Sparse group lasso generic optimizer


[Up] [Top]

Documentation for package ‘sglOptim’ version 1.1.137.0

Help Pages

coef.sgl Extracting the nonzero coefficients
compute_error Helper function for computing error rates
create.sgldata Create a sgldata object
Err Generic function for computing error rates
features Generic function for extracting nonzero features (or groups)
features.sgl Extracting nonzero features
models Generic function for extracting the fitted models
models.sgl Returns the estimated models (that is the beta matrices)
nmod Generic function for counting the number of models
nmod.sgl Returns the number of models in a sgl object
parameters Generic function for extracting nonzero parameters
parameters.sgl Extracting nonzero parameters
prepare.args Generic function for preparing the sgl call arguments
prepare.args.sgldata Prepare sgl function arguments
print_with_metric_prefix Print a numeric with metric prefix
rearrange Generic rearrange function
rearrange.sgldata Rearrange sgldata
sgl.algorithm.config Create a new algorithm configuration
sgl.standard.config Standard algorithm configuration
sgl_cv Generic sparse group lasso cross validation using multiple possessors
sgl_fit Fit a sparse group lasso regularization path.
sgl_lambda_sequence Generic routine for computing a lambda sequence for the regularization path
sgl_predict Sgl predict
sgl_print Print information about sgl object
sgl_subsampling Generic sparse group lasso subsampling procedure
test.data Simulated data set