rmdata {ExtremeRisks} | R Documentation |
Simulates samples of independent d-dimensional observations from parametric families of joint distributions with a given copula and equal marginal distributions.
rmdata (ndata, dist="studentT", copula="studentT", par)
ndata |
A positive interger specifying the number of observations to simulate. |
dist |
A string specifying the parametric family of equal marginal distributions. By default |
copula |
A string specifying the type copula to be used. By default |
par |
A list of p parameters to be specified for the multivariate parametric family of distributions. See Details. |
For a joint multivariate distribution with a given parametric copula class (copula
) and a given parametric family of equal marginal distributions (dist
), a sample of size ndata
is simulated.
The available copula classes are: Student-t (copula="studentT"
) with ν>0 degrees of freedom (df
) and scale parameters ρ_{i,j}\in (-1,1) for i != j=1,...,d (sigma
), Gaussian (copula="Gaussian"
) with correlation parameters ρ_{i,j}\in (-1,1) for i != j=1,...,d (sigma
), Clayton (copula="Clayton"
) with dependence parameter θ>0 (dep
), Gumbel (copula="Gumbel"
) with dependence parameter θ≥q 1 (dep
) and Frank (copula="Frank"
) with dependence parameter θ>0 (dep
).
The available families of marginal distributions are:
Student-t (dist="studentT"
) with ν>0 degrees of freedom (df
);
Asymmetric Student-t (dist="AStudentT"
) with ν>0 degrees of freedom (df
). In this case all the observations are only positive;
Frechet (dist="Frechet"
) with scale σ>0 (scale
) and shape α>0 (shape
) parameters.
Frechet (dist="double-Frechet"
) with scale σ>0 (scale
) and shape α>0 (shape
) parameters. In this case positive and negative observations are allowed;
symmetric Pareto (dist="double-Pareto"
) with scale σ>0 (scale
) and shape α>0 (shape
) parameters. In this case positive and negative observations are allowed.
The available classes of multivariate joint distributions are:
studentT-studentT (dist="studentT"
and copula="studentT"
) with parameters par <- list(df, sigma)
;
studentT (dist="studentT"
and copula="None"
with parameters par <- list(df, dim)
. In this case the d
variables are regarded as independent;
studentT-AstudentT (dist="AstudentT"
and copula="studentT"
) with parameters par <- list(df, sigma, shape)
;
Gaussian-studentT (dist="studentT"
and copula="Gaussian"
) with parameters par <- list(df, sigma)
;
Gaussian-AstudentT (dist="AstudentT"
and copula="Gaussian"
) with parameters par <- list(df, sigma, shape)
;
Frechet (dist="Frechet"
and copula="None"
) with parameters par <- list(shape, dim)
. In this case the d
variables are regarded as independent;
Clayton-Frechet (dist="Frechet"
and copula="Clayton"
) with parameters par <- list(dep, dim, scale, shape)
;
Gumbel-Frechet (dist="Frechet"
and copula="Gumbel"
) with parameters par <- list(dep, dim, scale, shape)
;
Frank-Frechet (dist="Frechet"
and copula="Frank"
) with parameters par <- list(dep, dim, scale, shape)
;
Clayton-double-Frechet (dist="double-Frechet"
and copula="Clayton"
) with parameters par <- list(dep, dim, scale, shape)
;
Gumbel-double-Frechet (dist="double-Frechet"
and copula="Gumbel"
) with parameters par <- list(dep, dim, scale, shape)
;
Frank-double-Frechet (dist="double-Frechet"
and copula="Frank"
) with parameters par <- list(dep, dim, scale, shape)
;
Clayton-double-Pareto (dist="double-Pareto"
and copula="Clayton"
) with parameters par <- list(dep, dim, scale, shape)
;
Gumbel-double-Pareto (dist="double-Pareto"
and copula="Gumbel"
) with parameters par <- list(dep, dim, scale, shape)
;
Frank-double-Pareto (dist="double-Pareto"
and copula="Frank"
) with parameters par <- list(dep, dim, scale, shape)
.
Note that above dim
indicates the number of d
marginal variables.
A matrix of (n x d) observations simulated from a specified multivariate parametric joint distribution.
Simone Padoan, simone.padoan@unibocconi.it, http://mypage.unibocconi.it/simonepadoan/; Gilles Stupfler, gilles.stupfler@ensai.fr, http://ensai.fr/en/equipe/stupfler-gilles/
Joe, H. (2014). Dependence Modeling with Copulas. Chapman & Hall/CRC Press, Boca Raton, USA.
Padoan A.S. and Stupfler, G. (2020). Joint inference on extreme expectiles for multivariate heavy-tailed distributions. arXiv e-prints arXiv:2007.08944, https://arxiv.org/abs/2007.08944.
library(plot3D) library(copula) library(evd) # Data simulation from a 3-dimensional random vector a with multivariate distribution # given by a Gumbel copula and three equal Frechet marginal distributions # distributional setting copula <- "Gumbel" dist <- "Frechet" # parameter setting dep <- 3 dim <- 3 scale <- rep(1, dim) shape <- rep(3, dim) par <- list(dep=dep, scale=scale, shape=shape, dim=dim) # sample size ndata <- 1000 # Simulates a sample from a multivariate distribution with equal Frechet # marginal distributions and a Gumbel copula data <- rmdata(ndata, dist, copula, par) scatter3D(data[,1], data[,2], data[,3]) # Data simulation from a 3-dimensional random vector a with multivariate distribution # given by a Gaussian copula and three equal Student-t marginal distributions # distributional setting dist <- "studentT" copula <- "Gaussian" # parameter setting rho <- c(0.9, 0.8, 0.7) sigma <- c(1, 1, 1) Sigma <- sigma^2 * diag(dim) Sigma[lower.tri(Sigma)] <- rho Sigma <- t(Sigma) Sigma[lower.tri(Sigma)] <- rho df <- 3 par <- list(sigma=Sigma, df=df) # sample size ndata <- 1000 # Simulates a sample from a multivariate distribution with equal Student-t # marginal distributions and a Gaussian copula data <- rmdata(ndata, dist, copula, par) scatter3D(data[,1], data[,2], data[,3])