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Abstract
This vignette provides an introduction to the R package
ReplicationSuccess. The package contains utilities for planning and
analysing replication studies. Traditional methods based on statistical
significance and confidence intervals, as well as more recently devel-
oped methods such as the sceptical p-value (Held, 2020a) are included.
The functionality of the package is illustrated using data sets from
four large-scale replication projects which come also with the package.

1 Introduction

Over the course of the last decade, the conduct of replication studies has increased substantially.
These developments were mainly caused by the so-called “replication crisis” in the social and life-
sciences. However, there is no consensus on which statistical analysis approach should be used to
assess whether a replication study successfully replicated an original discovery. Moreover, depending
on the chosen analysis approach, the statistical considerations in the design of the replication study
differ.

The R package ReplicationSuccess provides functionality to analyse and plan replication stud-
ies in several different ways. Specifically, functions for power and samples size calculations based
on statistical significance, as well as based on more recent methods, such as the sceptical p-value
(Held, 2020a), are included. In this vignette the usage of the package is illustrated on the data sets
from four large-scale replication projects which are also included in the package.

1.1 Statistical framework

ReplicationSuccess assumes a simple but general and practically relevant statistical framework
for effect sizes. Specifically, after a suitable transformation the effect estimates are assumed to
be approximately normally distributed with known variances which do not depend on the effect
anymore. The same framework is also common in the meta-analysis literature and can for example
be applied to mean differences, odds ratios (log transformation), or correlation coefficients (Fisher
z-transformation).

Moreover, most functions in ReplicationSuccess take unitless quantities as inputs. In partic-
ular, the z-values zo = θ̂o/σo, zr = θ̂r/σr, and the variance ratio c = σ2o/σ

2
r (θ̂ denotes an effect

estimate and σ2 the corresponding variance, the subscripts indicate original or replication). As-
suming that the standard errors of the effect estimates only depend on some unit variance κ2 and
inversely on the sample size of the study, i. e. σ2o = κ2/no and σ2r = κ2/nr, the variance ratio is also
the relative sample size c = σ2o/σ

2
r = nr/no. For this reason, all functions from ReplicationSuccess

used for sample size computations return c.
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2 Data sets

ReplicationSuccess includes data from four replication projects, all with a “one-to-one” design
(i. e. one replication for one original study). They come from the following projects:

• Reproducibility Project: Psychology: In the Reproducibility Project: Psychology 100
replications of studies from the field of psychology were conducted (Open Science Collabora-
tion, 2015). The original studies were published in three major Psychology journals in the year
2008. Only the study pairs of the “meta-analytic subset” are included here, which consists
of 73 studies where the standard error of the Fisher z-transformed effect estimates can be
computed (Johnson et al., 2016).

• Experimental Economics Replication Project: This project attempted to replicate 18
experimental economics studies published between 2011 and 2015 in two high impact eco-
nomics journals (Camerer et al., 2016). For this project a prediction market was also conducted
in order to estimate the peer beliefs about whether a replication will result in a statistically
significant result. Prediction markets are a tool to aggregate beliefs of market participants
regarding the possibility of an investigated outcome and they have been used successfully in
numerous domains, e. g . sports and politics (Dreber et al., 2015). The estimated peer beliefs
are also included for each study pair.

• Social Sciences Replication Project: This project involved 21 replications of studies
on the social sciences published in the journals Nature and Science between 2010 and 2015
(Camerer et al., 2018). As in the experimental economics replication project, a prediction
market to estimate peer beliefs about the replicability of the original studies was conducted and
the resulting belief estimates are also provided in the package. In this project, the replications
were conducted in two stages. In stage 1, the replication studies had 90% power to detect
75% of the original effect estimate. Data collection eas stopped if a two-sided p-value < 0.05
and an effect in the same direction as the original were found. If not, data collection was
continued in stage 2 to have 90% power to detect 50% of the original effect size for the first
and second data collection pooled.

• Experimental Philosophy Replicability Project: In this project, 40 replications of ex-
perimental philosophy studies were carried out. The original studies had to be published
between 2003 and 2015 in one of 35 journals in which experimental philosophy research is
usually published (a list defined by the coordinators of this project) and they had to be listed
on the experimental philosophy page of the Yale university (Cova et al., 2018). The data from
the subset of 31 study pairs where effect estimates on correlation scale as well as effective
sample size for both the original and replication were available are included in the package.

In all data sets, effect estimates are provided as correlation coefficients (r), as well as Fisher
z-transformed correlation coefficients (θ̂ = tanh−1(r)). In the descriptive analysis of data from
replication projects it has become common practice to transform effect sizes to the correlation
scale, because correlations are bounded to the interval between minus one and one and thus easy
to compare and interpret. Design and statistical analysis, on the other hand, is then usually
carried out on a scale where the estimates are approximately normally distributed. For correlation
coefficients this is the case after applying the Fisher z-transformation, which leads to their variance
asymptotically being only a function of the study sample size n, i. e. Var(θ̂) = 1/(n − 3) (Fisher,
1921).

The data can be loaded with the command data("RProjects"). For a description of the
variables see the documentation with ?RProjects. An extended version of the Social Sciences
Replication Project including the details of stages one and two can be loaded with data("SSRP").
It is a good idea to first compute the unitless quantities zo, zr and c, since most functions of
the package use them as input. We also use the function z2p to compute the one-sided p-values
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for original and replication study. As all original estimates are positive, we specify the argument
alternative to "greater".

library(ReplicationSuccess)
data("RProjects")
str(RProjects)

## 'data.frame': 143 obs. of 13 variables:
## $ study : chr "A Roelofs" "AL Morris, ML Still" "B Liefooghe, P Barrouillet, A Vandierendonck, V Camos" "BC Storm, EL Bjork, RA Bjork" ...
## $ project : chr "Psychology" "Psychology" "Psychology" "Psychology" ...
## $ ro : num 0.595 0.611 0.425 0.229 0.461 ...
## $ rr : num 0.14834 0.2296 -0.21524 -0.00611 0.13481 ...
## $ fiso : num 0.685 0.711 0.454 0.233 0.499 ...
## $ fisr : num 0.14944 0.23377 -0.21866 -0.00611 0.13564 ...
## $ se_fiso : num 0.2887 0.2132 0.2085 0.0727 0.1826 ...
## $ se_fisr : num 0.1925 0.2132 0.1826 0.0612 0.1474 ...
## $ po : num 0.017688 0.000858 0.029546 0.001368 0.006277 ...
## $ pr : num 0.437 0.273 0.231 0.92 0.358 ...
## $ pm_belief: num NA NA NA NA NA NA NA NA NA NA ...
## $ nr : num 30 25 33 270 49 33 16 33 31 31 ...
## $ no : num 15 25 26 192 33 25 101 39 30 23 ...

## computing zo, zr, c
RProjects$zo <- with(RProjects, fiso/se_fiso)
RProjects$zr <- with(RProjects, fisr/se_fisr)
RProjects$c <- with(RProjects, se_fiso^2/se_fisr^2)

## computing one-sided p-values for alternative = "greater"
RProjects$po1 <- z2p(z = RProjects$zo, alternative = "greater")
RProjects$pr1 <- z2p(z = RProjects$zr, alternative = "greater")

Note that each variable ending with an o is associated with the original, while each variable
ending with an r is associated with the replication. Plotting the original versus the replication
effect estimate on the correlation scale gives a good overview of the data.

## plots of effect estimates
par(mfrow = c(2, 2), las = 1, mai = rep(0.65, 4))
for (p in unique(RProjects$project)) {

data_project <- subset(RProjects, project == p)
significant <- ifelse(data_project$pr < 0.05, "darkred", "black")
plot(rr ~ ro, data = data_project, ylim = c(-0.5, 1), col = significant,

xlim = c(-0.1, 1), main = p, xlab = expression(italic(r)[o]),
cex = 0.7, pch = 19, ylab = expression(italic(r)[r]))

legend("topleft", legend = "significant", pch = 20, col = "darkred", bty = "n")
abline(h = 0, lty = 2)
abline(a = 0, b = 1, col = "grey")

}
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In most cases the replication estimate is smaller than the corresponding original estimate. Fur-
thermore, a substantial number of the replication estimates do not achieve statistical significance
at one-sided 2.5% level, while almost all original estimates did.

3 Design and analysis of replication studies

Although a replication study needs to be planned and conducted before the results can be analysed,
we will first discuss the particular analysis approaches. We do this because the chosen analysis
strategy substantially influences the design of a replication study. In the design phase of a replication
study, we focus only on the sample size determination.

3.1 Statistical significance

Analysis One of the most commonly used approaches to analyse the result of a replication study
is to declare a replication study successful if the replication estimate achieves the same statistical
significance status as the original estimate and also goes in the same direction. There are some
variations of this approach, for example, Camerer et al. (2016) only assessed whether the replica-
tion effect is significant in the same direction, but not whether the original effect shows the same
significance status.

For the four data sets, we can simply check whether the (two-sided) p-values of original and
replication are both below the conventional threshold 0.05 and whether the directions of the effects
are the same.

for (p in unique(RProjects$project)) {
data_project <- subset(RProjects, project == p)
significant_O <- data_project$po < 0.05
significant_R <- data_project$pr < 0.05
success <- (significant_O == TRUE) & (significant_R == TRUE) &

(sign(data_project$fiso) == sign(data_project$fisr))
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cat(paste0(p, ": \n"))
cat(paste0(round(mean(significant_O)*100, 1), "% original studies significant (",

sum(significant_O), "/", length(significant_O), ")\n"))
cat(paste0(round(mean(significant_R)*100, 1), "% replications significant (",

sum(significant_R), "/", length(significant_R), ")\n"))
cat(paste0(round(mean(success)*100, 1),

"% both studies significant in the same direction (",
sum(success), "/", length(success), ")\n \n"))

}

## Psychology:
## 89% original studies significant (65/73)
## 32.9% replications significant (24/73)
## 28.8% both studies significant in the same direction (21/73)
##
## Experimental Economics:
## 88.9% original studies significant (16/18)
## 61.1% replications significant (11/18)
## 55.6% both studies significant in the same direction (10/18)
##
## Social Sciences:
## 100% original studies significant (21/21)
## 61.9% replications significant (13/21)
## 61.9% both studies significant in the same direction (13/21)
##
## Experimental Philosophy:
## 96.8% original studies significant (30/31)
## 74.2% replications significant (23/31)
## 74.2% both studies significant in the same direction (23/31)
##

Despite its appealing simplicity, assessing replication success with statistical significance is often
criticized. For example, non-significant replication results are expected if the original finding was a
false positive (e. g . with 95% probability if the two-sided significance level is 5%), on the other hand
they are also expected with non-negligible probability if the underlying effect is present (Goodman,
1992). Conversely, when the effect estimate of the replication is much smaller than the estimate
from the original study, statistical significance can still be achieved by simply increasing the sample
size.

Design Selecting the same sample size in the replication study as in the original study may lead
to a severely underpowered design and as a result, true effects may not be detected. To assure that
the replication study reliably detects true effects, the studies should be well-powered. In classical
sample size planning, usually a clinically relevant effect is specified and the sample size is then
determined so that it can be detected with a certain power. Luckily, in the replication setting the
clinically relevant effect does not need to be specified but can be replaced with the effect estimate
from the original study. However, using the standard sample size calculation approach is not well
suited, because the uncertainty of the original effect estimate is ignored.

One way of tackling this issue is to use a Bayesian approach, incorporating the original estimate
and its precision into a design prior that is used for power calculations. This corresponds to the
concept of “predictive power” and generally leads to larger sample sizes than the standard method.
In practice, however, often more ad hoc approaches are used. For instance, the original estimate is
just shrunken by an (arbitrary) constant, e. g . it was halved in the sociel sciences replication project,
and standard sample size calculations are then carried out.

Using the function sampleSizeSignificance, it is straightforward to plan the sample size of
the replication study with the just mentioned approaches. The argument designPrior allows to
carry out sample size planning based on classical power ignoring the uncertainty ("conditional")
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or based on predictive power ("predictive"). Moreover, ad hoc shrinkage can be specified with the
argument shrinkage. It must be noted that the function sampleSizeSignificance, as well as most
of the functions from the package, takes z-values and no p-values as arguments. The conversion
between the two measures can easily be done using the function p2z.

The following code shows a few examples. Note that the function returns the required relative
sample size c = nr/no, i. e. by which factor the sample size of the replication needs to be changed
compared to the original study.

sampleSizeSignificance(zo = 2.5, power = 0.8, level = 0.05, designPrior = "conditional")

## [1] 0.9892092

sampleSizeSignificance(zo = 2.5, power = 0.8, level = 0.05, designPrior = "predictive")

## [1] 1.388114

sampleSizeSignificance(zo = 2.5, power = 0.8, level = 0.05, designPrior = "conditional",
shrinkage = 0.25)

## [1] 1.758594

Figure 1 shows the power to achieve significance in the replication as a function of either the
(two-sided) p-value or the z-value of the original study. If the original estimate was just significant
at the 0.05 level, the probability for significance in the replication is just about 0.5 for conditional
and predictive power. This result was first mentioned by Goodman (1992) already two decades
ago, yet many practitioners of statistics still find it counterintuitive, because they confuse type I
error rates with replication probabilities. Thus, for the replication to achieve significance with high
probability, the sample size needs to be increased compared to the original if the the evidence for
the original discovery was only weak or moderate (Figure 2).
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Figure 1: Power to achieve significance at the one-sided 2.5% level in replication as a function of
(two-sided) p-value or z-value of original study using the same sample size as in the original study.
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Figure 2: Relative sample size to achieve significance at the one-sided 2.5% level with 80% power
as a function of (two-sided) p-value or z-value of original study.

3.2 Compatibility of effect size

Analysis Another analysis approach that has been used is to compare the effect estimates from
original and replication study. A reasonable way to assess whether the observed estimates are
compatible is to check whether the replication estimate is contained within its prediction interval
based on the original estimate (Patil et al., 2016). With the function predictionInterval, a
prediction interval of the replication effect estimate can be computed under different predictive
distributions which depend on the design prior. The default design prior "predictive" is likely
the choice most people would want to use as it takes into account the uncertainty of the original
estimate without shrinking it.

For the four data sets, we can easily compute the prediction intervals and then check whether
the replication estimates are contained within them. For easier visual assessment we transform the
intervals and estimates back to the correlation scale.

## compute prediction intervals for replication projects
par(mfrow = c(2, 2), las = 1, mai = rep(0.65, 4))
for (p in unique(RProjects$project)) {

data_project <- subset(RProjects, project == p)
PI <- predictionInterval(thetao = data_project$fiso,

seo = data_project$se_fiso,
ser = data_project$se_fisr)

## transforming back to correlation scale
PI <- tanh(PI)
within <- (data_project$rr < PI$upper) & (data_project$rr > PI$lower)
coverage <- mean(within)
color <- ifelse(within == TRUE, "#333333B3", "#8B0000B3")
study <- seq(1, nrow(data_project))
plot(data_project$rr, study, col = color, pch = 20,

xlim = c(-0.5, 1), xlab = expression(italic(r)[r]), ylab = "Study",
main = paste0(p, ": ", round(coverage*100, 0), "% coverage"))

arrows(PI$lower, study, PI$upper, study, length = 0.02, angle = 90, code = 3, col = color)
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abline(v = 0, lty = 3)
}
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The criticism that this approach receives is that for studies which are underpowered, the predic-
tion intervals will become very wide. This in turn can lead to very different effect estimates being
compatible, e. g . even ones that go in the opposite direction, ultimately providing no information
about the effect itself (which actually happens in some cases in the economics and philosophy data
sets).

3.3 The sceptical p -value

Analysis The sceptical p-value, a new quantitative measure of replication success was recently
proposed by Held (2020a). The sceptical p-value arises from combining the intrinsic credibility
method (Matthews, 2001) with the prior-predictive check (Box, 1980). Specifically, using Bayes
theorem in reverse, the prior distribution of the effect size can be determined such that conditional
on the original study, the (1 − α) credible interval of the posterior distribution of the effect just
includes zero. This prior corresponds to the objection of a sceptic who argues that the original
finding is no longer significant if combined with a sufficiently sceptical prior. Replication success at
level α is then achieved if the tail probability of the replication estimate under its prior predictive
distribution is smaller than α, rendering the objection of the sceptic unrealistic.

The smallest level α at which replication success can be declared corresponds to the sceptical
p-value, analogous to the duality of ordinary p-values and confidence intervals (for technical details,
see the article).
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Figure 3: Example of assessment of replication success with one-sided sceptical p-value pS .

This method provides a theoretically sound approach to quantify replication success and it has
attractive properties. In particular, the sceptical p-value is never smaller than the ordinary p-values
from both studies and it also takes into account the size of the effect estimates, i. e. it becomes larger
if the replication estimate is smaller than the original estimate. Held (2020b) further expanded on
the calibration of the sceptical p-value. The function thresholdSceptical allows to compute
different types of thresholds.

## computing nominal, controlled, liberal, and golden thresholds for one-sided sceptical p-value
(thresh_nom <- thresholdSceptical(level = 0.025, alternative = "one.sided",

type = "nominal"))

## [1] 0.025

(thresh_contr <- thresholdSceptical(level = 0.025, alternative = "one.sided",
type = "controlled"))

## [1] 0.06530883

(thresh_lib <- thresholdSceptical(level = 0.025, alternative = "one.sided",
type = "liberal"))

## [1] 0.08288814

(thresh_gol <- thresholdSceptical(level = 0.025, alternative = "one.sided",
type = "golden"))

## [1] 0.06167928

In particular, αS = 0.062 is the threshold based on the golden level (Held et al., 2020). This
ensures that borderline original studies cannot lead to replication success if there is shrinkage of the
replication effect estimate. The alternative controlled threshold αS = 0.065 is close in value and
ensures one-sided type I error control at 0.0252 = 0.000625 if replication and original estimate have
equal variances.
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The sceptical p-value can be easily computed with the function pSceptical. For the analysis
of replication studies, it is recommended to report the one-sided sceptical p-value and to apply a
recalibration at the golden level (“type = golden”). We can then compare the sceptical p-value to
the one-sided alpha level (0.025).

## computing one.sided sceptical p-value for replication projects
RProjects$ps <- with(RProjects,

pSceptical(zo = zo, zr = zr, c = c,
alternative = "one.sided", type="golden"))

boxplot(ps ~ project, data = RProjects, las = 1, cex.axis = 0.7, ylim = c(0, 1),
xlab = "Project", ylab = expression(italic(p)[S]), outline = FALSE)

abline(h = alpha/2, lty = 3)
stripchart(ps ~ project, data = RProjects, vertical = TRUE, add = TRUE,

pch = 19, method = "jitter", jitter = 0.2, cex = 0.6)
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for (p in unique(RProjects$project)) {
data_project <- subset(RProjects, project == p)
cat(paste0(p, ": \n"))
success_scept <- (data_project$ps < 0.025)
cat(paste0(round(mean(success_scept)*100, 2),

"% smaller than 0.025 (one-sided sceptical p-value) \n"))
success_tradit <- (data_project$po1 < 0.025) & (data_project$pr1 < 0.025)
cat(paste0(round(mean(success_tradit)*100, 2),

"% smaller than 0.025 (both one-sided traditional p-values) \n"))
if(sum(success_scept != success_tradit) > 0){

discrep <- data_project[(success_scept != success_tradit),
c("ro", "rr", "c", "po1", "pr1", "ps")]

## print effect estimates, 1sided p-values, and c of discrepant studies
cat("Discrepant studies: \n")
print(signif(discrep, 2), row.names = FALSE)

}
cat("\n \n")

}

## Psychology:
## 30.14% smaller than 0.025 (one-sided sceptical p-value)
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## 28.77% smaller than 0.025 (both one-sided traditional p-values)
## Discrepant studies:
## ro rr c po1 pr1 ps
## 0.20 0.25 2.6 0.02800 0.000047 0.024
## 0.56 0.40 0.6 0.00026 0.035000 0.017
## 0.35 0.15 2.7 0.00140 0.023000 0.031
##
##
## Experimental Economics:
## 55.56% smaller than 0.025 (one-sided sceptical p-value)
## 55.56% smaller than 0.025 (both one-sided traditional p-values)
##
##
## Social Sciences:
## 52.38% smaller than 0.025 (one-sided sceptical p-value)
## 61.9% smaller than 0.025 (both one-sided traditional p-values)
## Discrepant studies:
## ro rr c po1 pr1 ps
## 0.28 0.15 3.5 0.0089 0.0110 0.040
## 0.38 0.15 9.2 0.0110 0.0043 0.061
##
##
## Experimental Philosophy:
## 70.97% smaller than 0.025 (one-sided sceptical p-value)
## 74.19% smaller than 0.025 (both one-sided traditional p-values)
## Discrepant studies:
## ro rr c po1 pr1 ps
## 0.75 0.44 9.4 0.015 0.0006 0.049
##
##

We can see some discrepencies between the two approaches. In particular, the sceptical p-value
may not indicate replication success when there is substantial shrinkage of the replication effect
estimate relative to the original one, even if both estimates are significant.

Design Design works similarly as for the statistical significance analysis strategy; Using the func-
tion sampleSizeReplicationSuccess, one needs to choose a design prior, a sceptical p-value level,
and the desired power to obain the required relative sample size c = nr/no. The following code
shows a few examples.

sampleSizeReplicationSuccess(zo = 2.5, power = 0.8, level = thresh_gol,
alternative = "one.sided",
designPrior = "conditional")

## [1] 1.377076

sampleSizeReplicationSuccess(zo = 2.5, power = 0.8, level = thresh_gol,
alternative = "one.sided",
designPrior = "predictive")

## [1] 2.776733

Figure 4 shows the power to achieve a one-sided sceptical p-value smaller or equal 0.062 as a
function of the p-value or z-value of original study, assuming equal sample sizes in original and
replication studies. The probability for replication success if the original study showed only weak
evidence (po = 0.05) is now smaller than 0.5, which is reached for an original p-value of slightly
above 0.03.
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Figure 4: Power to achieve replication success (at the one-sided 0.062 level) as a function of the
two-sided p-value or z-value of original study.

Figure 5 shows the required sample size to achieve a one-sided sceptical p-value of 0.062 with
80% power. The relative sample sizes consequently increase with increasing original p-value, with a
dramatic increase for p-value larger than 0.023 when the predictive design prior is used.
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Figure 5: Relative sample size to achieve replication success (at the one-sided 0.062 level) with 80%
power as a function of (two-sided) p-value or z-value of original study.

12



●

●

● ●●

●

●

●

●

●

80 85 90 95 100

0

20

40

60

80

100

Conditional power (in %)

P
re

di
ct

iv
e 

po
w

er
 (

in
 %

)

Figure 6: Conditional vs. predictive power at interim of the 10 studies from the social science
replication project that were not stopped after stage 1. The grey line indicates the same value for
conditional and predictive power.

3.4 Relative effect size

Analysis

Design

4 Special topics

4.1 Interim analysis

Adaptive designs are a type of designs where one or more interim analyses are planned during the
course of a study. This topic has extensively been studied and used in clinical trials for example,
where continuing a study that should be stopped may lead to serious consequences. However, this
type of design has not be covered in the framework of replication studies. ReplicationSuccess al-
lows to calculate the power of the replication study after an interim analysis has been performed, tak-
ing into account the results from the first part of the study. The function powerSignificanceInterim
is an extension of powerSignificance and requires in addition the specification of zi, the z-value
at the interim analysis and f, the fraction of the replication study already completed. Moreover,
the argument designPrior can be set to conditional, informed predictive and predictive.
Finally, the argument analysisPrior allows to also take the original result into account in the
analysis of the replication study.

Figure 6 shows the conditional and the predictive power of the replication studies that continued
into stage 2. While the condition power is larger than 80% for all the studies, the predictive power
is close to 0% for some studies and always smaller than the conditional power.

4.2 Between-study heterogeneity

It is likely that the effect estimates from original and replication studies are not realizations of the
exact same underlying effect size, but that there is between-study heterogeneity of effects. This
can be caused, for example, if the replication study is conducted in a different laboratory with
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Figure 7: Empirical Bayes shrinkage when there is no between-study heterogeneity.

different equipment. For this reason, many functions in ReplicationSuccess allow to incorporate
additionally uncertainty due to between-study heterogeneity into the predictive model. For example,
sampleSizeSignificance or predictionInterval allow to specify d, the relative between-study
heterogeneity variance d = τ2/σ2, i. e. the ratio of the heterogeneity variance to the variance of
the original effect estimate. By default, d is set to zero, however, if between-study heterogeneity is
expected, e. g . a different population of study participants is used, this should be considered in the
design. For details, see Pawel and Held (2020).

4.3 Data-driven shrinkage with empirical Bayes

As previously mentioned, the functions sampleSizeSignificance and powerSignificance allow
to specify the argument shrinkage, in order to shrink the original effect estimate towards zero
by a certain (arbitrary) amount. A more principled approach is to use a design prior which in-
duces shrinkage and then estimate the prior variance by empirical Bayes. This leads to “data-
driven” shrinkage that is larger when there was only weak evidence for the effect, and smaller
when there was strong evidence for the effect (shown in Figure 7). Furthermore, under this
prior, the specified between-study heterogeneity will also induce shrinkage towards zero, for de-
tails see Pawel and Held (2020). Empirical Bayes shrinkage is currently supported for the functions
sampleSizeSignificance, powerSignificance, and predictionInterval by setting the design
prior argument to "EB".

References

G. E. P. Box. Sampling and Bayes’ inference in scientific modelling and robustness (with discussion).
Journal of the Royal Statistical Society, Series A, 143:383 – 430, 1980.

C. F. Camerer, A. Dreber, E. Forsell, T. Ho, J. Huber, M. Johannesson, M. Kirchler, J. Almenberg,
A. Altmejd, T. Chan, E. Heikensten, F. Holzmeister, T. Imai, S. Isaksson, G. Nave, T. Pfeiffer,
M. Razen, and H. Wu. Evaluating replicability of laboratory experiments in economics. Science,
351:1433 – 1436, 2016. doi: 10.1126/science.aaf0918.

C. F. Camerer, A. Dreber, F. Holzmeister, T. Ho, J. Huber, M. Johannesson, M. Kirchler, G. Nave,
B. Nosek, T. Pfeiffer, A. Altmejd, N. Buttrick, T. Chan, Y. Chen, E. Forsell, A. Gampa, E. Heiken-

14



stein, L. Hummer, T. Imai, S. Isaksson, D. Manfredi, J. Rose, E. Wagenmakers, and H. Wu.
Evaluating the replicability of social science experiments in Nature and Science between 2010 and
2015. Nature Human Behavior, 2:637 – 644, 2018. doi: 10.1038/s41562-018-0399-z.

Florian Cova, Brent Strickland, Angela Abatista, Aurélien Allard, James Andow, Mario Attie,
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