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Abstract

This vignette briefly introduces the glmertree package for fitting a wide range of
generalized linear mixed-effects model trees (GLMM trees or glmertrees). In hands-on
examples baed on artificial datasets, emphasis is given to the special cases of fitting
regression trees with constant fits in the terminal nodes to clustered data (Section 2),
detecting treatment-subgroup interactions in clustered data (Section 3), and detecting
subgroups in linear growth curve models (Section 4).
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1. Introduction
Generalized linear mixed-effects model trees (GLMM trees or glmertrees) have recently been
proposed by Fokkema, Smits, Zeileis, Hothorn, and Kelderman (2018) for detecting treatment-
subgroup interactions in clustered datasets. Using a hands-on (artificial) example, this vi-
gnette describes how to fit such GLMM trees: Section 3 will describe how to assess main and
interaction effects of a categorical variable (treatment) on a continuous response (treatment
outcome). But first, Section 2 will describe how to fit (G)LMM trees with constant fits in the
terminal nodes. The R package glmertree can be used to detect predictors and moderators
in a wide range of generalized linear mixed-effects models.
GLMM trees estimate a global random-effects model, using all training observations. The
fixed-effects model is estimated locally: the dataset is partitoned with respect to additional
covariates or partitioning variables and a fixed-effects model is estimated in each cell of the
partition. The glmertree package makes use of the partykit package (Hothorn and Zeileis
2015) to find the partition and the lme4 package (Bates, Mächler, Bolker, and Walker 2015)
to fit the mixed-effects model.
The current stable release version of the package from the Comprehensive R Archive Network
(CRAN) can be installed via:

R> install.packages("glmertree")

Alternatively, the current development version can be installed from R-Forge:

R> install.packages("glmertree", repos = "http://R-Forge.R-project.org")

After installation, the package can be loaded as follows:
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R> library("glmertree")

The main functions in the glmertree package are lmertree(), for continuous outcome vari-
ables, and glmertree(), for binary or count outcome variables.

2. Fitting regression trees to clustered data
For this example, we will make use of the artificially generated MHserviceDemo dataset,
containing data on N = 350 young people receiving treatment at one of 13 mental-health
service providers. The response variable is (outcome), a continuous variable representing
treatment outcome, as measured by a mental-health difficulties score at follow-up, corrected
for the baseline assessment, where higher values reflect poorer treatment outcome. Potential
predictor variables are demographic variables and case characteristics: two continuous (age
and impact) and four binary covariates (gender, emotional, autism and conduct). The
cluster indicator (cluster_id) is an indicator for mental-health service provider. The data
can be loaded as follows:

R> data("MHserviceDemo", package = "glmertree")
R> summary(MHserviceDemo)

age impact gender emotional autism
Min. : 1.100 Min. :-5.600 female:162 no :153 no :317
1st Qu.: 9.025 1st Qu.: 2.000 male :188 yes:197 yes: 33
Median :11.250 Median : 4.500
Mean :11.233 Mean : 4.229
3rd Qu.:13.500 3rd Qu.: 6.275
Max. :20.600 Max. :14.200

conduct cluster_id outcome
no :285 13 : 35 Min. :-1.8000
yes: 65 4 : 33 1st Qu.:-0.5000

11 : 33 Median :-0.2000
12 : 32 Mean :-0.1406
2 : 31 3rd Qu.: 0.2000
8 : 31 Max. : 1.6000
(Other):155

The main functions in the glmertree package are lmertree(), for continuous outcome vari-
ables, and glmertree(), for binary or count responses. Both functions require the user to
specify at least two arguments: formula and data.

R> lmmt <- lmertree(outcome ~ 1 | cluster_id | age + gender + emotional +
+ autism + impact + conduct, data = MHserviceDemo)

The first argument specified the model formula. The left hand side (preceding the tilde),
specifies the response variable, which is outcome in the current example. The right-hand side
of the model formula (following the tile) consists of three parts, separated by vertical bars: The
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first part specifies the subgroup-specific fixed-effect model, consisting only of an intercept (1)
in the current example. The second part specifies the random effects, consisting of only a single
variable, resulting in estimation of a random intercept with respect to cluster_id. Finally,
the third part specifies the potential partitioning variables: age, gender, emotional, autism,
impact and conduct. A more complex random-effects structures could also be specified. For
example, specifying the model formula as:

R> outcome ~ 1 | (age + (1 + age | cluster_id)) | age + gender + emotional +
+ autism + impact + conduct

would yield a model in which a random intercept and slope for age would be estimated with
respect to cluster_id. Note that the parentheses are necessary to protect the vertical bars,
which separate the (global) random-effects from the other parts of the model. Note also, that
when we specify a random slope (for age), we also specify a fixed slope (for age) in the global
model, as is customary in specifying mixed-effects models.
Alternatively, using the glmertree() function, a tree may be fitted to binary (family =
binomial, default) or count response variables (family = poisson). Therefore, a binomial
GLMM tree for a dichotomized response could be obained by:

R> MHserviceDemo$outcome_bin <- factor(outcome > 0)
R> glmmt <- glmertree(outcome_bin ~ 1 | cluster_id | age + gender +
+ emotional + autism + impact + conduct,
+ data = MHserviceDemo, family = "binomial")

Using the plot method, we can plot the resulting tree and random effects:

R> plot(lmmt)

Using the argument which, we can also specify which part of the model should be plot-
ted: which = "tree" plots only the tree, which = "ranef" plots only the predicted random
effects and which = "all" (the default) plots the tree as well as the random effects.
The plotted tree is depicted in Figure 1. In every inner node of the plotted tree, the splitting
variable and corresponding p-value from the parameter stability test is reported. To control
for multiple testing, the p-values are Bonferroni corrected, by default. This can be turned
off by adding bonferroni = FALSE to the function call, yielding a less conservative criterion
for the parameter stability tests, but note that this will increase the likelihood of overfitting.
The significance level α equals .05 by default, but a different value, say for example .01, can
be specified by including alpha = .01 in the function call.
The plotted tree shows that there are four subgroups: node 3 indicates that for female patients
with lower age, somewhat higher values for the response are observed and thus for these
patients, poorer treatment outcomes are predicted. Somewhat better treatment outcomes are
observed for those in node 4 (with female gender and higher age) and node 6 (male gender
and no emotional disorder). The best treatment outcomes (lowest response variable values)
are observed among those in node 7 (male gender and presence of an emotional disorder).
The predicted random effects are plotted in Figure 2. On average, patients at service provider
3 appear to have higher response variable values (poorer outcomes), while patients at service
provider 10 appear to have more favorable outcomes.
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Figure 1: Linear mixed-effects model tree with constant fits in the terminal nodes.
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Figure 2: Random effects for the linear mixed-effects model tree in Figure 1.

To obtain numerical results, print, coef, codefixef, ranef and VarCorr methods are available
(results omitted for space considerations):

R> print(lmmt)
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R> coef(lmmt)
R> fixef(lmmt)
R> ranef(lmmt)
R> VarCorr(lmmt)

To obtain predicted values, the predict method can be used:

R> predict(lmmt, newdata = MHserviceDemo[1:10,])

1 2 3 4 5
0.46541482 -0.03873556 0.13834522 0.28419580 0.29712065

6 7 8 9 10
0.34536386 -0.37932997 0.13834522 0.13834522 0.28833404

When newdata is not specified, predictions for the training observations are returned, by
default. Also by default, the predictions are based on both random- and fixed-effects (tree)
predictions. Random effects can be excluded from the predictions by adding re.form = NA.
This is useful, for example, when newdata is specified, but the new observations do not have
a cluster indicator or are from new clusters:

R> predict(lmmt, newdata = MHserviceDemo[1:10, -7], re.form = NA)

1 2 3 4 5
0.25054752 -0.07652208 -0.07652208 0.25054752 0.25054752

6 7 8 9 10
0.25054752 -0.17325489 -0.07652208 -0.07652208 0.25054752

2.1. Inspecting residuals

Residuals of the fitted mixed-effects tree can be obtained with the residuals method. This
can be useful for assessing potential misspecification of the model (e.g., heteroscedasticity):

R> resids <- residuals(lmmt)
R> preds <- predict(lmmt)
R> plot(MHserviceDemo$cluster_id, resids)
R> scatter.smooth(preds, resids)

The plotted residuals are depicted in Figure 3. The left panel indicates there may be some
differences in the error variances across the levels of cluster_id. The right panel indicates
no association between fitted values and residuals.

3. Detecting treatment-subgroup interactions in clustered data
The (generalized) linear model specified for the terminal nodes can easily be extended to
accomodate additional predictor variables. This may be particularly helpful when the inter-
est is in the detection of moderators. For example, in the detection of treatment-subgroup
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interactions, where the effect of treatment on the response variable may be moderated by one
or more additional covariates. To illustrate, we will use an artificial motivating dataset from
Fokkema et al. (2018), which can be recreated using the code provided in Appendix A, or can
be loaded as follows:

R> data("DepressionDemo", package = "glmertree")
R> summary(DepressionDemo)

depression treatment cluster age
Min. : 3.00 Treatment 1:78 Min. : 1.0 Min. :18
1st Qu.: 7.00 Treatment 2:72 1st Qu.: 3.0 1st Qu.:39
Median : 9.00 Median : 5.5 Median :45
Mean : 9.12 Mean : 5.5 Mean :45
3rd Qu.:11.00 3rd Qu.: 8.0 3rd Qu.:52
Max. :16.00 Max. :10.0 Max. :69

anxiety duration depression_bin
Min. : 3.00 Min. : 1.000 0:78
1st Qu.: 8.00 1st Qu.: 5.000 1:72
Median :10.00 Median : 7.000
Mean :10.26 Mean : 6.973
3rd Qu.:12.00 3rd Qu.: 9.000
Max. :18.00 Max. :17.000

The dataset includes seven variables: A continuous response variable (depression), a pre-
dictor variable for the linear model (treatment), three potential partitioning variables (age,
anxiety, duration), an indicator for cluster (cluster) and a binarized response variable
(depression_bin).
We fit the model as follows:
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Figure 3: Residuals of the fitted linear mixed-effects model tree in Figure 1.
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R> lmm_tree <- lmertree(depression ~ treatment | cluster |
+ age + duration + anxiety, data = DepressionDemo)

The left hand side of the model formula (preceding the tilde symbol) specifies the response
variable (depression). The right hand side of the model formula consists of three parts,
separated by vertical bars: The first part specifies the predictor variable(s) of the (generalized)
linear model (treatment, in this example). The second part specifies the random effects and
the third part specifies the potential partitioning variables. All partitioning variables are
continuous in this example, but note that (ordered) categorical partitioning variables may
also be specified. Also, we specified a single variable in the random-effects part, resulting in
estimation of a random intercept with respect to cluster. More complex random effects can
also be specified; for example, specifying the model formula as

R> depression ~ treatment | (age + (1 + age | cluster)) | age + duration + anxiety

would yield a model with a random intercept and slope for age estimated with respect to
cluster. The brackets are necessary to protect the vertical bars in the formulation of the
(global) random effects. Note also, that when we specify a random slope (for age), we also
specify a fixed slope (for age) in the global model, as is customary in specifying mixed-effects
models.
Alternatively, using the glmertree() function, a tree may be fitted to binary (family =
binomial, default) or count response variables (family = poisson). Therefore, a binomial
GLMM tree for the dichotomized response depression_bin could be obained by:

R> glmm_tree <- glmertree(depression_bin ~ treatment | cluster |
+ age + duration + anxiety, data = DepressionDemo, family = binomial)

Using the plot method, we can plot the resulting tree and random effects:

R> plot(lmm_tree)

Using the argument which, we can also specify which part of the model should be plot-
ted: which = "tree" plots only the tree, which = "ranef" plots only the predicted random
effects and which = "all" (the default) plots the tree as well as the random effects.
The plotted tree is depicted in Figure 4. In every inner node of the plotted tree, the splitting
variable and corresponding p-value from the parameter stability test is reported. To control
for multiple testing, the p-values are Bonferroni corrected, by default. This can be turned
off by adding bonferroni = FALSE to the function call, yielding a less conservative criterion
for the parameter stability tests, but note that this will increase the likelihood of overfitting.
The significance level α equals .05 by default, but a different value, say for example .01, can
be specified by including alpha = .01 in the function call.
The plotted tree in Figure 4 shows that there are three subgroups with differential treat-
ment effectiveness: node 3 indicates that for patients with lower duration and lower anxiety,
Treatment 1 leads to lower post-treatment depression. Node 4 indicates that for patients
with lower duration and higher anxiety, both treatments yield more or less the same expected
outcome. Node 5 indicates, that for patients with higher duration, Treatment 2 leads to lower
post-treatment depression.
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Figure 4: Linear mixed-effects model tree with treatment-subgroup interactions.
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Figure 5: Random effects for the linear mixed-effects model tree in Figure 4.

The predicted random effects are plotted in Figure 5. On average, patients from cluster
10 have somewhat higher expected post-treatment depression scores, whereas patients from
cluster 4 have somewhat lower expected post-treatment depression scores.
To obtain numerical results, print, coef, fixef, ranef, and VarCorr methods are available
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(results omitted for space considerations):

R> print(lmm_tree)
R> coef(lmm_tree)
R> fixef(lmm_tree)
R> ranef(lmm_tree)
R> VarCorr(lmm_tree)

To obtain predicted values, the predict method can be used:

R> predict(lmm_tree, newdata = DepressionDemo[1:7,])

1 2 3 4 5 6 7
10.777967 11.554671 7.158594 9.045116 11.280676 8.816419 11.883481

When newdata is not specified, predictions for the training observations are returned, by
default. Random effects can be excluded from the predictions by adding re.form = NA. This
is useful, for example, when newdata is specified, but the new observations do not have a
cluster indicator or are from new clusters:

R> predict(lmm_tree, newdata = DepressionDemo[1:7, -3], re.form = NA)

1 2 3 4 5 6 7
11.087612 11.622223 7.500141 9.112668 11.622223 8.591409 11.622223

3.1. Inspecting residuals

Residuals of the fitted GLMM tree can be obtained with the residuals method. This can
be useful for assessing potential misspecification of the model (e.g., heteroscedasticity):

R> resids <- residuals(lmm_tree)
R> preds <- predict(lmm_tree)
R> plot(factor(DepressionDemo$cluster), resids)
R> scatter.smooth(preds, resids)

The plotted residuals are depicted in Figure 6. The left panel does not indicate substan-
tial variation in error variances across levels of the random effects. The right panel show
fitted values plotted against residuals and also does not reveal a pattern indicating model
misspecification.

4. Detecting subgroups in linear growth curve models
For partitioning longitudinal data, function lmertree() requires data to be in the long format.
An artificially generated longitudinal dataset is included in the package and can be loaded as
follows:
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R> data("GrowthCurveDemo", package = "glmertree")
R> dim(GrowthCurveDemo)

[1] 1250 31

R> names(GrowthCurveDemo)

[1] "x1" "x2" "x3" "x4" "x5" "x6" "x7"
[8] "x8" "x9" "x10" "x11" "x12" "x13" "x14"

[15] "x15" "x16" "x17" "x18" "x19" "x20" "x21"
[22] "x22" "x23" "x24" "x25" "x26" "x27" "x28"
[29] "person" "time" "y"

The dataset contains 1250 repeated measurements from 250 individuals. The response was
measured at five timepoints for each individual. The dataset contains 31 variables: A con-
tinuous response variable (y), a predictor variable for the linear model (time, taking values 0
through 4), 28 potential partitioning variables (x1 through x28), and an indicator for person
(person).
The data were generated so that x1, x2 and x3 are true partitioning variables. Furthermore,
x1 is a binary variable, while all other potential partitioning variables follow a normal distri-
bution with µ = 0 and σ2 = 25. Potential partitioning variables were generated so as to be
uncorrelated. Random intercepts and slopes were generated so that the intercept and slope
values for persons vary around their node-specific means, following a normal distribution with
µ = 0 and σ2 = 2 for the intercept and σ2 = .4 for the slope. Errors were uncorrelated and
followed a normal distribution with µ = 0 and σ2 = 5.
Because we have a relatively large amount of potential partitioning variables, we first construct
the model formula as follows:
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Figure 6: Residuals of the fitted linear mixed-effects model tree in Figure 4.
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R> form <- formula(paste0("y ~ time | person | ",
+ paste0("x", 1:28, collapse = " + ")))
R> form

y ~ time | person | x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 +
x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28

The first part of the formula (y ~ time) regresses the response on time. The second part
(| person |) specifies that a random intercept should be estimated with respect to person.
The third part (x1 + ... + x28) specifies the potential partitioning variables.
The default fitting procedure as employed in lmertree() will assumes potential predictor
variables are measured on the observation level. With longitudinal data in the long format,
and with potential partitioning variables measured on the cluster level (i.e., time-invariant
covariates), the observation-level stability tests will likely have inflated type-I error. This
can be accounted for through specification of the cluster argument. As a result, parameter
stability tests will be performed on the cluster instead of the observation level:

R> gcm_tree <- lmertree(form, cluster = person, data = GrowthCurveDemo)

Using the cluster-level stability tests yields a tree with 4 subgroups (terminal nodes):

R> width(gcm_tree$tree)

[1] 4

Employing the default observation-level stability tests would have yielded a tree with many
spurious splits and subgroups:

R> gcm_obs_tree <- lmertree(form, data = GrowthCurveDemo)
R> width(gcm_obs_tree$tree)

[1] 17

We plot the growth-curve tree using the plot method:

R> plot(gcm_tree, which = "tree")

By default, the fixed effect of the predictor variable in the linear model (in this case, time)
is plotted in the terminal nodes. The dots represent the observed data values.
The plot reveals that the true partitioning variables (x1, x2 and x3) were selected for splitting.
The fitted models in the terminal nodes (red lines) reveal a decrease in the response variable
over time for the left-most subgroup, and an increase for the right-most subgroup. The curves
in the two middle subgroups are rather flat, indicating no change over time.
The observed data points indicate that the individual observations show substantial variation
around the estimated fixed effects. To obtain an estimate of the random effects and residual
variances, we can use the VarCorr method:
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Node 4 (n = 375)
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Node 7 (n = 300)
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Figure 7: Linear mixed-effects model tree with growth curve models in the terminal nodes.

R> varcor <- VarCorr(gcm_tree)
R> varcor

Groups Name Std.Dev.
person (Intercept) 2.2449
Residual 2.3696

To obtain an estimate of the intraclass correlation (ICC), we could divide the variance of the
random intercept by the variance of the residuals and that of the random intercept:

R> res_var <- attr(varcor, "sc")^2
R> int_var <- as.numeric(varcor$person)
R> ICC <- int_var / (res_var + int_var)
R> ICC

[1] 0.4729834

4.1. Random slopes

Earlier, we specified a model formula with only a random intercept and thus did not account
for possible variation between persons in the effect of time, within terminal nodes. To account
for such differences we can incorporate a random slope of time into the model formula:
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R> form_s <- formula(paste0("y ~ time | (1 + time | person) | ",
+ paste0("x", 1:28, collapse = " + ")))
R> form_s

y ~ time | (1 + time | person) | x1 + x2 + x3 + x4 + x5 + x6 +
x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 +
x17 + x18 + x19 + x20 + x21 + x22 + x23 + x24 + x25 + x26 +
x27 + x28

Again, we fit the tree:

R> gcm_tree_s <- lmertree(form_s, cluster = person, data = GrowthCurveDemo)

In this case, we obtained the same tree structure with or without estimating random slopes
(Figure 7). This need not necessarily be the case with other datasets. At the very least, the
estimated random effects can provide us with additional information about variation due to
between-person differences in initial levels and growth over time:

R> VarCorr(gcm_tree_s)

Groups Name Std.Dev. Corr
person (Intercept) 2.0671

time 0.5892 -0.092
Residual 2.1812

Compared to the fitted model with random intercepts only, we see that the residual variance
decreased somewhat.
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A. R code for generating artificial motivating dataset
Generate the predictor variables and error term:

R> set.seed(123)
R> treatment <- rbinom(n = 150, size = 1, prob = .5)
R> duration <- round(rnorm(150, mean = 7, sd = 3))
R> anxiety <- round(rnorm(150, mean = 10, sd = 3))
R> age <- round(rnorm(150, mean = 45, sd = 10))
R> error <- rnorm(150, 0, 2)

Generate the random intercepts:

R> cluster <- error + rnorm(150, 0, 6)
R> rand_int <- sort(rep(rnorm(10, 0, 1), each = 15))
R> rand_int[order(cluster)] <- rand_int
R> error <- error - rand_int
R> cluster[order(cluster)] <- rep(1:10, each = 15)

Generate treatment subgroups:

R> node3t1 <- ifelse(duration <= 8 & anxiety <= 10 & treatment == 0, -2, 0)
R> node3t2 <- ifelse(duration <= 8 & anxiety <= 10 & treatment == 1, 2, 0)
R> node5t1 <- ifelse(duration > 8 & treatment == 0, 2.5, 0)
R> node5t2 <- ifelse(duration > 8 & treatment == 1, -2.5, 0)

Generate the continuous and dichotomized outcome variable:

R> depression <- round(9 + node3t1 + node3t2 + node5t1 + node5t2 +
+ .4 * treatment + error + rand_int)
R> depression_bin <- factor(as.numeric(depression > 9))

Make treatment indicator a factor and collect everything in a data frame:

http://dx.doi.org/10.18637/jss.v067.i01
https://link.springer.com/article/10.3758/s13428-017-0971-x
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R> treatment <- factor(treatment, labels = c("Treatment 1", "Treatment 2"))
R> DepressionDemo <- data.frame(depression, treatment, cluster,
+ age, anxiety, duration, depression_bin)
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