
Principal Component Analysis (PCA)

Ph. Grosjean <phgrosjean@sciviews.org>

March 24, 2012

Part I

Introduction
Principal Component Analysis, or PCA is a widely used method to explore
linear associations among variables of large datasets. There is, unfortunately,
no consistent implementation of this technique in R, which is even more
a problem because the numerous additional R packages that provide en-
hanced versions of PCA, or additional tools, have no consistent template
to start with. In the stats package, there are two inconsistent implementa-
tions called princomp() and prcomp() that both create S3 objects of the
same name. There are a few methods available, like print(), summary(),
plot(), predict() or biplot(). The whole set is rather deceptive and
produces less interesting plots than other (more specialized) software can do.
For instance, there is nothing to plot the so-called “graph of the variables” in
the French terminology and you have to program it yourself.

Of course, there are several specialized R packages available that provide
more powerful and/or more extended implementations, among others: ade4,
FactoMineR and vegan. Each of these packages has a totally different ap-
proach: ade4 creates a "c(“pca”, “dudi”)" S3 object and proposes nice
graphs but has an interface that is completely inconsistent with usual R anal-
yses (no optional formula interface, exotic names of arguments, non-standard
handling of missing data, etc.). Object orientation and name of objects are
obscure and do not facilitate first use of the PCA in ade4. A PCA is done,
indeed, using the dudi.pca() function (or possibly, nipals(), but that
creates a different "nipals" object). The same remarks can be made about
the interface of functions in FactoMineR: they use strange arguments and do
not respect the general organization of analyses in R (an object constructs the
analysis, possibly defined using a formula; methods summarize or plot the
results piece by piece). At least, name of function and object related to PCA
are clear in FactorMineR: PCA()! There is also a non conventional handling
of missing observations. But the function is powerful and loows for a lot of
investigations around the PCA. In vegan, there is no PCA function, but a re-
dundancy analysis rda(), which reduces to a classical PCA when arguments
X = and Y = are missing. It creates a "c(“cca”, “rda”)" S3 object which
is not optimized at all for holding pure PCA data (many unnecessary items
in it for a PCA). Finally, labdsv uses the default prcomp(), but it wraps it

1

into a "pca" S3 object, in order to define additional plotting methods that are
consistent with the other analyses and objects in that package. Note that both
"pca" S3 objects in ade4 and labdsv are completely inconsistent, and you are
likely to get very bad results in case you load both packages and mix their
respective methods!

So, given that chaotic set of PCA functions in R, would it be possible to
design an object with minimal code that reuses code in the stats package
(princomp() and prcomp()), provides a couple of additional methods to
make decent variables and individuals plots (possibly with ellipses or conver
hulls for subgroups) in a way that a whole analysis would be easy to perform
and to read in R code? We will try to do so in the present SciViews package.

First of all, we want to keep things simple. That is, we will design an
S3 object, and not start from a complex S4 UML, as it is done for instance
in the rrcov package. It would be nice to name this object "pca" and we
should be able to make it compatible with both "princomp" and labdsv’s
"pca" (but not with prcomp() that names loadings and scores compo-
nents rotation and x, respectively. Also, that "pca" S3 object could not
be compatible with ade4’s "pca" object. Moreover, neither ade4, nor labdsv
use a namespace (as for versions available at 2010-02-06). Hopefully, ade4
does not define methods specific for its "pca" object, except score.pca()
for the score() generic function defined in the same package (and not else-
where). Thus, we could define scores(), with ’s’, as for the corresponding
item in princomp object without clash. Note that, if we don’t use a nf item in
our "pca" object, the ade4’s score() function inadvertently applied to our
object fails with the error message: “Error in x$nf : $ operator is
invalid for atomic vectors”.

1 The SciViews’ pcomp object

We finally choose "pcomp" as name of our object, but it inherits from "pca"
and "princomp", because "pca" is already used in ade4 and labdsv (with
conflicting definitions), "PCA" is used in FactoMineR and "Pca" defines S4
objects in rrcov (and pCa is something totally different in seacarb package).
Moreover, pcomp() is closer to prcomp() and princomp() as it is supposed
to be a wrapper over these two (default) PCA functions in R.

The "pcomp" S3 object is a list with components:

� loadings: (also required for labdsv’s "pca" object). This is $rotation
in "prcomp", and a "loadings" object in "princomp",

� scores: (also required for labdsv’s "pca" object). Note for scores in
princomp, components are Comp.1, Comp.2, etc., in prcomp, it is PC1,
PC2, ..., as well as in pca) => use PC1, PC2, ... This is $x in prcomp.For
princomp(), the argument scores = TRUE (by default) must be used
to get this!

� sdev: (also required for labdsv’s "pca" object). princomp() uses
names (to rename into PC1, PC2, ...), while prcomp() does not,

� totdev: the total deviance, as required to be compliant with labdsv’s
"pca" object.

2

� n.obs: the number of observations,

� center: (use 0 for all, if not centered),

� scale: (use 1 for all, if not scaled),

� method: currently only either ``svd'' (and the computation is the
same as prcomp()), or ``eigen'' (and the computation is the same
as princomp()),

� call: the matched call,

� na.action: if relevant.

This document needs to be finalized!

3

	I Introduction
	The SciViews' pcomp object

