0.01

Samples drawn with replacement

Basal Area...

Population tree ba = 7.0688455

mean ss.bb.ba = 7.094

mean ss.ct.ba = 7.07

Volume...

Population tree volume = 59.845463

mean ss.bb.vol volume = 60.061252

%diff pop vol = 0.36057739

Population mean Vbar = 8.4660873

Correlation (tree vbar & ba)...

Population on individual trees = 0.59577056

The report generated just gives an overview of the populations and requested sampling parameters.
We can look at more detail with. . .

R> ssExtra::summary(ssBB.mc)

Object of class: monteBigBAF

------------------------------------------------------------

Big BAF Sampling Monte Carlo Simulation
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------------------------------------------------------------

Estimate attribute = volume (except ba.* means)

Sample sizes (n) = 25, 50, 75, 100

Number of Monte Carlo samples = 250

Number of bootstrap samples = 100

Monte Carlo results...

--Means...

n.25 n.50 n.75 n.100

vol.bb 60.0651217 59.9834148 60.9472139 60.4027582

ba.bb 7.0112000 7.3376000 7.2405333 7.0496000

ba.ct 7.1340800 7.0944000 7.2200533 7.1329600

vol.ct 60.4033034 59.9112339 61.0125652 60.3359557

tvbar 8.4169643 8.4525121 8.4375671 8.4669344

boot 59.7679374 59.6834729 60.6439443 60.1098792

jack 59.7691330 59.6838686 60.6441077 60.1099539

--Variances of the means...

n.25 n.50 n.75 n.100

delta 162.50130 81.675133 55.608191 41.997622

goodm 161.90866 81.541172 55.546795 41.960880

delta.r 159.59640 80.891610 55.132101 41.650216

goodm.r 159.13028 80.774427 55.077271 41.617157

vol.bb 446.29334 242.163198 155.981507 115.086404

vol.ct 153.67079 77.420696 52.639024 39.504480

boot 168.99254 80.903716 55.950035 42.220877

jack 166.17213 83.719233 56.926515 42.818144

pbDelta 163.29970 83.292522 56.559350 42.515344

pbdelta 159.37347 83.161175 56.532414 42.376134

--Standard Errors of the means...

n.25 n.50 n.75 n.100

delta 12.586523 8.9779703 7.4292139 6.4641942

goodm 12.563476 8.9705674 7.4251015 6.4613596

delta.r 12.469958 8.9338766 7.3973249 6.4373898

goodm.r 12.451711 8.9273805 7.3936361 6.4348285

vol.bb 20.446532 15.3445901 12.3766536 10.6561486

vol.ct 12.246899 8.7446230 7.2301118 6.2702629

boot 12.771463 8.9163342 7.4318077 6.4605169

jack 12.717015 9.0872848 7.5150261 6.5247073

pbDelta 12.602325 9.0658155 7.4921120 6.5023710

pbdelta 12.419611 9.0477978 7.4874488 6.4912445

--Percent catch...
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n.25 n.50 n.75 n.100

delta 94.0 94.4 95.2 95.6

goodm 94.0 94.4 95.2 95.6

delta.r 93.6 94.0 94.8 95.2

goodm.r 93.6 94.0 94.8 95.2

vol.bb 98.0 99.6 99.6 99.2

vol.ct 95.2 94.0 95.6 94.4

boot 92.8 94.4 92.4 93.6

jack 94.0 94.0 95.6 95.2

pbDelta 94.4 94.8 94.8 95.2

pbdelta 93.2 94.4 94.8 94.8

Many other quantities are calculated as described in § 6.3.1 but not listed in the summary above.
For example, the following shows the means of a number of other variances that are computed. . .

R> ssBB.mc@gm.all$gm.otherVarms

n.25 n.50 n.75 n.100

ba.bb 5.97482667 3.23260082 2.092388709 1.532124444

ba.ct 2.08384853 1.04939729 0.717113350 0.536951402

tvbar 0.29804781 0.13021747 0.086415844 0.068913252

tvbar.r 0.23140070 0.11345622 0.077168942 0.062048862

dm.tvbar 14.31699200 6.42194814 4.470819716 3.475360870

dm.tvbar.r 11.41209881 5.63842548 3.994729628 3.127954329

dm.ba 148.18430328 75.25318458 51.137371611 38.522261435

For instance, we can see from the above that the Delta Method variance component (18) (either
dm.tvbar or dm.tvbar.r) is dwarfed by component (19) (in dm.ba), which is in accord with what
others have pointed out and reported. Also note that the Delta Method variance components, (18)
and (19), perfectly partition the full variance, as noted in § 4.3.2. . .

R> ssBB.mc@gm.all$gm.otherVarms['dm.tvbar',] +

+ ssBB.mc@gm.all$gm.otherVarms['dm.ba',]

n.25 n.50 n.75 n.100

162.501295 81.675133 55.608191 41.997622

R> ssBB.mc@gm.all$gm.varMeans['delta',]

n.25 n.50 n.75 n.100
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162.501295 81.675133 55.608191 41.997622

The same can be shown using the ratio estimates for the variance and will be left as a simple
exercise.

One convenient display that is automatic with the class structure is a histogram of the sample
means by sample size24. . .

R> hist(ssBB.mc, attribute = 'vol.bb', xlab = 'volume')
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Figure 3: The distribution of volume sample means under Big BAF from repeated sampling of the
surfaces shown in Figure 2 by sample size, n.

The result is displayed in Figure 3.

Finally, we can look at any of the individual Monte Carlo replicate draws at a selected sample size
for each of the surfaces in Figure 2. Below we choose to look at the two surfaces that contribute
to the Big BAF estimate: BAFv volume and BAFc basal area. The following command displays

24We can also look at basal area and VBAR displays.
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the sample points used in the first Monte Carlo sample draw under a sample size of n = 50. The
results are displayed in Figure 4. . .

R> slotNames(ssBB)[1:4]

[1] "ss.bb.vol" "ss.bb.ba" "ss.ct.ba" "ss.ct.vol"

R> ssExtra::plot(ssBB, whichSS = slotNames(ssBB)[c(1,3)],

+ sampleCells = ssBB.mc@mc.samples$n.50$mc.1, point.col = 'red')
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Figure 4: A re-display of the BAFv volume (a) and BAFc basal area (b) surfaces from Figure 2
showing the first Monte Carlo replicate sample of size n = 50 (‘x’).

The above selection of the first MC sample as specified in the sampleCells argument will be
explained more thoroughly in § 6.4.1; but see also the definition of the “monteBigBAF” class
mc.samples slot in § 6.3.1.

6.4.1 Viewing individual Monte Carlo simulations

It may be of interest to look a little more deeply at individual Monte Carlo simulation experiments.
Some of the code in the previous section makes reference to the ssBB.mc@mc.samples slot. As
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noted in § 6.3.1, this is a list25 object with each element being a data frame of MC sample draws
for a given sample size, n. In our case, there are M = 250 draws for each sample size. One can
look at any of the MC sample draws for a desired sample size, n; these are arranged as columns
in a data frame. The data in each column lists the cell (sample point) numbers in the sampling
surface that were selected for the sample. Figure 4, for example, displays the sample points for the
first MC sample of size n = 50, and the code shows how this is extracted from the object. This
hierarchy is illustrated in more detail in the following. . .

R> ssBB.mc@mcSamples #number of MC samples

[1] 250

R> ssBB.mc@n #sample sizes

n.25 n.50 n.75 n.100

25 50 75 100

R> str(ssBB.mc@mc.samples, 1)

List of 4

$ n.25 :'data.frame': 25 obs. of 250 variables:

$ n.50 :'data.frame': 50 obs. of 250 variables:

$ n.75 :'data.frame': 75 obs. of 250 variables:

$ n.100:'data.frame': 100 obs. of 250 variables:

R> head(names(ssBB.mc@mc.samples$n.25)) #a few column names

[1] "mc.1" "mc.2" "mc.3" "mc.4" "mc.5" "mc.6"

R> head(ssBB.mc@mc.samples$n.25[,1:6]) #basic data frame structure

mc.1 mc.2 mc.3 mc.4 mc.5 mc.6

1 45 106 405 254 283 1712

2 212 491 585 1087 1308 1870

3 418 1333 1810 1347 1547 2105

4 933 1339 2116 1786 1841 2129

5 934 1476 2147 2057 3140 2332

6 1652 2372 2247 2474 3690 2874

25The list structure was necessary because of the differing sample sizes that are normally drawn in the simulations.
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R> ssBB.mc@mc.samples$n.25$mc.1 #sampled cell numbers

[1] 45 212 418 933 934 1652 1661 1797 2176 2186 2767 3196 3235 3497 3511

[16] 3927 4001 4217 4477 6487 7060 8007 9286 9656 9880

Note in the above that the individual MC samples are access using the appropriate column name
within each sample size-based data frame. Thus, mc.1 is the first MC sample, and so on, such that
the last line above extracts the first MC replicate sample for a sample size of n = 25 points (cells),
displaying each of the cell numbers in the sample..

6.4.2 Viewing individual Monte Carlo simulation summaries

Having gained some knowledge of the “monteBigBAF” object structure from § 6.3.1 & 6.4.1, we
can duplicate some of the computations on individual MC sample draws exactly as computed in the
monte constructor. There are two main functions that are called in each MC replication within the
monte constructor to calculate various point- and tree-based summaries as part of the simulations
proper. These can be called using the results of the monte run to look more closely at some of
the results. For more information on these methods, see their associated help pages in package
ssExtra.

Point-wise statistics: The first function, monteStatsBB, calculates point-based quantities that
are properly expanded totals for the tract size and associated basal area factors. In the following
we continue to look at the first MC sample draw for n = 25. . .

R> msBB.mc1 = monteStatsBB(ssBB.mc@mc.samples$n.25$mc.1, ssBB)

R> str(msBB.mc1, 1)

List of 3

$ samples :'data.frame': 25 obs. of 7 variables:

$ stats.ct:'data.frame': 3 obs. of 3 variables:

$ stats.bb:'data.frame': 3 obs. of 3 variables:

R> (msBB.mc1$samples)

sdx ba.cts vol.cts idx.cts ba.bbs vol.bbs idx.bbs

1 45 0 0.000000 FALSE 0 0.00000 FALSE

2 212 0 0.000000 FALSE 0 0.00000 FALSE
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3 418 0 0.000000 FALSE 0 0.00000 FALSE

4 933 4 23.586357 TRUE 0 0.00000 FALSE

5 934 4 23.586357 TRUE 0 0.00000 FALSE

6 1652 12 96.689847 TRUE 20 171.08144 TRUE

7 1661 16 139.261101 TRUE 40 383.93771 TRUE

8 1797 0 0.000000 FALSE 0 0.00000 FALSE

9 2176 24 206.483185 TRUE 60 536.72698 TRUE

10 2186 20 173.365701 TRUE 40 373.90090 TRUE

11 2767 4 39.352453 TRUE 0 0.00000 FALSE

12 3196 0 0.000000 FALSE 0 0.00000 FALSE

13 3235 12 116.369968 TRUE 0 0.00000 FALSE

14 3497 0 0.000000 FALSE 0 0.00000 FALSE

15 3511 4 30.969008 TRUE 0 0.00000 FALSE

16 3927 12 97.132133 TRUE 0 0.00000 FALSE

17 4001 0 0.000000 FALSE 0 0.00000 FALSE

18 4217 8 55.710877 TRUE 0 0.00000 FALSE

19 4477 8 80.290583 TRUE 0 0.00000 FALSE

20 6487 4 30.610090 TRUE 20 153.05045 TRUE

21 7060 20 193.408308 TRUE 0 0.00000 FALSE

22 8007 0 0.000000 FALSE 0 0.00000 FALSE

23 9286 0 0.000000 FALSE 0 0.00000 FALSE

24 9656 0 0.000000 FALSE 0 0.00000 FALSE

25 9880 0 0.000000 FALSE 0 0.00000 FALSE

R> with(msBB.mc1$samples, vol.bbs[idx.bbs])

[1] 171.08144 383.93771 536.72698 373.90090 153.05045

R> with(msBB.mc1$samples, msBB.mc1$samples[idx.bbs,])

sdx ba.cts vol.cts idx.cts ba.bbs vol.bbs idx.bbs

6 1652 12 96.689847 TRUE 20 171.08144 TRUE

7 1661 16 139.261101 TRUE 40 383.93771 TRUE

9 2176 24 206.483185 TRUE 60 536.72698 TRUE

10 2186 20 173.365701 TRUE 40 373.90090 TRUE

20 6487 4 30.610090 TRUE 20 153.05045 TRUE

R> with(msBB.mc1$samples, ba.cts[idx.cts])

[1] 4 4 12 16 24 20 4 12 4 12 8 8 4 20
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The function call extracts the individual sample point and overall summary statistics for both basal
area and volume on the count and big BAF samples; the returned list component (date frame)
names and dimensions are as shown in the second line. The information by the individual sample
points is illustrated in the next line. The columns in this data frame list the count basal area and
volume (ba.cts & vol.cts) with idx.cts an indicator of those points (cells) with at least one
sampled tree. Moreover, ba.bbs, vol.bbs and idx.bbs have similar definitions for the big BAF
sample. The sdx column is simply the cell number from the sampling surface corresponding to
these quantities.26 In the above data frame for the full set of sampled cells (points) we can see
that no trees were selected (idx.bbs = FALSE) on 20 of the BAFv points, while 11 BAFc points
were no tally (idx.cts = FALSE). Furthermore, applying the idx.bbs index picks out all of the
5 points from the data frame that had sample trees selected using the Fv gauge as shown in the
penultimate line. Similarly, there were 14 points with trees selected using the Fc gauge as shown
in the last line (or simply by counting in the entire data frame).

Notice that no cell-based VBAR information is shown because it is not a particularly useful point-
wise quantity under big BAF sampling (as the VBAR statistics are calculated tree-wise).27 In
addition, while we can easily calculate point-wise VBAR quantities from the above point-wise
volume and basal area point totals, they are not the correct summaries to use since they are
not equivalent to the tree-wise VBARs, unless only one tree per point is sampled. Recall that
all quantities returned from monteStatsBB are expanded totals as summarized at each grid cell
(sample point); thus, such point-wise VBARs are ratios of accumulated total volume and basal
area over the trees sampled on each point. To get the correct quantities for (2) we need to dig back
into the actual trees sampled at each point to recover the tree-wise VBARs that are required for
final volume estimation and variance calculation. Remember, however, that we can alternatively
estimate V̄ in (2) from the ratio of total volume to total basal area via V̄R in (9) as shown in G&V,
(8.34a) and mentioned above in § 3.1.2; viz.,. . .

R> msBB.mc1$stats.bb

ba vol vbar

mean 7.200000 64.747899 8.992763759

var 262.666667 21798.830673 1.279464964

varm 10.506667 871.953227 0.051178599

R> ( vbar.rat = with(msBB.mc1$stats.bb['mean',], vol/ba) )

[1] 8.9927638

The equivalence of (9) as calculated above to (2) will be verified below. The ‘varm’ (3rd line)

26In case one is wondering about the rather odd name for this column, it stands for “sample point (or cell) index.
27There is no VBAR sampling surface, though it can be computed.
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for the ‘vbar’ is the variance of the VBAR based on this ratio as calculated using (10), as in
G&V (8.42), and will be illustrated below. Note that the msBB.mc1$stats.ct data frame gives an
equivalent summary as shown above, but for the count points.

One salient point must be emphasized concerning the mean volume returned in the stats.bb data
frame is that, as demonstrated, it is the mean volume from the points on the individual Monte
Carlo draw illustrated above. Let’s do a little comparison with what is calculated for the big BAF
estimate from the same Monte Carlo sample used above. . .

R> (tvbar25.1 = ssBB.mc@means$tvbar$n.25[1]) #BAFv vbar ratio

[1] 8.9927638

R> (ba.ct25.1 = ssBB.mc@means$ba.ct$n.25[1]) #BAFc basal area estimate

[1] 6.08

R> vol.bb = ba.ct25.1 * tvbar25.1 #big BAF volume estimate

R> vol.bb25.1 = ssBB.mc@means$vol.bb$n.25[1] #big BAF volume estimate

R> vol25.1 = msBB.mc1$stats.bb['mean', 'vol'] #point-wise mean estimate

R> c(vol.bb, vol.bb25.1, vol25.1)

[1] 54.676004 54.676004 64.747899

R> c(ssBB.mc@varMeans$vol.bb$n.25[1], msBB.mc1$stats.bb['varm', 'vol'])

[1] 871.95323 871.95323

Note that the estimated volume for this Monte Carlo draw as calculated directly from the sampling
surface is 64.7 and is exactly what would normally be computed from the mean of all the point
volumes in a typical (non-big BAF) cruise. The variance and variance of the mean in this sample
are also the traditional estimates based on the expanded point volumes. On the other hand, the
volume estimate given in the ssBB.mc@means$vol.bb entry for this Monte Carlo sample is the big
BAF estimate, which is shown to be 54.7. It should also be noted that the variance of the mean in
ssBB.mc@varMeans$vol.bb is, as just noted, the traditional variance of the mean from the point
estimates.28 This, of course, should be logical, if not obvious, since the variance of the mean for

28That is, it is not the variance of the mean of point-wise big BAF estimates.
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the big BAF estimate in ssBB.mc@means$vol.bb is given by the Delta Method, Goodman’s exact
variance, and the PBDM, the latter of which will be discussed in § 8.

Tree-wise statistics: The second function, monteTreeStatsBB, provides tree-wise VBAR infor-
mation by first calculating unexpanded tree-wise statistics, and then summarizes these (still unex-
panded) by sample point. The following code uses only the tree-wise records on the big BAF sample
as noted by the third argument (stype) in the function call below (results for the count sample
can be calculated in like manner by passing ‘count’ to this argument instead of ‘bigBAF’). . .

R> mtsBB.mc1 = monteTreeStatsBB(ssBB.mc@mc.samples$n.25$mc.1, ssBB, 'bigBAF')

R> str(mtsBB.mc1, 1) #return list components

List of 6

$ df.trees :'data.frame': 29 obs. of 7 variables:

$ list.df :List of 25

$ df.cells :'data.frame': 25 obs. of 6 variables:

$ treeStats:'data.frame': 4 obs. of 2 variables:

$ cellStats:'data.frame': 4 obs. of 2 variables:

$ n.v : int 9

R> with(mtsBB.mc1, df.trees[df.trees$idx,]) #trees on tally points

rep.cdx cellNum tree.id id vbar ba idx

6 6 1652 tree.73 tree:1pnx54g9 8.5540720 0.079783051 TRUE

7 7 1661 tree.59 tree:qu281wd6 8.9516398 0.042281931 TRUE

8 7 1661 tree.69 tree:u29h7tb0 10.2452457 0.113082749 TRUE

10 9 2176 tree.4 tree:107sfp6i 8.3919467 0.183361796 TRUE

11 9 2176 tree.41 tree:23y0hg1m 9.8381132 0.105588615 TRUE

12 9 2176 tree.44 tree:xyk80p79 8.6062891 0.114125628 TRUE

13 10 2186 tree.4 tree:107sfp6i 8.3919467 0.183361796 TRUE

14 10 2186 tree.12 tree:9a68w1ek 10.3030981 0.141080225 TRUE

24 20 6487 tree.9 tree:4r6go9l3 7.6525225 0.096553775 TRUE

R> with(mtsBB.mc1$df.trees, cor(vbar, ba)) #includes zero points

[1] 0.90584024

R> with(mtsBB.mc1$df.trees, cor(vbar[idx], ba[idx])) #no zero points
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[1] -0.04351607

R> mtsBB.mc1$treeStats

vbar ba

mean 8.992763759 0.11769106275

var 0.857751999 0.00211538760

varm 0.095305778 0.00023504307

corr -0.043516070 -0.04351607045

R> c(sum(mtsBB.mc1$df.trees$idx), mtsBB.mc1$n.v)

[1] 9 9

The second line lists the names and class types (with dimensions) of the list components returned
from the function call. The third line shows the results in a data frame for those trees sampled
over all points with at least one tallied tree (idx = TRUE). Note that there can be multiple records
with the same cell (sample point) number, cellNum (this column corresponds to the sdx variable
in the previous monteStatsBB example), due to more than one tree being sampled on these points.
The rep.cdx variable is a little more complicated, suffice it to say that it keeps track of the same
cell that might have been chosen more than once if sampling with replacement. In this way, one
can keep track of the trees on the point separately for each visit to the cell. The tree.id is the
unique tree identifier used in summary list or data frame objects, whereas the id is the spatial
tree identifier that is nested deep within a “standingTree” object. The idx column again picks out
only those records that have sample trees (and thus excludes all background zero-count cells). The
following two lines show the correlation between individual tree V and B from the sample when all
zero-count points are included, and next when only those points with sample trees are included.
The latter is the correct measure when one wants simply to look at the correlation in the individual
tree V and B for trees sampled using Fv; this is echoed by the results in the penultimate line—all
of these statistics are tree-wise.29 The last line simply shows the number of trees tallied on all
points under Fv arrived at in two different but equivalent ways.

To validate the estimate of V̄R calculated above from the ratio of total volume to total basal area
(9), we can look at the mean of the individual tree VBARs, for all trees tallied, V̄, which is exactly
what is calculated in (2). . .

29Thus, these do not include zero-count points since the sample size here is based on tallied trees, not number of
sample points.
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R> mtsBB.mc1$treeStats #as above

vbar ba

mean 8.992763759 0.11769106275

var 0.857751999 0.00211538760

varm 0.095305778 0.00023504307

corr -0.043516070 -0.04351607045

R> c(vbar.rat, mtsBB.mc1$treeStats$vbar[1]) #compare the two

[1] 8.9927638 8.9927638

And the results show the equivalence in practice, as demonstrated algebraically in G&V, (8.34a).
A salient point that has been previously noted and bears repeating is that if we want an estimate
of the variance of the mean VBAR, V̄ in (2), it is given by (5) based on the individual tree VBARs.
And while the ratio of the totals will conveniently give us the same estimated value, it will not
provide the required information for calculating a variance of this quantity in the usual manner.
However, as noted in § 3.1.2, there is an alternative ratio variance estimator, (10), that can be used
for this purpose as given in G&V, (8.42) (using (8.43)). One of these variance estimates (normal
theory from the tree vbars, or ratio), is of course required to estimate the overall big BAF variance
using either (13) or (16). The following code shows the calculation of the ratio standard error
estimate for the current sample of points and compares it with the normal theory estimate from
(5). . .

R> ( vol.bbs = msBB.mc1$samples$vol.bbs ) #point-wise volume

[1] 0.00000 0.00000 0.00000 0.00000 0.00000 171.08144 383.93771

[8] 0.00000 536.72698 373.90090 0.00000 0.00000 0.00000 0.00000

[15] 0.00000 0.00000 0.00000 0.00000 0.00000 153.05045 0.00000

[22] 0.00000 0.00000 0.00000 0.00000

R> ( ba.bbs = msBB.mc1$samples$ba.bbs ) #point-wise ba

[1] 0 0 0 0 0 20 40 0 60 40 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0

R> ( n = length(ba.bbs) ) #no. of sample points
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[1] 25

R> ( mean.ba = msBB.mc1$stats.bb['mean', 'ba'] )

[1] 7.2

R> ( r.se = sqrt( sum( (vol.bbs - vbar.rat*ba.bbs)^2 )/( n*(n - 1)*mean.ba^2 ) ) )

[1] 0.22622687

R> ( nt.se = sqrt(mtsBB.mc1$treeStats['varm', 'vbar']) )

[1] 0.30871634

The ratio standard error estimate for this particular sample differs by about -26.7% from the normal
sample estimate.

The above was made into a little function that facilitates the comparison of these results from any
Monte Carlo sample at any sample size; first to verify the above results. . .

R> rv.1 = ratioVariance(ssBB, ssBB.mc, n = 25, mcSample = 1)

Sample size n = 25

Monte Carlo replicate = 1

Ratio variance of the mean = 0.051178599 calculated here

Ratio variance of the mean = 0.051178599 from monteStatsBB

Normal theory varm = 0.095305778

R> rv.1$df

ratio normTheory

varm 0.051178599 0.095305778

se 0.226226874 0.308716339

R> rv.1$means
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mean.ba mean.vbar mvbar.rat

7.2000000 8.9927638 8.9927638

R> msBB.mc1$stats.bb['mean','ba'] #compare to mean.ba above

[1] 7.2

are equivalent to those calculated “by hand” in the previous code snippet. The penultimate line of
code prints the point-wise mean for basal area (mean.ba), B̂c from (3), which is verified in the last
line. Additionally, the tree-wise mean VBAR, V̄ (mean.vbar), from (2), and the ratio estimate for
the mean VBAR, V̄R (mvbar.rat), from (9) are presented; the two estimates of the mean VBAR
are again shown to be equal to 8.993 for this particular sample.

As a second example, the following presents an illustration of the use of ratioVariance with a
different sample size, n, and MC draw. . .

R> rv.248 = ratioVariance(ssBB, ssBB.mc, n = 100, mcSample = 248)

Sample size n = 100

Monte Carlo replicate = 248

Ratio variance of the mean = 0.065342157 calculated here

Ratio variance of the mean = 0.065342157 from monteStatsBB

Normal theory varm = 0.081825512

R> rv.248$df

ratio normTheory

varm 0.065342157 0.081825512

se 0.255621120 0.286051591

R> rv.248$means

mean.ba mean.vbar mvbar.rat

7.4000000 8.7574192 8.7574192

where we see the variance and standard errors of the means for both the ratio and normal theory
sample estimates, along with the means, for Monte Carlo sample replicate #248 with a sample size
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of n = 100. It is also possible with this routine to calculate a ratio estimate from the count sample
and compare it with the results from the big BAF sample above; viz.,

R> crv.248 = ratioVariance(ssBB, ssBB.mc, n = 100, mcSample = 248,

+ stype = 'count') #note: for the count sample

Sample size n = 100

Monte Carlo replicate = 248

Ratio variance of the mean = 0.010506318 calculated here

Ratio variance of the mean = 0.010506318 from monteStatsBB

Normal theory varm = 0.012267189

R> crv.248$df

ratio normTheory

varm 0.010506318 0.012267189

se 0.102500331 0.110757344

R> crv.248$means

mean.ba mean.vbar mvbar.rat

7.400000 8.540938 8.540938

In each of the above examples of ratioVariance there are two versions of the ratio variance
estimate that are printed in the set of results. The first is calculated in this routine based on
results from the chosen simulation relicate (i.e., “calculated here”). The second is the estimate as
calculated within monte from monteStatsBB. The ratioVariance function was the original test
prototype written before the ratio estimates discussed in § 3.1.2 were added to the monte system.
These in-line calculations have been retained for comparison and are redundant. The code is similar
to that used above (in the code chunk that calculates r.se) but also demonstrates in more detail
how to extract different components from the simulation replications.

The above return object from monteTreeStatsBB also summarizes the tree-wise information from
the df.trees data frame above into a cell-wise (point-wise) data frame df.cells. This is illustrated
as. . .

R> names(mtsBB.mc1)

[1] "df.trees" "list.df" "df.cells" "treeStats" "cellStats" "n.v"
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R> head(mtsBB.mc1$df.cells, 10)

rep.cdx cellNum vbar ba no.trees idx

1 1 45 0.000000 0.000000000 0 FALSE

2 2 212 0.000000 0.000000000 0 FALSE

3 3 418 0.000000 0.000000000 0 FALSE

4 4 933 0.000000 0.000000000 0 FALSE

5 5 934 0.000000 0.000000000 0 FALSE

6 6 1652 8.554072 0.079783051 1 TRUE

7 7 1661 19.196886 0.155364680 2 TRUE

8 8 1797 0.000000 0.000000000 0 FALSE

9 9 2176 26.836349 0.403076039 3 TRUE

10 10 2186 18.695045 0.324442020 2 TRUE

R> with(mtsBB.mc1$df.cells, vbar[idx])

[1] 8.5540720 19.1968855 26.8363491 18.6950448 7.6525225

R> with(mtsBB.mc1$df.cells, mtsBB.mc1$df.cells[idx,])

rep.cdx cellNum vbar ba no.trees idx

6 6 1652 8.5540720 0.079783051 1 TRUE

7 7 1661 19.1968855 0.155364680 2 TRUE

9 9 2176 26.8363491 0.403076039 3 TRUE

10 10 2186 18.6950448 0.324442020 2 TRUE

20 20 6487 7.6525225 0.096553775 1 TRUE

R> mtsBB.mc1$cellStats

vbar ba

mean 3.23739495 0.04236878259

var 54.49707668 0.01094505102

varm 2.17988307 0.00043780204

corr 0.96340552 0.96340552308

R> with(mtsBB.mc1$df.cells, cor(vbar, ba)) #include zero-count points
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[1] 0.96340552

R> with(mtsBB.mc1$df.cells, cor(vbar[idx], ba[idx])) #exclude zero-count points

[1] 0.8907168

It is important to keep in mind that these are direct accumulations of the tree-level data per cell
(sample point); thus, they are again a multi-tree summary, and are not expanded to the tract
total or per-unit area statistics.30 In addition to the variables in the df.trees data frame, the
df.cells data frame also includes the no.trees column showing how many trees were selected
on each point; in this case under big BAF sampling. Recall that the same information for the
count sample can be extracted from a separate run of monteTreeStatsBB by specifying “count”
for the third argument in the function call. Note that all of the cell statistics in the cellStats data
frame include zero-tally points in contrast to the tree-level summaries described previously—the
zero-tally excluded version in the above example is presented simply for illustration.

The following are two more ways to compute the correlation, both are based on using the big BAF
expanded sample basal area against the unexpanded tree tally VBAR results. The correlations are
again based on the big BAF sample of points.31 The first set of correlations is over all points in
the sample, including zero count points; the second set excludes zero-count points. . .

R> #include zero-count points...

R> msBB.mc1$samples$sdx #expanded cell numbers

[1] 45 212 418 933 934 1652 1661 1797 2176 2186 2767 3196 3235 3497 3511

[16] 3927 4001 4217 4477 6487 7060 8007 9286 9656 9880

R> mtsBB.mc1$df.cells$cellNum #tally cell numbers

[1] 45 212 418 933 934 1652 1661 1797 2176 2186 2767 3196 3235 3497 3511

[16] 3927 4001 4217 4477 6487 7060 8007 9286 9656 9880

R> cor(msBB.mc1$samples$ba.bbs, mtsBB.mc1$df.cells$vbar)

[1] 0.99854259

30Notably, the basal area used in here is individual tree basal area, and not the BAF count.
31This is a single replicate using the calculations in item 5, § 7, where zero points are included.
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R> #exclude zero-count points

R> with(msBB.mc1$samples, sdx[idx.bbs]) #expanded cell numbers

[1] 1652 1661 2176 2186 6487

R> with(mtsBB.mc1$df.cells, cellNum[idx]) #tally cell numbers

[1] 1652 1661 2176 2186 6487

R> cor(with(msBB.mc1$samples, ba.bbs[idx.bbs]),

+ with(mtsBB.mc1$df.cells, vbar[idx]))

[1] 0.99416711

In each case above, the cell (point) numbers agree between the two sets of data—expanded and
tally (unexpanded) as is shown in the two lines preceding each correlation. The cell numbers are
shown simply to demonstrate that the same ordered sets of sample points are being used in each
case for the correlations.

The following demonstrates that the same results for correlation can be arrived at as in the above,
but based solely on the expanded plot-level results from monteStatsBB alone. . .

R> with(msBB.mc1$samples, cor(vol.bbs, ba.bbs)) #include zero counts

[1] 0.99854259

R> with(msBB.mc1$samples, cor(vol.bbs[idx.bbs], ba.bbs[idx.bbs])) #exclude zeros

[1] 0.99416711

Notice here that we are computing the correlation of expanded volume (not VBAR) with expanded
basal area. But expanded volume is a constant (i.e., FvA/n) multiplied by the sum of the VBARs
over all sampled trees (i.e., the summations in (2)); thus, it is exactly the same as was used in the
previous code segment in correlating the raw tree VBARs against expanded basal area.32 More

32Scale factors matter in covariance, but they cancel in correlation.
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results on correlations from the entire set of Monte Carlo samples are found in § 7.

7 Correlations Between VBAR and Basal area

Both the Delta Method and the exact variance assume independence of the two random variables
(or estimates), in this case VBAR and basal area. As noted in Gove et al. (2020, see their appendix
for details), both the Delta Method and Goodman’s exact variance take an alternative form incor-
porating extra covariance terms in the case where the two variables are not independent. Therefore
it is of some interest to know whether one can assume independence so that the correct form of the
variance in each case can be used. If we judge independence via the correlation, ρ(x, y), then this
can be determined in the simulations.

We have a bit of a conundrum because mean VBAR, V̄, and it’s variance are calculated on an
individual tree basis (i.e., over all sample trees (2) & (5)), but mean basal area, B̂c, and its
variance are calculated on a point-wise basis (e.g., (6)). Thus, unlike many sampling applications
where everything is point-based for summation, here we have disparate sample units and sizes based
on the number of VBAR trees and the number of basal area points. Why the conundrum? Well,
because while we could use the standard deviations associated with (5) and (6) in the denominator
of the correlation coefficient, the covariance in the numerator must be based on the same sample
support. This suggestion, even if it were to work, is not serious, only meant to illustrate the
problem of the disagreement in what forms the sample units between the two quantities and form
the basis for the estimation of both Delta Method and Goodman’s exact variances. In addition,
the two extended formulæ for the variance in this case also contain covariance terms that must
be evaluated, and so the same caveat applies to the actual calculation to both of these extended
versions of the variance. This seems to be a unique application.

Having noted the above caveat, there are several potential ways to calculate the correlations based
on the data available from the simulations, though these are not exhaustive. These are cross
referenced below to the list items in the corrs slot in § 6.3.1. They are as follows. . .

1. Big BAF individual tree-wise: Consider tree VBAR and BA as the random variables. From
(1) this would be the individual tree Vi and bi values for i = 1, . . . ,mv. This is not as odd
as it may seem since it forms the basis for (2), but it does not capture point-wise sampling
variability. The correlation would thus be ρ̂(Vi, bi) over all trees (mv) in the big BAF measured
sample. (See: corrs$tvbar.ba.)

2. Big BAF aggregate individual tree point-wise: This method considers the individual point
estimates themselves as random variables over the sample point draw for each Monte Carlo
sample. This uses the same unexpanded individual tree information from the big BAF sample
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as item 1, but is based on the point-wise aggregate values of VBAR and basal area; thus,. . .

Vvs =

mvs∑
i=1

Vi

bvs =

mvs∑
i=1

bi

and recall that the subscripts vs denotes the big BAF sample on the sth point so that, e.g.,
mvs is the number of trees on the sth point for the big BAF sample. Note in the above that
both quantities will be zero on all count points where no big BAF trees have been measured.
The correlation estimate will be ρ̂(Vvs , bvs) for s = 1, . . . , n. (See: corrs$Tvbar.ba.)

3. Count-Big BAF point-wise totals: This method again considers the individual point estimates
as the random variables as in item 2. Here the VBARs are the individual tree aggregates,
Vvs , from the big BAF sample and the basal area is from the expanded count sample. The
point-wise total basal area estimates are thus. . .

Bcs = Fcmcs

where mcs is the number of trees on the sth point for the count sample. Thus, the correlation
estimate will be ρ̂(Vvs , Bcs) for s = 1, . . . , n.33 (See: corrs$pvbar.ba.)

4. Count-Big BAF point-wise means: Similar to the last point, we can look at the point-wise
per-tree means. These are given as. . .

V̄vs =
1

mvs

mvs∑
i=1

Vi

B̄cs = Fc

Note, of course, that B̄cs is constant at each point or zero. This will diminish the correlation
somewhat. It follows that the correlation estimate will be ρ̂

(
V̄vs , B̄cs

)
for s = 1, . . . , n. And

again, we will have V̄vs = 0 on non-big BAF count points. (See: corrs$mvbar.ba.)

5. Big BAF point-wise totals: This method is similar to item 3 above in that it considers the
individual point estimates themselves as random variables over the sample point draw for
each Monte Carlo sample. However, the correlation here is between VBAR and the big BAF
basal area tally from Fv. The point-wise total estimates are. . .

Vvs =

mvs∑
i=1

Vi

Bvs = Fvmvs

Thus, the correlation estimate will be ρ̂(Vvs , Bvs) for s = 1, . . . , n. (See: corrs$Pvbar.ba.)

33Recall that expanded totals are the default in sampSurf, so the basal area is expanded by A both here and in
items 4, 5 and 6.
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6. Big BAF point-wise means: Similar to item 4, we can look at the point-wise per-tree means
for the big BAF tally as in item 5. These are given as. . .

V̄vs =
1

mvs

mvs∑
i=1

Vi

B̄vs = Fv

Note again, of course, that B̄vs is constant at each point or zero. It follows that the correlation
estimate will be ρ̂

(
V̄vs , B̄vs

)
for s = 1, . . . , n. (See: corrs$Mvbar.ba.)

7. Monte Carlo replication-based: The final method would be to consider each MC replication
at each sample size as an estimate of V̄m and B̄m where m = 1, . . . ,M , the number of MC
sample replicates, and determine the correlation for each sample size from these means. This
is a correlation between VBAR and basal area estimates among the repeated samples drawn
from the sampling surface and is applied to each sample size. These are not calculated or
stored by monte as they are not really useful for trying to deduce the correlation of interest,
they may be easily calculated as in the example that follows.

Note in particular that there is a possibility of generating a warning in the simulations for any of
items 3–6 (but especially the mean versions) in computing the correlation for a given MC draw
because the standard deviation could be zero34. This would be the case, for example, if exactly one
tree were sampled on each point for either the big BAF or count sample so that the basal areas
are all equal to the BAF, inducing zero variance over the points. This is very infrequent, but can
happen for small n and should not be a concern as the number of MC draws is large.

The first six correlations above are calculated automatically in the results of the MC simulations
using monte. Thus, from the results above we have the following ‘grand’ averages over all simulations
for each quantity. . .

R> ssBB.mc@gm.all$gm.corrs

n.25 n.50 n.75 n.100

tvbar.ba 0.48601556 0.52165768 0.52616361 0.53366921

Tvbar.ba 0.93271434 0.93371281 0.92962876 0.92846714

pvbar.ba 0.56941734 0.60167837 0.59539842 0.59064744

mvbar.ba 0.44052903 0.45477442 0.44944859 0.45267165

Pvbar.ba 0.98771462 0.98754870 0.98717385 0.98674540

Mvbar.ba 0.98376867 0.98250036 0.98172696 0.98097457

BcVv.cor 0.56941734 0.60167837 0.59539842 0.59064744

BcBv.cor 0.57388086 0.60453169 0.59979847 0.59698414

VvBv.cor 0.98771462 0.98754870 0.98717385 0.98674540

34In cor(m.vb.bb, m.ba.ct) : the standard deviation is zero.
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R> with(ssBB.mc@means, mapply(cor, tvbar, ba.ct))

n.25 n.50 n.75 n.100

0.023765134 0.055298510 0.118131494 0.047119834

In the above output, the following recap what each row summarizes. . .

1. tvbar.ba displays the tree-wise correlations, ρ̂(Vi, bi), corresponding to item 1 in the above
list.

2. Tvbar.ba are the point-wise tree-based correlations ρ̂(Vvs , bvs) as defined in item 2.

3. pvbar.ba gives the point-wise correlation, ρ̂(Vvs , Bcs), described in item 3.

4. mvbar.ba shows the results for item 4: ρ̂
(
V̄vs , B̄cs

)
.

5. Pvbar.ba gives the big BAF-related correlations in item 5: ρ̂(Vvs , Bvs).

6. Mvbar.ba gives 6: ρ̂
(
V̄vs , B̄vs

)
The results of the second line of code above give the estimated correlations using the method
described in item 7. The correlation between VBAR and BA for the population of trees used in the
simulations is calculated as ρ(Vi, bi) = 0.5958. This can be compared against the above results.

7.1 Correlation approximation summary

The interesting thing about all the above potential correlations is that none of them are exactly
what are needed to employ the extended (non-independent) version of either product variance
formula. Again, this is because of the so-called conundrum that was mentioned earlier with regard
to the two incommensurate support bases: trees and points. Gove et al. (2020) discuss this in more
detail, and an elegant solution to this problem is discussed in § 8.

8 The Point-Based Delta Method

This section presents a new variance estimator that is based on the Delta Method. The estimator
provides a clean way to calculate covariances and correlations, has the same efficiency as Bruce’s
method, and requires only a little extra computational work. A more detailed explanation regarding
derivation and use of the formulæ for the variance estimator given in (22) below is provided in
Lynch et al. (2020). We have called this section the “point-based Delta Method” because of the
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fact that it is based completely on point-wise estimates unlike Bruce’s method. This method came
about through an insightful observation by Dr. Tom Lynch regarding the Delta Method application
discussed in Gove et al. (2020) (and above), and it is hoped that it will come to be referred to as
“Lynch’s method” in the future of big BAF sampling.

Recall that the big BAF estimator for volume, (4), can be written as (7). . .

V̂ = B̂c

(
V̂v

B̂v

)
(21)

In this form it can be seen that the right-hand side is composed of three random variables; viz.,

B̂c: the basal area estimate from the count (BAFc) sample points.

V̂v: the volume estimate from the big BAF (BAFv) sample points.

B̂v: the basal area estimate from the big BAF (BAFv) sample points.

As such, the Delta Method can be applied to this equation in terms of these three variables, instead
of the normal interpretation of two (B̂c and V̄) given in the preceding sections, which leads naturally
to Bruce’s method, as we have seen.

The three-fold variance estimator for (21) is (Lynch et al., 2020). . .

v̂arL

(
V̂B

)
=

(
V̂v

B̂v

)2

v̂ar
(
B̂c

)
+

(
B̂c

B̂v

)2

v̂ar
(
V̂v

)
+

(
V̂vB̂c

B̂2
v

)2

v̂ar
(
B̂v

)
+

2

(
V̂v

B̂v

)(
B̂c

B̂v

)
ĉov
(
B̂c, V̂v

)
− 2

(
V̂vB̂c

B̂2
v

)(
V̂v

B̂v

)
ĉov
(
B̂c, B̂v

)
−

2

(
V̂vB̂c

B̂2
v

)(
B̂c

B̂v

)
ĉov
(
V̂v, B̂v

)
(22)

where v̂ar
(
B̂c

)
is given by (6). In addition we have. . .

v̂ar
(
V̂v

)
=

1

n(n− 1)

n∑
s=1

(
V̂vs − V̂v

)2

and

v̂ar
(
B̂v

)
=

1

n(n− 1)

n∑
s=1

(
Fvmvs − B̂v

)2
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The three required covariance terms are computed similarly as. . .

ĉov
(
B̂c, V̂v

)
=

1

n(n− 1)

n∑
s=1

(
Fcmcs − B̂c

)(
V̂vs − V̂v

)
(23)

ĉov
(
B̂v, V̂v

)
=

1

n(n− 1)

n∑
s=1

(
Fvmvs − B̂v

)(
V̂vs − V̂v

)
(24)

ĉov
(
B̂v, B̂c

)
=

1

n(n− 1)

n∑
s=1

(
Fvmvs − B̂v

)(
Fcmcs − B̂c

)
(25)

The remaining quantities are as defined in § 3.

The above set of formulæ may at first glance look somewhat formidable. But variances and covari-
ances are rudimentary formulæ that are easily calculable from the data that is already available
in a big BAF cruise—and they only need to be programmed once if used in practice. The overall

Lynch’s method variance, v̂arL

(
V̂B

)
, is simply a combination of these in a very straightforward

manner.

The briefly noted salient benefit to the above approach is the fact that all of the above quantities
are now aggregated on a point-wise basis; this is easily verified by regarding the summations in
the above. Thus, given the caveat concerning the approximate correlations calculated in § 7, what
we have now is a set of true point-wise covariances (and their associated correlations) that do
not require any algebraic trickery nor assumptions to calculate; nor is there any problem with
interpretation of any of the above quantities.

The correlations corresponding to the covariances in (23)–(25) are calculated in the usual way and
are given as. . .

ρ̂
(
B̂c, V̂v

)
=

ĉov
(
B̂c, V̂v

)
ŝe
(
B̂c

)
ŝe
(
V̂v

) (26)

ρ̂
(
B̂v, V̂v

)
=

ĉov
(
B̂v, V̂v

)
ŝe
(
B̂v

)
ŝe
(
V̂v

) (27)

ρ̂
(
B̂v, B̂c

)
=

ĉov
(
B̂v, B̂c

)
ŝe
(
B̂v

)
ŝe
(
B̂c

) (28)

In each case the above standard errors are simply the square root of the respective variances

v̂ar
(
B̂c

)
, v̂ar

(
V̂v

)
, and v̂ar

(
B̂v

)
.
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8.1 A simplified version

A simplified version of the full PBDM variance estimator given in (22) is found by noting that the
expected value of both B̂v and B̂c are equal to B. Thus B̂c can be substituted for B̂v in the PBDM
variance formula, yielding the following simplification. . .

v̂arL2

(
V̂B

)
=
V̂ 2
v

n

(
v̂ar(Bc)

B̂2
c

+
v̂ar(Vv)

V̂ 2
v

+
v̂ar(Bv)

B̂2
c

+ 2
ĉov(Bc, Vv)

V̂vB̂c

− 2
ĉov(Bc, Bv)

B̂2
c

− 2
ĉov(Vv, Bv)

V̂vB̂c

)
(29)

8.2 An example

The example in § 6.4 is continued here, where we will provide more explanation on the pbDelta

and pbdelta standard errors shown there, but deferred to this section. Very simply, pbDelta

corresponds to the PBDM variance estimator (22), while pbdelta corresponds to the simplified
estimator (29).

Here we will again use the summary statistics results for the first Monte Carlo sample run with
n = 25. For the sake of clarity, it is probably best to calculate the PBDM variance estimate

v̂arL

(
V̂B

)
from (22) in small pieces to make it simpler to understand.

First, we define the point-based sample mean quantities, (B̂c, B̂v, V̂v), from the summary statistics
run above; viz.,

R> Bc = ba.ct25.1 #previously defined

R> Bv = ssBB.mc@means$ba.bb$n.25[1] #BAFb basal area estimate

R> Vv = vol25.1 #previously defined

R> c(Bc, Bv, Vv)

[1] 6.080000 7.200000 64.747899

Recall that these are simply the usual HPS point-based means as one would normally calculate
them from a cruise, with the only difference that we are using two BAFs.

Next, a quick refresher on where some of the variances of the mean can be found in the “monte-
BigBAF” object. First, the various Delta Method and related variances are found in the varMeans

slot. . .
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R> str(ssBB.mc@varMeans, 1)

List of 10

$ delta :'data.frame': 250 obs. of 4 variables:

$ goodm :'data.frame': 250 obs. of 4 variables:

$ delta.r:'data.frame': 250 obs. of 4 variables:

$ goodm.r:'data.frame': 250 obs. of 4 variables:

$ vol.bb :'data.frame': 250 obs. of 4 variables:

$ vol.ct :'data.frame': 250 obs. of 4 variables:

$ boot :'data.frame': 250 obs. of 4 variables:

$ jack :'data.frame': 250 obs. of 4 variables:

$ pbDelta:'data.frame': 250 obs. of 4 variables:

$ pbdelta:'data.frame': 250 obs. of 4 variables:

R> head(with(ssBB.mc@varMeans, cbind(delta, pbDelta))) #delta & pt-based Delta

n.25 n.50 n.75 n.100 n.25 n.50 n.75

mc.1 185.18903 73.410252 47.191225 58.074447 193.45021 73.652775 48.852289

mc.2 128.23126 97.206021 62.151868 46.581830 149.05531 98.616165 64.127529

mc.3 122.04863 46.106039 65.544704 46.610749 118.53534 50.118537 68.749759

mc.4 132.96637 69.722019 43.763732 42.437295 118.01864 76.463680 48.380001

mc.5 152.82770 94.621684 50.600789 44.074990 158.59765 97.933457 50.441779

mc.6 134.54721 93.109746 53.878623 34.205645 127.50758 95.585927 52.933315

n.100

mc.1 59.472929

mc.2 52.560179

mc.3 49.108425

mc.4 43.377752

mc.5 44.227548

mc.6 36.346457

R> head(ssBB.mc@varMeans$vol.bb)

n.25 n.50 n.75 n.100

mc.1 871.95323 188.64813 145.90751 142.261942

mc.2 232.64716 316.38147 156.60849 157.194602

mc.3 221.57492 230.23919 173.75158 154.060023

mc.4 214.37048 312.62602 146.71897 121.151766

mc.5 224.37004 292.98670 231.29779 127.453213

mc.6 375.79408 285.21960 145.99052 73.325311
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The first line shows the entire list of data frames. The second line compares the Delta Method
variance estimates (first four columns) with those of Lynch’s method (last four columns) for the
first few Monte Carlo replicates over all sample sizes. The last line shows the point sample variance
of the mean estimates of the big BAF volume estimates for the first few Monte Carlo samples over
all sample sizes; please see the R code snippet under the “point-wise statistics” in § 6.4.2 for more
information on these estimates.

The estimated variances of the means for basal area are also required. . .

R> str(ssBB.mc@otherVarms, 1)

List of 7

$ ba.bb :'data.frame': 250 obs. of 4 variables:

$ ba.ct :'data.frame': 250 obs. of 4 variables:

$ tvbar :'data.frame': 250 obs. of 4 variables:

$ tvbar.r :'data.frame': 250 obs. of 4 variables:

$ dm.tvbar :'data.frame': 250 obs. of 4 variables:

$ dm.tvbar.r:'data.frame': 250 obs. of 4 variables:

$ dm.ba :'data.frame': 250 obs. of 4 variables:

R> head(ssBB.mc@otherVarms$ba.bb)

n.25 n.50 n.75 n.100

mc.1 10.5066667 2.2987755 1.8412012 1.8662626

mc.2 3.6266667 4.2971429 1.9661261 2.0541414

mc.3 2.6666667 3.1869388 2.2332733 2.0117172

mc.4 3.0400000 4.6400000 1.8008408 1.5268687

mc.5 3.0400000 3.8400000 3.1961562 1.6464646

mc.6 5.4400000 3.5134694 1.8969369 0.9579798

The first line refreshes us on the fact that the two basal area variances (of the means) are stored
in the otherVarms slot, while the last line shows the first few Monte Carlo entries for the HPS
variance of the mean estimates for big BAF basal area using BAFv.

The following code extracts the variances previously defined as v̂ar
(
B̂c

)
, v̂ar

(
B̂v

)
and v̂ar

(
V̂v

)
,

respectively. . .

R> (Bc.varm = ssBB.mc@otherVarms$ba.ct$n.25[1]) #BAFc variance of the mean ba

[1] 2.2464

Thursday 3rd September, 2020 Draft: Please do not distribute 10:01am



knitr Vignettes. . . §8 The Point-Based Delta Method Gove 66

R> (Bv.varm = ssBB.mc@otherVarms$ba.bb$n.25[1]) #BAFv variance of the mean ba

[1] 10.506667

R> (Vv.varm = ssBB.mc@varMeans$vol.bb$n.25[1]) #BAFv variance of the mean volume

[1] 871.95323

The last estimate for v̂ar
(
V̂v

)
= 871.95 was shown in the code snippet above.

At this point, we have the necessary information to calculate the first part of the variance up to
the covariance terms—this might be termed the ‘independent’ variance component. . .

R> Vv.Bv = Vv/Bv

R> Bc.Bv = Bc/Bv

R> VvBc.Bv = Vv*Bc/(Bv^2)

R> (pbDelta.ind = Vv.Bv^2 * Bc.varm + Bc.Bv^2 * Vv.varm + VvBc.Bv^2 * Bv.varm)

[1] 1409.3335

R> sqrt(pbDelta.ind)

[1] 37.541091

As we can see, this estimate is quite high, because it is not meant to be used alone: the covariances
adjust it and are required for the correct variance estimate. The above is simply a convenient
intermediate step in the calculation that helps to illustrate the full computation, and is also found
in the package R code.

The covariances are all calculated according to the formulæ in equations (23)–(25). These are given
in the covs slot of the “monteBigBAF” object. . .

R> str(ssBB.mc@covs, 1)

List of 3

$ BcVv.cov:'data.frame': 250 obs. of 4 variables:

Thursday 3rd September, 2020 Draft: Please do not distribute 10:01am



knitr Vignettes. . . §8 The Point-Based Delta Method Gove 67

$ BcBv.cov:'data.frame': 250 obs. of 4 variables:

$ VvBv.cov:'data.frame': 250 obs. of 4 variables:

R> head(ssBB.mc@covs$BcBv.cov)

n.25 n.50 n.75 n.100

mc.1 3.50933333 0.83591837 0.48470871 0.80913131

mc.2 1.07200000 1.47722449 0.80663063 0.62028283

mc.3 0.40000000 0.91689796 0.94481682 0.76072727

mc.4 1.78666667 1.72473469 0.43089489 0.62254545

mc.5 0.91733333 1.49289796 0.87466667 0.60929293

mc.6 2.24533333 1.32832653 0.65037838 0.34892929

The first line above shows the set of data frames, one for each covariance over all Monte Carlo
samples and sample sizes. The second line shows the first few Monte Carlo replication results for

the covariance ĉov
(
B̂v, B̂c

)
35.

Finally, we are in a position to add the covariance portion of the equation and calculate the full

PBDM variance estimate v̂arL

(
V̂B

)
in (22) for Lynch’s method as. . .

R> BcBv.cov = ssBB.mc@covs$BcBv.cov['mc.1', 'n.25']

R> BcVv.cov = ssBB.mc@covs$BcVv.cov['mc.1', 'n.25']

R> VvBv.cov = ssBB.mc@covs$VvBv.cov['mc.1', 'n.25']

R> c(BcBv.cov, BcVv.cov, VvBv.cov)

[1] 3.5093333 32.2099454 95.5752985

R> pbDelta = pbDelta.ind + 2*Vv.Bv*Bc.Bv * BcVv.cov -

+ 2*VvBc.Bv*Vv.Bv * BcBv.cov -

+ 2*VvBc.Bv*Bc.Bv * VvBv.cov

R> c(pbDelta, ssBB.mc@varMeans$pbDelta['mc.1', 'n.25']) #final comparison

[1] 193.45021 193.45021

The results in the last line above agree with those given in the Monte Carlo simulation results.
Again, while the computations for (22) may appear initially to be tedious and difficult, viewed as a

35The order does not matter, this could just as easily be written as ĉov
(
B̂c, B̂v

)
to match the name in the code.
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set of just a few steps, they are quite simple to implement in practice. Additionally, the calculations
require nothing beyond simple statistics that, with the exception of the covariances, would normally
be performed in a general cruise, augmented by the dual BAF nature of big BAF sampling.

8.2.1 Simplified

The simplified PBDM variance given in (29) is now straightforward to calculate; viz.,

R> BcVv = Bc*Vv

R> BcBc = Bc*Bc

R> VvVv = Vv*Vv

R> pbdelta = VvVv*(Bc.varm/BcBc + Vv.varm/VvVv + Bv.varm/BcBc +

+ 2*( BcVv.cov/BcVv - BcBv.cov/BcBc -

+ VvBv.cov/BcVv ) )

R> c(pbDelta, ssBB.mc@varMeans$pbdelta['mc.1', 'n.25'], pbdelta)

[1] 193.45021 172.68429 172.68429

R> head(with(ssBB.mc@varMeans, cbind(pbDelta, pbdelta)))

n.25 n.50 n.75 n.100 n.25 n.50 n.75

mc.1 193.45021 73.652775 48.852289 59.472929 172.684288 74.139526 48.107368

mc.2 149.05531 98.616165 64.127529 52.560179 122.295113 100.954443 64.127543

mc.3 118.53534 50.118537 68.749759 49.108425 92.476816 49.361314 69.070496

mc.4 118.01864 76.463680 48.380001 43.377752 124.628595 70.310270 47.918070

mc.5 158.59765 97.933457 50.441779 44.227548 130.031167 101.742034 51.563460

mc.6 127.50758 95.585927 52.933315 36.346457 127.474370 94.896109 53.029741

n.100

mc.1 59.502629

mc.2 57.955096

mc.3 48.272788

mc.4 43.635465

mc.5 44.248246

mc.6 34.368743

From the last line above we see that there can be a moderate difference between the two estima-
tors for any given Monte Carlo sample that decreases towards convergence with increasing n. In
addition, the average over all Monte Carlo samples is quite close as shown in the following. . .
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R> ssBB.mc@gm.all$gm.stErrs[c('pbDelta', 'pbdelta'), ]

n.25 n.50 n.75 n.100

pbDelta 12.602325 9.0658155 7.4921120 6.5023710

pbdelta 12.419611 9.0477978 7.4874488 6.4912445

In addition, the capture rates for the two are discussed in detail in (Lynch et al., 2020) where they
were found to be comparable for all BAF combinations and sample sizes discussed therein.

8.2.2 Correlations

It was noted above that the covariances can be used to calculate the associated correlations. The
following shows these correlations, including the ones discussed in § 7. . .

R> str(ssBB.mc@corrs, 1)

List of 9

$ tvbar.ba:'data.frame': 250 obs. of 4 variables:

$ Tvbar.ba:'data.frame': 250 obs. of 4 variables:

$ pvbar.ba:'data.frame': 250 obs. of 4 variables:

$ mvbar.ba:'data.frame': 250 obs. of 4 variables:

$ Pvbar.ba:'data.frame': 250 obs. of 4 variables:

$ Mvbar.ba:'data.frame': 250 obs. of 4 variables:

$ BcVv.cor:'data.frame': 250 obs. of 4 variables:

$ BcBv.cor:'data.frame': 250 obs. of 4 variables:

$ VvBv.cor:'data.frame': 250 obs. of 4 variables:

The last three data frames in the above list are associated with the desired correlations. In the
following, those correlations for the first Monte Carlo sample with a sample size of n = 25 will be
extracted. . .

R> BcBv.cor = ssBB.mc@corrs$BcBv.cor['mc.1', 'n.25']

R> BcVv.cor = ssBB.mc@corrs$BcVv.cor['mc.1', 'n.25']

R> VvBv.cor = ssBB.mc@corrs$VvBv.cor['mc.1', 'n.25']

R> c(BcBv.cor, BcVv.cor, VvBv.cor)

[1] 0.72235153 0.72777955 0.99854259
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Finally, we calculate the first correlation above for ĉov
(
B̂c, B̂v

)
to illustrate how these were deter-

mined in the R code. . .

R> BcBv.corr = BcBv.cov/(sqrt(Bc.varm)*sqrt(Bv.varm))

R> c(BcBv.corr, BcBv.cor)

[1] 0.72235153 0.72235153

The correlation between the two basal area estimates is 0.7224.

In summary Lynch’s method provides a straightforward method for estimating the variance of a big
BAF inventory. It also provides a clearly interpretable set of covariances and correlations built on
a foundation of point-wise samples (with no aggregation approximations required) that are useful
for the interpretation of cruise results beyond the estimation of the PBDM variance itself.

8.3 Addendum

The above document and the first draft of Lynch et al. (2020) were both written before we happened
on an application in Palley and Horwitz (1961) (hereafter P&H) that bore a striking resemblance
to the PBDM. These authors tackle variance estimation for the double sampling application of Bell
and Alexander (1957) and derive the expectation and mean square error for it in their equations (11)
and (12). These equations were derived using the formula in Hansen et al. (1953, p. 513, equation
9.6) (hereafter HHM). Though not stated by either set of authors, the HHM equation derives
from the Delta Method. It is important to point this out, because the PBDM was independently
conceived, derived and all of the simulations run before we found the P&H version.

We have included the following quote from P&H; please see the Supplementary Material of Lynch
et al. (2020) for the actual proof that the PBDM is the same as what P&H proposed, albeit in a
different form.36 The quote below quite clearly demonstrates that P&H considered what became
known in the literature as Bruce’s method to be on “shaky” ground because of the mixture of
tree-based and point-based estimators; this is something that has been discussed above in detail as
well as in the companion papers. Palley and Horwitz (1961, p. 60) note. . .

The proposal which is offered by Bell and Alexander (1957, p. 17) for estimating the
relative error s(v′)/v can only be thought of as an approximation. It consists of two
terms, one of which is closely related to s(g)/g, the other of which expresses the relative
error of tree ratios with respect to the average of tree ratios. There is a confusion here,
since in point sampling, the measurement we are concerned with attaches to points

36P&H presented their mean square error formula in terms of expectations, which makes their final form different
from the PBDM.
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(i.e. the sum of the tree ratios at a point) rather than to trees. The formula for
the relative error presented above (16) is offered as being conceptually sounder than
the expression of Bell and Alexander. The subsampling fraction and the effect of the
covariance between v and g are explicitly recognized.

The “subsampling fraction” in the above quote refers to the fact that the P&H result was in the form
of a double sampling application with subsampling of points, which the big BAF application lacks.
Note, however, their evident positive approbation of the covariance being “explicitly recognized.”
Needless to say, the above quote substantiates our cautions, findings and interpretations on Bruce’s
method and the potential use of the PBDM for big BAF sampling in this, and the companion
papers.

Appendix

A Bootstrap BCa Comparison

This section was motivated based on the new R package bcaboot by Efron and Narasimhan (2018)
that provides bootstrap BCa interval estimates. The sampSurf package uses the boot package
(Canty and Ripley, 2020), and will continue to do so at this point, unless there is good reason to
change it. However, since it was decided to use the former package here as it looked quite simple,
and the authors certainly should be trusted, there is a question of how well the two might concur
in the construction of BCa intervals on a set of test data.

The following simple little function is included with the ssExtra package. It will draw n samples from
a standard normal distribution, calculate the normal theory intervals, and calculate the bootstrap
BCa intervals from each of the two packages based on B bootstrap replications. Here is an example
run. . .

R> args(testBoot)

function (n = 1000, B = 1000, alpha = 0.05, mbm = FALSE, parallel = "no",

ncpus = 3L, times = 10L, unit = "s", runQuiet = FALSE, startSeed = 245,

...)

NULL

R> tb = testBoot()

Original sample normal theory intervals...
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Mean = -0.040537028 for n = 1000

0.95 CIs = -0.10192412 0.02085006

bcajack...

mean = -0.040537028

0.95 bca cis = -0.10200987 0.015298104

boot...

mean = -0.040537028

0.95 bca cis = -0.098467178 0.027124759

Right away there is shown to be some discord between the two algorithms. The random number
seed is reset to startSeed prior to invoking each of the two routines that calculate the BCa intervals.
Thus, the disagreement should not be due to any random number stream problems unless there is
some randomization going on inside one or both of the package routines aside from drawing the
bootstrap samples that I am not aware of. If that is the cause for the differences, however, then we
should see them essentially converge (i.e., the randomness should be swamped by the sample size)
as n and B get large. Note that boot requires a large bootstrap sample size, B, for BCa intervals;
too small a value will give an error37, and it is quite replicable. For more information see this post
at stackoverflow.

The results of a more extensive set of simulations are shown in Table 1, wich is created with the
following38. . .

R> n = c(100, 200, 500, 1000) #sample size

R> B = c(1000, 2000, 4000, 5000) #number of bootstrap samples

R> tablePath = 'tables'

R> tableName = 'bootTable.tex'

R> cb = compareBoot(n = n, B = B, tablePath = tablePath, tableName = tableName,

+ ssshhh = TRUE)

For the smaller sample sizes the results do not look so good. And drawing large numbers of
bootstrap samples from a small sample probably is not the best idea. As the sample size increases,
the two are more concordant for the highest values of B. They also are tending to converge to the
normal theory intervals at these values of B as well. Fortunately the differences are not terrible,
and hopefully repeated sampling in a Monte Carlo setting will average out any discrepancies so
that the percent catch statistics will not be too different. That will not be explored further here.

37Error in bca.ci(boot.out, conf, index[1L], L = L, t = t.o, t0 = t0.o, : estimated adjustment ‘a’ is NA.
38Please see the help ?compareBoot for more information on this routine.
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n B Norm.lo Norm.hi bcajack.lo bcajack.hi boot.lo boot.hi

100 1000 -0.198 0.221 -0.201 0.205 -0.191 0.204
100 2000 -0.198 0.221 -0.200 0.207 -0.205 0.217
100 4000 -0.198 0.221 -0.191 0.212 -0.186 0.225
100 5000 -0.198 0.221 -0.192 0.208 -0.195 0.216
200 1000 -0.177 0.105 -0.172 0.108 -0.181 0.099
200 2000 -0.177 0.105 -0.173 0.110 -0.178 0.099
200 4000 -0.177 0.105 -0.172 0.107 -0.169 0.114
200 5000 -0.177 0.105 -0.171 0.106 -0.176 0.107
500 1000 -0.156 0.025 -0.165 0.016 -0.159 0.022
500 2000 -0.156 0.025 -0.159 0.019 -0.153 0.026
500 4000 -0.156 0.025 -0.158 0.022 -0.157 0.021
500 5000 -0.156 0.025 -0.158 0.025 -0.158 0.020
1000 1000 -0.102 0.021 -0.102 0.015 -0.098 0.027
1000 2000 -0.102 0.021 -0.103 0.018 -0.102 0.023
1000 4000 -0.102 0.021 -0.103 0.020 -0.101 0.022
1000 5000 -0.102 0.021 -0.103 0.020 -0.101 0.021

Table 1: Bootstrap Confidence Interval Comparison
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