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Abstract

The R function regr is a wrapper function that allows for fitting several different types of
regression models by a unified call, and provides more informative numerical and graphical out-
put than the traditional summary and plot methods. The package regr0 contains the functions
that go along with regr and a number of others. It is written to make data analysis more
effective by providing user-oriented, flexible functions. It is available from R-forge and is still
in development.

1 Introduction

Regression models are fitted in the statistical programming environment R by diverse functions,
depending on the particular type of model. Outputs obtained by calling the function summary on
the object produced by the fitting function look often quite similar. Graphical output for residual
analysis is obtained by calling plot, but the result is not always informative.

The function regr allows for fitting various regression models with the same statement, provides a
more informative numerical output and enhanced plots for residual analysis.

regr proceeds by checking arguments, then calling the suitable fitting method from standard R or
other packages, collecting useful statistics from the resulting object and a call of summary on it and
adding a few to generate an object of class regr.

In particular, the following models can be fitted by regr:

• ordinary linear models, using Least Squares or robust estimation, by calling lm or rlm,

• generalized linear models, by calling glm,

• multinomial response models, by calling multinom of package nnet,

• ordered response models, by calling polr of package MARS,

• models for survival data and Tobit regression, by calling survreg of package survival,

• multivariate ordinary linear models, by calling lm

This document presents the main features of the package regr0 and explains the ideas behind them.
It gives no details about the functions. They can be found in the help files.

The package is available from R-forge, e.g. by calling
install.packages("regr0", repos="http://r-forge.r-project.org", lib=...).
The reason why it is not on CRAN and called regr0 rather than regr is that the author is still
developing additional features and does not yet want to guarantee upward compatibility. It also
means that comments and suggestions are very welcome: stahelstat.math.ethz.ch
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2 Numerical Output

The useful numerical output of fitting functions is usually obtained by calling summary on the object
produced by the fitting method. This results, for most functions, in a table showing the estimated
regression coefficients, their standard errors, the value of a test statistic (t or z or deviance) and,
for the ordinary linear model, a p value for the tests for zero coefficients. It is followed by an overall
summary, usually including a test for the hypothesis that all coefficients are zero, and a standard
deviation of the error and coefficient of determination, if applicable.

If there are factors (qualitative explanatory variables) in the model, the coefficients are not always
interpreted adequately, and the respective standard errors, t and p values are (almost) useless and
often misinterpreted. On the other hand, the information whether a factor has a significant effect
is not available from the summary but has to be obtained by calling drop1 on the fit object. (The
function anova, which seems to be suited according to its name, usually does not answer this
question.)

This situation cannot be called user friendly. The function regr is meant to provide the results that
are needed without having the user call different functions and select the output that is safe to be
interpreted.

2.1 Standard output for continuous explanatory variables

Here is a result of printing a regr object.

Call:

regr(formula = log10(tremor) ~ location + log10(distance) + log10(charge),

data = d.blast)

Fitting function lm

Terms:

coef stcoef signif R2.x df p.value

(Intercept) 2.964 0.000 13.6 NA 1 0

location NA NA 10.5 0.052 7 0

log10(distance) -1.518 -0.788 -12.0 0.277 1 0

log10(charge) 0.636 0.410 8.2 0.053 1 0

Coefficients for factors:

$location

loc1 loc2 loc3 loc4 loc5 loc6 loc7 loc8

0.00000 0.15306 0.13169 -0.16185 -0.03211 0.07161 -0.00889 0.00372

St.dev.error: 0.143 on 352 degrees of freedom

Multiple R^2: 0.795 Adjusted R-squared: 0.79

F-statistic: 152 on 9 and 352 d.f., p.value: 0

The “Terms:” table characterizes the effects of the individual terms in the model. For continuous
explanatory variables (the last 2 lines in the example) it shows:

coef, the estimated value of the coefficient;

stcoef, the estimated standardized coefficient, defined as coef times the standard deviation of the
explanatory variable, divided by the standard deviation of the response (if the response is
continuous as assumed here), see below for its use;
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signif, a significance measure that is > 1 for estimated coefficients differing significantly from 0,
see below for its definition;

R2.x, the coefficient of determination for regressing the explanatory variable in question on the
other terms in the model. This is one of the wellknown collinearity diagnostics.

df, degrees of freedom, always 1 for such variables;

p.value, the p value for testing if the coefficient could be zero.

2.2 Standardized Coefficients

The standardized coefficients are meant to allow for a comparison of the importance of explanatory
variables that have different variances. Each of them shows the effect on the response of increasing
“its” carrier X(j) by one standard deviation, as a multiple of the response’s standard deviation.
This is often a more meaningful comparison of the relevance of the input variables.

Note, however, that increasing one X(j) without also changing others may not be possible in a
given application, and therefore, interpretation of coefficients can always be tricky. Furthermore,
for binary input variables, increasing the variable by one standard deviation is impossible, since an
increase can only occur from 0 to 1, and therefore, the standardized coeffient is somewhat counter-
intuitive in this case.

2.3 Significance

The usual summary output of fitting functions includes the t values of the coefficients as a column
in the coefficients table. They are simply the ratios of the two preceding columns. Nevertheless,
they provide a kind of strength of the significance of the coefficients. The p value may also serve as
such a measure, but it is less intuitive as it turns tiny for important variables, making comparisons
somewhat more difficult than t values. The significance of t values depends on the degrees of
freedom, but informed users will know that critical values are around 2, and they will therefore
informally compare t values to 2. Based on these considerations, we introduce a new measure of
significance here.

The new significance measure is defined as

signif = t value / critical value

where critical value is the critical value qdfof the t distribution and depends on the degrees
of freedom. The definition is applicable for continuous explanatory variables as well as for binary
factors. For other factors, we will extend this definition below.

2.4 Confidence Intervals.

The standard errors provided by the usual summary tables allow for calculating confidence intervals
for continuous explanatory variables, by the formula coef ± qdf · std.error. The formula based
on signif is

coef · (1 ± 1/signif )

Numerically, this is slightly more complicated, but there is an additional interpretation of signif in
terms of the confidence interval: If the input variable were scaled such that the confidence interval
had half width 1, then the estimate would be signif units away from zero.
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2.5 Factors

For factors with more than two levels, (location in the example), there are several coefficients to
be estimated. Their values depend on the scheme for generating the dummy variables characterizing
the factor, which is determined by the contrasts option (or argument) in use. Whereas the usual
option contrasts="contr.treatment" gives coefficients with a clear interpretation (difference of
level k to level 1 for k > 1), other contrasts may be mixed up with them or be very difficult to
interpret. In the regr output, the estimated coefficients for all levels of the factor – independently
of the coding except for an additive constant – are shown after the Terms table, but tests for them
are not provided.

Note that for factors with only two levels, the problem does not arise, since the single coefficient
can be interpreted in the straightforward manner as for continuous explanatory variables. regr

therefore treats binary factors in the same way as continuous explanatory variables.

The test performed for factors with more than two levels, which is shown in the Terms table by the
p.value entry, is the F test for the whole factor (hypothesis: all coefficients are 0). It is obtained
by calling drop1. The significance measure is defined as

signif =
√
F value / qdf1,df2

where qdf1,df2 is the critical value of the F distribution. It reduces to the former one for binary
factors.

The collinearity measure R2.x for factors is a formal generalization of R2.x for terms with one
degree of freedom, determined by applying the relationship with the “variance inflation factor”,
R2.x= 1/(1 − vif) to the generalized vif. [More explanation planned.]

2.6 Model summary

The last paragraph of the output gives the summary statistics. For ordinary linear models, the
estimated standard deviation or the error term is given first. (It is labelled “Standard error of
residual” in the lm output, which we would label a misnomer.) The Multiple R^2 is given next,
together with its “adjusted” version, followed by the overall F test for the model.

For generalized linear models, the deviance test for the model is given. If applicable, a test for
overdispersion based on residual deviance is also added.

2.7 Model Comparisons

When model development is part of the statistical analysis, it is useful to compare the terms that
occur in different models under consideration. There is a function called modelTable collects coef-
ficients, p values, and other useful information, and a format and print method for showing the
information in a useful way.

2.8 Model Selection

The well-known functions drop1 and add1 are adapted by providing additional methods. Whereas
the terms (scope) for which drop1 tests if they can be dropped from the model has a nice default in
the standard R, such a default is not provided for add1. This latter function is very useful to check
whether squared continuous variables or interactions between variables should be included into the
model. Therefore, our version of add1 provides this default scope.

Since drop1 and add1 methods are available, step can be used to select a model automatically. ...
AIC ...
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3 Residual Analysis

The residual plots that are produced by plotting an lm or glm object are:

• The Tukey-Anscombe plot showing residuals against fitted values, which is certainly the most
important single diagnostic tool for assessing model assumptions;

• The normal quantile-quantile plot, which makes sense only for ordinary linear models and in
some cases for generalized linear models. It is not essential since skewness and outliers can
also be seen in the Tukey-Anscombe plot if they are relevant;

• The Scale plot, which shows square-root transformed absolute values of residuals against fitted
values and helps to spot unequal variances (if these depend on the expected value of the
response).

• The leverage plot, displaying residuals against leverage values. This plot is useful to detect
influential observations.

3.1 What plot.regr does

The plotting method for regr objects has many addtional features, to be described in more detail
in the following subsections.

• The plots are augmented by a smooth fitted to them (which is also available in the classical R
functions), and simulated smooths are added in order to assess an informal “significance” of
curvature in the smooth of the data. In addition, a reference line is given, which helps finding
an appropriate modification of the model if significant curvature is found.

• The set of plots that is shown by default is adjusted to the type of model. A normal QQ-plot of
residuals is only shown if appropriate. If weights are used, the residuals divided by the weight
are also plotted against the weights, which helps to see if the weighting rule was adequate.

• Most importantly, residuals are plotted against explanatory variables. This can also be
achieved by calling termplot for other fit objects, but experience shows that this is often
neglected by average users.

Residuals can be plotted easily against the index (sequence number) of the observation, since
this may show trends or correlations of errors in time, if the sequence reflects time.

• Finally, plotting methods are defined for models for which no useful methods are available in
the basic R packages, notably ordered response regression and censored responses.

The number of plots produced by calling plot on a regr object may be elevated. The argument
plotselect allows for requiring or deselecting any of them. The arguments to plot.regr are
numerous and allow for varying many features, including those for which the default behavior is
discussed below.

The plotting pages are marked in the right lower corner by the date and a project title and step label,
if available from options. (This stamp can be suppressed by setting options(stamp=FALSE).)

The default plotting character is a plus sign. Its size is adjusted to the number of points.

The plots can be generated by executing the examples on help(’plot.regr’). A single plot is
shown here for easy reference in the following descriptions.
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Figure 1: A Tukey-Anscombe plot.

3.2 Extreme Residuals

If there are one or a few outliers in any plot, the structure of the majority of the data becomes more
difficult to grasp. Therefore, the plot method first flags outliers in the residuals. If there are any,
the range of the vertical axis is split into an “ordinary plotting range”, where the non-outliers are
shown as usual, and an “outlier margin”, where the outliers are shown on a highly nonlinear scale
that maps the range from the limit of the ordinary range to infinity to this margin.

In order to ease identification, a suitable number of most extreme residuals are labeled with their
row.names by default.

3.3 Smooths.

Fitting a smooth (blue dashed line in the Figure) to a residual scatterplot helps to spot a potential
nonlinearity of the relationship between the response and the variable shown in the plot – the fitted
values or a single explanatory variable. The smooth used by default is loess with a span depending
on the number of observations (currently = 5n−0.3 for ordinary regression, and twice this number
for generalized linear regression; do not ask why). Such a smooth is more essential for generalized
linear models than for ordinary ones, since artefacts of the residuals may make it impossible to see
curved relationships from a display of the residuals.

It is difficult to decide if a smooth line is curved “significantly”, such that searching for a better
model should be helpful and not lead to overfitting the data. In order to help judging the “natural
curvature”, 19 sets of data are generated by re-randomizing the residuals. The smooths obtained for
these sets are also shown (in light blue in the Figure – I hope that this can be seen in all versions of
this document). If the smooth determined from the data is clearly the most extreme in some aspect,
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one may conclude that the model does not fit adequately. The number 19 is chosen to correspond
to a “significance level” of 5%. Up to now, such simulated datasets are only generated for ordinary
linear regression.

3.4 Augmented Tukey-Anscombe Plot

The plot of residuals against fitted values is the most important diagnostic tool to assesss the validity
of model assumptions. It allows for detecting deviations from linearity, homoscedasticity, symmetry
and normal distribution of the random deviations.

If there is curvature, one remedy may be to transform the response variable. This can help only if
the relation between fitted and response values is monotone – otherwise, quadratic terms are the
most straightforward modification of the model. Monotonicity is easy to see if the response is plotted
on the vertical axis instead of the residuals. This display can also be requested from plot.regr (by
setting plotselect=c(yfit=3)).

In order to avoid the necessity to either call plot again or to ask for the plot of response against
fitted values routinely, a reference line (green dot-dashed line in the Figure) is shown in the
Tukey-Anscombe plot. It connects points with equal response values. Since the response can be
determined by adding the two coordinates of the plot – fitted plus residual – lines of equal response
values have slope -1. The reference line shown is such a line, the one going through the center of
the points in the plot. If the smooth never gets steeper than the reference line, then the suggested
relation between fitted and response values is monotone, and a transformation of the response may
remove the non-linearity.

One might argue that a plot of the response on the fit is more straightforwardly interpreted than the
Tukey-Anscombe plot with the reference line. We think that the Tukey-Anscombe plot can show
the deviations from model assumptions more clearly and should therefore be preferred, and that the
reference line, after a short learning period, will be easy enough to work with and helps avoiding an
additional display. Of course, some users may disagree.

3.5 Scale Plot

The absolute values of the residuals are plotted against the fitted values in order to see more clearly
than in the Tukey-Anscombe plot whether the scatter of residuals depends on the expected values.
The plot shown when plotting lm objects uses square roots of absolute residuals instead of the
absolute values themselves because they are more symmetrically distributed. This appears as a
technical argument to me and it may confuse unexperienced users. While square roots are therefore
avoided for plotting, they are still used to calculate the smooth that is added to the plot.

3.6 Weights

If weights are given by the user, they should usually reflect different variances of the random errors
Ei, and the residuals, divided by the square root of the weights, should have constant variance.
The standardized absolute residuals are therefore plotted against the weights. If the size of these
residuals is not constant but depends on the weight, the rule or weighting function should be revised.

If weights are given, they are also used as the sizes of the plotting symbols (circles) in other plots.

3.7 Leverage Plot

Influential observations can be spotted in the scatterplot of residuals against leverage values (diago-
nal elements of the projection matrix). The well-know diagnostic called Cook’s distance is a simple
function of these two quantities, and level curves are drawn in the plot.
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3.8 Residual differences and Distance in x-space

If there are groups of observations with identical input variables (or identical xi vectors), then there
is the possibility to perform a kind of overall goodness-of-fit test by comparing the variability of the
residuals within these groups to the estimated variance of the error. This is performed by a simple
Analysis of Variance of the standardized residuals with the grouping just mentioned. (Note that
this method can be applied even if some or many xi vectors are unique.)

If such groups are not available, an old idea, described by Daniel and Wood (1971/80) is to use
“near replicates” for this purpose. They introduced a distance in x-space that they called WSSD and
suggested to calculate all distances between observations along with the corresponding differences
of residuals. If the differences of residuals are smaller for short distances than for long ones, then
this points to a lack of fit of the model, which might be avoided by introducing additional terms
or modelling nonlinear dependencies through transformations of variables. The procedure however
does not suggest which modifications may help.

As to the distance measure dhi, Daniel & Wood (1971) introduced their WSSD (weighted Squared
Standard Distance (?)) with the intention to weigh variables according to their “importance” for
the model. Since this feature seems too much dependent on the parametrization of the model, I
prefer to use the Mahalanobis distance in the design space,

d
(X)
hi = n(xi − xh)T (XTX)−1(xi − xh)

(which can be calculated efficiently from the QR decomposition of X).

The distance pairs and the respective differences of residuals are calculated by the function xdistResdiff.
They are grouped and the corresponding group means of absolute residual differences are then pro-
duced by xdistResScale. The distances are then classified, and the residual differences are averaged

over these classes. This yields a pair of mean distance d
(X)

k and mean residual differences d
(R)

k for
each class k. (Trimmed means (α = 1/6) are used by default to obtain some robustness against
outliers.) These pairs are then plotted.

The class limits are chosen by fixing the percentages of distance values that they should contain.
By default, the first class is quite small – because plausible deviations from the null hypothesis will
lead to lower mean residual differences for short distances –, followed by a somewhat larger class,
then a really big class for an intermediate range and finally a class (again somewhat smaller) for the
upper end. The current default limits are therefore at 3%,10%, and 90%.

In order to assess the variability of the mean residual differences, we resort to simulation. The
residuals are permuted among the observations, and then the calculation of differences is repeated.
(In fact, the assignment of residual differences to the observation pairs is re-determined.) This leads
to simulated mean differences for each class, and their standard deviations can be used as standard
errors of the observed mean differences. Corresponding error bars are shown in the plot.

This idea can also be used for a test of goodness of fit: The test statistic

T =
∑K

k=1

(
(d

(R)

k − d)
/

sek

)2
should have a Chisquared distribution with K − 1 degrees of freedom. The test is calculated by the
function xdistResscale along with the mean distances and mean residual differences.

3.9 Sequence Plot

Residuals are plotted against the sequence number in the dataset in order to show any trends and
correlation that may be related to this sequence.
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3.10 Residuals against explanatory variables

Plotting residuals against explanatory variables serves to detect nonlinearities of the relation between
the response and the variable in question. For ordinary regression and some other models, they can
show dependencies of the scale of errors on the explanatory variables.

The plots are enhanced by smooths as discussed for the Tukey-Anscombe plot. Also, a reference
line is added that helps to decide whether a transformation of the explanatory variable may help to
remove any non-linearity shown by the smooth. Again, the reference line intends to connect points
of equal response values. Note, however, that they do not really align on a straight line because of
the contributions of the other terms in the model to the fit. Therefore, the reference line connects
points for which the sum of “component effect” β̂jx

(j) plus residual is equal. Note that the slope
of the reference line is negative if the regressor has a positive effect on the response. The line is
again useful for finding an adequate modification if a curved smooth appears: If all parallels to
the reference line cut the smooth only once, a monotone transformation of the regressor can help.
Otherwise, adding its square to the model may help.

Alternatively, the sums “component effect β̂jx
(j) plus residual” may be used as the vertical axis

instead of the residuals for plotting. This display is usually called the “partial residual plot” and
can be obtained from plot.regr, too. It is related to the plots shown by default in the same way
as the response versus fitted plot is to the Tukey-Anscombe plot.

When transformed explanatory variables appear in the model, the residuals are plotted against
the original values. The reason is as follows: If any curvature is detected, an improvement of the
model may be possible by transforming the variable shown. It is then more natural to search for
an enhancement of the original transformation rather than a transformation of transformed values,
and this should be easier if the original scale is used. If this appears to be unsuitable in a given
application, the user may store the transformed variable under a new name and then use this new
variable in the model formula, or specify the transformed variable in the call to plot.

Residuals may be plotted against any variables using an additional function plresx. The function
plres2x displays residuals and two (explanatory) variables in a special type of 3d plot. This serves
to check for interactions.

3.11 Residuals for an ordinal or binary response

Ordinal regression models are best specified by introducing the idea of a “latent response variable”
Z, which is continuous and follows a linear relationship with the explanatory variables. The response
Y is considered to be a classification of Z into k classes of possibly unequal width. The most well-
known model specifies a logistic distribution for the error term in the linear model for Z. Then,
the coefficients and the thresholds or class limits are estimated by maximum likelihood. This is
implemented in the function polr (proportional odds linear regression) of the MASS package, which
is the function invoked by regr for ordinal regression.

Resdiuals for this model may be defined by considering the conditional distribution of the latent
variable Z, given the observation Y and the explanatory variables. This is a logistic distribution
with parameters given by the model, restricted to the class of Z given by the observed Y . Residuals
are defined as the median of this distribution, and it may help to characterize the uncertainty about
the latent residuals by the quartiles of the conditional distribution. The plots show the interquartile
range by a vertical line and the median, by a horizontal tick on them.

Note that this definition may not have appeared in the literature yet.
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3.12 Residuals for censored responses

If response values are censored, so are the residuals. In the same spirit as for the case of ordered
responses, it is straightforward to calculate a conditional distribution, given the fitted value and the
censoring value, for each residual. This can again be plotted by showing quartiles.

3.13 Residual plots for multivariate regression.

For multivariate regression, the plots corresponding to each target variable should be examined.
They are arranged such that the same type of plot for the different response variables are grouped
together, and a matrix of plots is produced for residuals against explanatory variables. In addition,
the qq-plot of Mahalanobis norms of residuals is shown as well as the scatterplot matrix of residuals.

4 Further Plotting Functions

4.1 Scatterplot Matrices

Scatterplot matrices are produced by the pairs function. In regr0, there is a function with more
flexibility, called plmatrix.

• The set of variables shown horizontally and vertically need not be the same. plmatrix can be
used to show the dependence of several response variables (vertical axes) on several explanatory
ones (horizontal axes).

• A traditional square scatterplot matrix can be split to avoid tiny panels – this is even done
by default. For example, if a scatterplot matrix of 15 variables is needed, plmatrix produces
by default 6 pages of graphical output, the first one showing the upper corner of the lower
triangle of the scatterplot matrix, the second, variables 7 to 11 against 1 to 6, the third, 7 to
11 against 7 to 12, and so on, until the whole lower triangle of the full scatterplot matrix is
presented.

• The first argument can be a formula. If it contains a left hand side, then the respective
variables will be shown last in a scatterplot matrix. This is convenient since then, the target
variable will appear as the vertical axis in the last row of plots, such that its (“marginal”)
dependence on the explanatory variables can be seen in the usual way.

• Plotting characters and colors may be specified directly (instead of writing a panel function).

• If only one x and one y variable is given, then a regular plot appears. Therefore, plmatrix
can be used to generate a plot with specified plotting symbols (possibly labels of more than
one character each), colors and symbol sizes.
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5 Miscellaneous and Utility Functions

5.1 Transformation: Started Logarithm

The logarithmic transformation is very useful for quantitative variables. In fact, it should appear
more often than not, since it is the “first aid transformation” for amounts and concentrations and
should therefore be applied to most quantitative variables by default.

Now, amounts and concentrations may be zero (exactly or recorded as such), and the logarithm of
0 is -Inf. A pragamtic way out of this problem often consists of adding a constant to the variable
before taking logs. Generally, this and other ideas to avoid the -Inf as a transformed value are
called “started logs” according to John Tukey.

regr0 includes a function logst that is based on the following ideas:

• The modification should only affect the values for “small” arguments.

• What is “small” should be determined in connection with the non-zero values of the original
variable, since it should behave well (be equivariant) with respect to a change in the “unit of
measurement”.

• The function must remain monotone, and it should remain (weakly) convex.

The function logst implements these criteria in the following way: The shape is determined by a
threshold c at which – coming from above – the log function switches to a linear function with the
same slope at this point. This is obtained by

g(x) =

{
log10(x) ifx ≥ c
log10(c) − (c− x)/(c log(10)) ifx < c

The threshold c is set to c = q1+r
1 /qr3, where q1 and q3 are the quartiles of the positive data and r

is a tuning constant. The default of r is 1 and leads to an expected percentage of about 2% of the
data below c for log-normal data.

It is certainly useful to inspect a graph of the function, as drawn in example(logst).

5.2 Documentation

For a data analysis, it is often useful to save graphical displays in documents or on paper. In an
extended data analysis, one can easily lose control over the precise content of the different plots.
regr0 provides some help for keeping track.

• Every graphical display generated by a graphical function from the package gets a “stamp” in
the lower right corner that indicates date and time of its creation and, if specified by the user
before that time point, a project title and a step name (by writing
userOptions(project=projecttitle, step=stepname)).
(This stamp can of course be suppressed for producing publication graphics.)

• Data sets may be documented by attaching two attributes, tit and doc – title and description
–, which will be printed with numerical output if desired.
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5.3 Subsetting Data

If observations (rows) of a data.frame are to be deleted, the usual R-function subset is useful. The
package slightly modifies it to make sure that the attributes – most importantly the documentation
by tit and doc (see the preceding subsection) are passed along.

There is an additional function dropdata which allows for dropping observations or variables based
on their names.

5.4 Multiple Frames

Function mframe splits the screen by calling par(mfrow=...). It adds flexibility and sets other
defaults for margin widths and the like.

This is the end of the story for the time being. I hope that you will get into using regr0 and

have good success with your data analyses. Feedback is highly appreciated. Werner Stahel, stahel at

stat.math.ethz.ch
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