ciMat {Pmisc} | R Documentation |
Produces a matrix suitable for multiplying by results of summary or predict functions to give confidence intervals of a desired quantile
ciMat(p = 0.95, se.fit = FALSE)
p |
coverage of confidence interval |
se.fit |
row names of result are 'fit' and 'se.fit' |
matrix with three columns (estimate, upper and lower bound of CI) and two rows
(myCiMat = ciMat(0.8)) clotting <- data.frame( u = c(5,10,15,20,30,40,60,80,100), lot1 = c(118,58,42,35,27,25,21,19,18), lot2 = c(69,35,26,21,18,16,13,12,12)) glmRes = stats::glm(lot1 ~ log(u), data = clotting, family = Gamma) # CI on the natural scale exp(summary(glmRes)$coef[,rownames(myCiMat)] %*% myCiMat) (myCiMatPred = ciMat(0.99, se.fit=TRUE)) glmPred = do.call(cbind,stats::predict(glmRes, se.fit=TRUE)) exp(glmPred[,rownames(myCiMatPred)] %*% myCiMatPred)