Prepare Data for IRT Analyses


[Up] [Top]

Documentation for package ‘eatPrep’ version 0.2.6

Help Pages

aggregateData Aggregate Datasets With Several Kinds of Missing Values
asNumericIfPossible Convert Columns of a Data Frame Into Numeric Values if Possible
automateDataPreparation Automate Data Preparation using Functions from Package eatPrep
catPbc Calculate Item Discrimination for Each Category of Categorical Variables
checkData Check Datasets for Missing Values and Invalid Codes
checkDesign Check Datasets for Deviations From Test Design
collapseMissings Recode Character Missings of Different Types to 0 or 'NA'
inputDat List of Three Datasets from Educational Assessment
inputList Data Frames with Code, Subunit and Unit Information for Datasets in 'inputDat'
mergeData Merge Data Frames, Check For Inconsistencies, and Replace NA Values
mnrCoding Recode Missing by Intention to Missing not Reached
readDaemonXlsx Read xlsx-Files Produced by ZKDaemon
readSpss Read SPSS Data Files and Truncate Space in String Variables and Change Column Width
recodeData Recode Datasets with Several Kinds of Missing Values
scoreData Score Datasets with Several Kinds of Missing Values
set.col.type Set the Class of Columns in a Data Frame
writeSpss Export Datasets to SPSS