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Abstract

This package vignette is an update and extension of the paper by published in the Jour-
nal of Statistical Software. Homogeneity analysis combines the idea of maximizing the
correlations between variables of a multivariate data set with that of optimal scaling. In
this article we present methodological and practical issues of the R package homals which
performs homogeneity analysis and various extensions. By setting rank constraints non-
linear principal component analysis can be performed. The variables can be partitioned
into sets such that homogeneity analysis is extended to nonlinear canonical correlation
analysis or to predictive models which emulate discriminant analysis and regression mod-
els. For each model the scale level of the variables can be taken into account by setting
level constraints. All algorithms allow for missing values.
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1. Introduction

In recent years correspondence analysis (CA) has become a popular descriptive statistical
method to analyze categorical data (Benzécri 1973; Greenacre 1984; Gifi 1990; Greenacre and
Blasius 2006). Due to the fact that the visualization capabilities of statistical software have
increased during this time, researchers of many areas apply CA and map objects and variables
(and their respective categories) onto a common metric plane.

Currently, R (R Development Core Team 2015) offers a variety of routines to compute CA
and related models. An overview of functions and packages is given in Mair and Hatzinger
(2007). The package ca (Nenadic and Greenacre 2006) is a comprehensive tool to perform
simple and multiple CA. Various two- and three-dimensional plot options are provided.

In this paper we present the R package homals, starting from the simple homogeneity analysis,
which corresponds to a multiple CA, and providing several extensions. Gifi (1990) points
out that homogeneity analysis can be used in a strict and a broad sense. In a strict sense
homogeneity analysis is used for the analysis of strictly categorical data, with a particular
loss function and a particular algorithm for finding the optimal solution. In a broad sense
homogeneity analysis refers to a class of criteria for analyzing multivariate data in general,
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sharing the characteristic aim of optimizing the homogeneity of variables under various forms
of manipulation and simplification (Gifi 1990, p. 81). This view of homogeneity analysis will
be used in this article since homals allows for such general computations. Furthermore, the
two-dimensional as well as three-dimensional plotting devices offered by R are used to develop
a variety of customizable visualization techniques. More detailed methodological descriptions
can be found in Gifi (1990) and some of them are revisited in Michailidis and de Leeuw (1998).

2. Homogeneity analysis

In this section we will focus on the underlying methodological aspects of homals. Starting
with the formulation of the loss function, the classical alternating least squares algorithm is
presented in brief and the relation to CA is shown. Based on simple homogeneity analysis
we elaborate various extensions such as nonlinear canonical analysis and nonlinear principal
component analysis. A less formal introduction to Gifi methods can be found in Mair and de
Leeuw (2009).

2.1. Establishing the loss function

Homogeneity analysis is based on the criterion of minimizing the departure from homogeneity.
This departure is measured by a loss function. To write the corresponding basic equations the
following definitions are needed. For i = 1,...,n objects, data on m (categorical) variables
are collected where each of the j = 1,...,m variable takes on k; different values (their levels
or categories). We code them using n x k; binary indicator matrices Gj, i.e., a matrix of
dummy variables for each variable. The whole set of indicator matrices can be collected in a
block matrix

A . . .
G= Gi : Gy : -+ ¢ Gpl- (1)

In this paper we derive the loss function including the option for missing values. For a simpler
(i.e. no missings) introduction the reader is referred to Michailidis and de Leeuw (1998, p.
307-314). In the indicator matrix missing observations are coded as complete zero rows; if
object i is missing on variable j, then row ¢ of GG; is 0. Otherwise the row sum becomes 1 since
the category entries are disjoint. This corresponds to the first missing option presented in Gifi
(missing data passive 1990, p. 74). Other possibilities would be to add an additional column
to the indicator matrix for each variable with missing data or to add as many additional
columns as there are missing data for the j-th variable. However, our approach is to define
the binary diagonal matrix M; if dimension n x n for each variable j. The diagonal element
(i,7) is equal to 0 if object ¢ has a missing value on variable j and equal to 1 otherwise. Based
on M; we can define M, as the sum of the M;’s and M, as their average.

For convenience we introduce
D.AG'M.G. = GG, (2)
J i Al Jg

as the kj x k; diagonal matrix with the (marginal) frequencies of variable j in its main diagonal.

Now let X be the unknown n x p matrix containing the coordinates (object scores) of the
object projections into RP. Furthermore, let Y; be the unknown k; X p matrix containing the
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coordinates of the category projections into the same p-dimensional space (category quantifi-
cations). The problem of finding these solutions can be formulated by means of the following
loss function to be minimized:

o(X; V1, Yn) 2 tr(X — G;Y)) M;(X — G;Y)) (3)
j=1

We use the normalization W/ M,X = 0 and X'M,X = I in order to avoid the trivial solution
X =0 and Y; = 0. The first restriction centers the graph plot (see Section 4) around the
origin whereas the second restriction makes the columns of the object score matrix orthogonal.
Multiplying the scores by /n/m gives a mean of 0 and a variance of 1 (i.e., they are z-scores).
Note that from an analytical point of view the loss function represents the sum-of-squares
of (X — G;Y}) which obviously involves the object scores and the category quantifications.
Thus, we minimize simultaneously over X and Y;. We give a graphical interpretation of the
loss function in the following section.

2.2. Geometry of the loss function

In the homals package we use homogeneity analysis as a graphical method to explore multi-
variate data sets. The joint plot mapping object scores and the category quantifications in a
joint space, can be considered as the classical or standard homals plot. The category points
are the centers of gravity of the object points that share the same category. The larger the
spread between category points the better a variable discriminates and thus the smaller the
contribution to the loss. The closeness of two objects in the plot is related to the similarity
of their response patterns. A “perfect” solution, i.e., without any loss at all, would imply that
all object points coincide with their category points.

Moreover, we can think of G as the adjacency matrix of a bipartite graph in which the n
objects and the k; categories (j = 1,...,m) are the vertices. In the corresponding graph
plot an object and a category are connected by an edge if the object is in the corresponding
category. The loss in (3) pertains to the sum of squares of the line lengths in the graph plot.
Producing a star plot, i.e., connecting the object scores with their category centroid, the loss
corresponds to the sum over variables of the sum of squared line lengths. More detailed plot
descriptions are given in Section 4.

2.3. Minimizing the loss function

Typically, the minimization problem is solved by the iterative alternating least squares algo-
rithm (ALS; sometimes quoted as reciprocal averaging algorithm). At iteration t = 0 we start
with arbitrary object scores X(?). Each iteration ¢ consists of three steps:

1. Update category quantifications: Yj(t) = D;lG;-X(t) forj=1,...,m
2. Update object scores: X = M1 Py Gij(t)

_1 1
3. Normalization: X1 = M, 2orth(M, 2X®)

Note that matrix multiplications using indicator matrices can be implemented efficiently as
cumulating the sums of rows over X and Y.
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Here orth is some technique which computes an orthonormal basis for the column space
of a matrix. We can use QR decomposition, modified Gram-Schmidt, or the singular value
decomposition (SVD). In the homals package the left singular vectors of X® here denoted
as Isvec, are used.

To simplify, let P; denote the orthogonal projector on the subspace spanned by the columns
of Gj, ie., P] = Gij_lG;-. Correspondingly, the sum over the m projectors is

m m

P,=) Pj=)» G;D;'G}. (4)
j=1 j=1

Again, P, denotes the average. By means of the lsvec notation and including P, we can
describe a complete iteration step as

Xt = lsveC(X(t)) = ISVGC(M:lpoX(t))' )

In each iteration ¢ we compute the value of the loss function to monitor convergence. Note
that Formula (5) is not suitable for computation, because it replaces computation with sparse
indicator matrices by computations with a dense average projector.

Computing the homals solution in this way is the same as performing a CA on G. Usually,
multiple CA solves the generalized eigenproblem for the Burt matrix C = G'G and its diagonal
D (Greenacre 1984; Greenacre and Blasius 2006). Thus, we can put the problem in Equation
3 into a SVD context (de Leeuw, Michailidis, and Wang 1999). Using the block matrix
notation, we have to solve the generalized singular value problem of the form

GY = M, XA, (6)
G'X = DYA, (7)

or equivalently one of the two generalized eigenvalue problems

GD7'G'X = M, XA?, (8)
G'M7'GY = DY A% (9)

Here the eigenvalues A? are the ratios along each dimension of the average between-category
variance and the average total variance. Also X'P;X is the between-category dispersion for
variable j. Further elaborations can be found in Michailidis and de Leeuw (1998).

Compared to the classical SVD approach, the ALS algorithm only computes the first p di-
mensions of the solution. This leads to an increase in computational efficiency. Moreover, by
capitalizing on sparseness of G, the homals package is able to handle large data sets.

The goodness-of-fit of a solution can be examined by means of a screeplot of the eigenval-
ues. The contribution of each variable to the final solution can be examined by means of
discrimination measures defined by HGijH2 /n (see Meulman 1996).

3. Extensions of homogeneity analysis

Gifi (1990) provides various extensions of homogeneity analysis and elaborates connections
to other multivariate methods. The package homals allows for imposing restrictions on the
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variable ranks and levels as well as defining sets of variables. These options offer a wide spec-
trum of additional possibilities for multivariate data analysis beyond classical homogeneity
analysis (cf. broad sense view in the Introduction).

3.1. Nonlinear (categorical) principal component analysis

Having a n x m data matrix with metric variables, principal components analysis (PCA) is a
common technique to reduce the dimensionality of the data set, i.e., to project the variables
into a subspace R? where p <« m. The Eckart-Young theorem states that this classical form
of linear PCA can be formulated by means of a loss function. Its minimization leads to a
n X p matrix of component scores and an m X p matrix of component loadings.

However, having nonmetric variables, nonlinear PCA (NLPCA) can be used. The term “non-
linear” pertains to nonlinear transformations of the observed variables (de Leeuw 2006). In
Gifi terminology, NLPCA can be defined as homogeneity analysis with restrictions on the
quantification matrix Y. Let us denote r; < p as the parameter for the imposed restriction
on variable j. If no restrictions are imposed, as e.g. for a simple homals solution, r; = k; — 1
iff k; < p, and r; = p otherwise.

We start our explanations with the simple case for r; = 1 for all j. In this case we say that
all variables are single and the rank restrictions are imposed by

where z; is a vector of length k; with category quantifications and a; a vector of length p
with weights. Thus, each quantification matrix is restricted to rank 1, which allows for the
existence of object scores with a single category quantification.

3.2. Multiple quantifications

It is not necessarily needed that we restrict the rank of the score matrix to 1. Our homals
implementation allows for multiple rank restrictions. We can simply extend Equation 10 to
the general case

Yj = Z; A (11)
where again 1 < r; < min (k; — 1,p), Z; is k; x rj and A;j is p x rj. We require, without loss

of generality, that Z;-DjZ ; = I. Thus, we have the situation of multiple quantifications which
implies imposing an additional constraint each time PCA is carried out.

To establish the loss function for the rank constrained version we write 7, for the sum of the
rj and re for their average. The block matrix G of dummy variables now becomes

Qé[GlZl D GoZy 1o GmZm}- (12)

Gathering the A;’s in a block matrix as well, the p x r, matrix
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results. Then, Equation 3 becomes

o(X;Z;A) = Ztr (X — G, Z;A))M;(X — G;Z;A)) =
J=1
=mtr X'M, X —2tr X'QA+tr A/A =
=mp+tr (Q—XA)(Q—-XA) —tr Q'Q =
=tr(Q — XA)(Q — XA) +m(p —rd) (14)

This shows that o(X; Y1, -+, Ym) > m(p—r7e) and the loss is equal to this lower bound if we
can choose the Z; such that @ is of rank p. In fact, by minimizing (14) over X and A we see
that
z (X;7; A) \(Z —Te 1
o(2) S mino Sngl re), (15)

where the Ag are the ordered singular values. A corresponding example in terms of a lossplot
is given in Section 4.

3.3. Level constraints: Optimal scaling

From a general point of view, optimal scaling attempts to do two things simultaneously:
The transformation of the data by a transformation appropriate for the scale level (i.e. level
constraints), and the fit of a model to the transformed data to account for the data. Thus
it is a simultaneous process of data transformation and data representation (Takane 2005).
In this paper we will take into account the scale level of the variables in terms of restrictions
within Z;. To do this, the starting point is to split up Equation 14 into two separate terms.
Using YJ = D;lG;-X this leads to

Z; L tr(X = G;Y;) M (X — G;Y))
= 27 (X = GV + (Y = ) M(X = G(Y; + (Y = Y))))
— ST (X — GV M (X — GyYy) + S (Y — VDY — V). (16)

Obviously, the rank restrictions Y; = Z]-A;- affect only the second term and hence, we will
proceed on our explanations by regarding this particular term only, i.e.,

0(Z;A) =Y tr(Z;A} - Y;)'Dj(Z; A - Y5). (17)
j=1

Now, level constraints for nominal, ordinal, polynomial, and numerical variables can be im-
posed on Z; in the following manner. For nominal variables, all columns in Z; are unrestricted.
Equation 17 is minimized under the conditions u’D;Z; = 0 and ZJ’-Dij = I. The stationary
equations are

Aj =Y} D;Z;, (18a)
Y}Aj = ZJW + uh', (18b)
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with W as a symmetric matrix of Langrange multipliers. Solving, we find
h=——AY/'Dju=0, (19)

and thus, letting Z 2 D;/QZ]- and Y 2 Djl-/2Yj, it follows that

Z; = Z;jW. (20)

If Y; = KAL  is the SVD of Y, then we see that Z; = K, O with O as an arbitrary rotation
matrix and K, as the singular vectors corresponding with the r largest singular values. Thus,
Z; = D; 'K, 0, and A; =Y, Z; = L,A,O. Moreover, Z; A", = D; '*K, A, L.

Having ordinal variables, the first column of Z; is constrained to be either increasing or
decreasing, the rest is free. Again (17) has to be minimized under the condition ZJ’-Dij =1
(and optionally additional conditions on Z;). If we minimize over A;, we can also solve the
problem tr(Zng}/jS/j/Dij) with Z]’-Dij =1.

For polynomial constraints the matrix Z; are the first r; orthogonal polynomials. Thus all
p columns of Y; are polynomials of degree r;. In the case of numerical variables, the first
column in Z; denoted by zjg is fixed and linear with the category numbers, the rest is free.
Hence, the loss function in (17) changes to

m
O'(Z, A) = Ztr(Z]A; + Zjoag-o — YA})/D](Z]A; + Zjoag-o — }Afj) (21)
j=1

Since column zj is fixed, Z; is a k; x (r; — 1) matrix and A;, with a;o as the first column, is
p X (rj —1). In order to minimize (21), z}ODj Zj = 0 is required as minimization condition.
Note that level constraints can be imposed additionally to rank constraints. If the data set
has variables with different scale levels, the homals package allows for setting level constraints
for each variable j separately. Unlike in Gifi (1990) and Michailidis and de Leeuw (1998) it
is not necessary to have rank 1 restrictions in order to allow for different scaling levels. Our
implementation allows for multiple ordinal, multiple numerical etc. level constraints.

3.4. Nonlinear canonical correlation analysis

In Gifi terminology, nonlinear canonical correlation analysis (NLCCA) is called “OVERALS”
(van der Burg, de Leeuw, and Verdegaal 1988; van der Burg, de Leeuw, and Dijksterhuis
1994). This is due to the fact that it has most of the other Gifi-models as special cases. In
this section the relation to homogeneity analysis is shown. The homals package allows for the
definition of sets of variables and thus, for the computation NLCCA between g = 1,..., K
sets of variables.

Recall that the aim of homogeneity analysis is to find p orthogonal vectors in m indicator
matrices Gj. This approach can be extended in order to compute p orthogonal vectors in
K general matrices G,, each of dimension n x m, where m, is the number of variables
(j=1,...,my) in set v. Thus,

Go=1G, & G, (22)

VUmy,
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The loss function can be stated as

/
K

A 1 My My
a(X;Yl,...,YK):?Ztr X—ZGUJ.YUJ. M, X—ZGUJ.YUJ. . (23)
v=1 j=1 j=1

X is the n X p matrix with object scores, G, is n x kj;, and Y, is the k; X p matrix containing
the coordinates. Missing values are taken into account in M, which is the element-wise
minimum of the M in set v. The normalization conditions are XM¢X =TI and u'M,X =0
where M, is the average of M,,.

Since NLPCA can be considered as special case of NLCCA, i.e., for K = m, all the additional
restrictions for different scaling levels can straightforwardly be applied for NLCCA. Unlike
classical canonical correlation analysis, NLCCA is not restricted to two sets of variables but
allows for the definition of an arbitrary number of sets. Furthermore, if the sets are treated
in an asymmetric manner predictive models such as regression analysis and discriminant
analysis can be emulated. For v = 1, 2 sets this implies that G1 is n x 1 and Go is n x m — 1.
Corresponding examples will be given in Section ?77.

3.5. Cone restricted SVD

In this final methodological section we show how the loss functions of these models can be
solved in terms of cone restricted SVD. All the transformations discussed above are projections
on some convex cone K;. For the sake of simplicity we drop the j and v indexes and we look
only at the second term of the partitioned loss function (see Equation 17), i.e.,

0(Z,A) =tr(ZA'—Y)D(ZA' —-Y), (24)

over Z and A, where Y is k x p, Z is k x r, and A is p x r. Moreover the first column 2
of Z is restricted by zgp € K, with K as a convex cone. Z should also satisfy the common
normalization conditions ' DZ =0 and Z'DZ = I.

The basic idea of the algorithm is to apply alternating least squares with rescaling. Thus
we alternate minimizing over Z for fixed A and over A for fixed Z. The “non-standard”
part of the algorithm is that we do not impose the normalization conditions if we minimize
over Z. We show below that we can still produce a sequence of normalized solutions with a
non-increasing sequence of loss function values.

Suppose (Z , 121) is our current best solution. To improve it we first minimize over t?e non-
normalized Z, satisfying the cone constraint, and keeping A fixed at A. This gives Z and a
corresponding loss function value o(Z, A). Clearly,

0(Z,A) <o(Z,A), (25)
but Z is not normalized. Now update Z to Z+ using the weighted Gram-Schmidt solution
Z = Z*+8S for Z where S is the Gram-Schmidt triangular matrix. The first column Zy of Z

satisfies the cone constraint, and because of the nature of Gram-Schmidt, so does the first
column of Z*. Observe that it is quite possible that

o(Z*,A) > o(Z,A). (26)
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This seems to invalidate the usual convergence proof, which is based on a non-increasing

. : A= s 5 —
sequence of loss function values. But now also adjust A to A = A(S™!)". Then ZA' = Z+ A,
and thus

o(Z,A) =o(Z7,A). (27)

Finally compute A" by minimizing o(Z*, A) over A. Since o(ZT, A") < 0(ZT, A) we have
the chain

o(Zt,AY) <o(ZY,A) =0(Z,A) <o(Z,A). (28)

In any iteration the loss function does not increase. In actual computation, it is not necessary
to compute A, and thus it also is not necessary to compute the Gram-Schmidt triangular
matrix S.

4. The R package homals

4.1. Categorical Principal Component Analysis

Standard PCA assumes that the data are metric (i.e. equidistant categories within and across
variables) and assumes a linear relationship among the observed variables. Having ordinal
variables such as Likert items, these assumptions are often not fulfilled in practice. In this
case we have two options: run an ordinal factor analysis (FA) based on polychoric correlations
as implemented in the fa.poly() function in the psych package, or run a nonlinear (ordinal)
PCA as presented here. Apart from the conceptual differences between FA and PCA in
general, the advantage of NLPCA over polychoric FA is that we do not have to pose any
underlying distribution assumption on our data, whereas a polychoric (or tetrachoric in the
binary case) correlation assumes that the categories are realizations of an underlying latent
normal distribution.

In homals there is the princals() function which performs NLPCA. Since NLPCA is just a
rank-1 restricted version of general homogeneity analysis, internally princals () uses homals()
as engine. An effort was made to make the PRINCALS output as PCA-like (i.e. princomp()-
like) as possible in terms of comparable eigenvalues, explaned amount of variance on each
dimension, and loadings.

Standard PCA is solved by an eigenvalue decomposition of the input correlation matrix R
based on the original data which gives us eigenvalue vector A of length m. Subsequently,
the amount of explained variance for each dimension can be computed by dividing each
eigenvalue by the sum of the m eigenvalues. One of the cores outputs of any Gifi model is
that it provides a “new” data matrix where the original categories are optimally scaled for
each dimension. Now can now compute the correlation matrix R* on the new data matrix (it
does not matter which one we use since the p matrices are linearly dependent) and perform
an eigenvalue decomposition. This gives us the eigenvalue vector \* of length m. As above,
we can compute the amount of explained variance for each of the m dimensions. In addition,
in order to evaluate the amount of “improvement” of NLPCA over PCA we can compute the
eigenvalue ratio, e.g. for the first dimension we have Aj/\;. This gives us a measure for the
violations of equidistance and linearity in our original data.
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Regarding the loadings, in standard PCA they are normed to ||w||* = 1. In order to make the
loadings w* from NLPCA comparable to standard PCA, they need to be normalized the same
way. The princals() function performs all these computations internally and returns the p
eigenvalues based on the R*, the amount of variance explained for each of the p dimensions,
and the standardized loadings.

Through the level argument the user can specify the scale levels of the variables ("ordinal"
as default. If all variables are set to "numerical", PRINCALS mimics standard PCA. In
terms of plotting possibilities, a generic plot function allows for a loadings plot (default), a
scree plot, transformation plots, and a biplot by specifying the plot.type argument accord-
ingly.

Now we show an ordinal PCA example on the ABC dataset which reproduces the analysis in
Ferrari and A. (2012). ABC is a ficticious company which launched a customer satisfaction
survey. In this analysis we use six items, each of them on a 5-point Likert scale, covering
certain aspects of customer satisfaction: equipment, sales support, technical support, training,
purchase, and pricing.

First, we start with a full-dimensional PRINCALS solution and examine the scree plot.

ABC6 <- ABC[, 6:11]
fitfull <- princals(ABC6, ndim = 6)
fitfull

## Call: princals(data = ABC6, ndim = 6)

##

## Loss: 0.000667735

## Number of iteratiomns: 19

##

## Eigenvalues:

## Comp.l1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
## 2.31083 1.00248 0.76242 0.73749 0.67682 0.50996

summary (fitfull)

##

## Importance of Components:

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
## Explained Variance (%) 38.5138 16.7081 12.7070 12.2915 11.2804  8.4993
## Cumulative Variance (%) 38.5138 55.2218 67.9288 80.2203 91.5007 100.0000

The scree plot is given in in the left panel of Figure ?7.

Second, we fit a two-dimensional ordinal solution. The loadings plot is given in Figure 1 (right
panel).

fit2d <- princals(ABC6, ndim = 2)
fit2ad

## Call: princals(data = ABC6, ndim = 2)
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Figure 1: Left panel: Scree plot for full-dimensional PRINCALS. Right panel: Loadings plot
for two-dimensional solution.

##

## Loss: 0.0005475663

## Number of iterations: 38
#H#

## Eigenvalues:

## Comp.1 Comp.2

## 2.94546 0.85430

summary (£it2d)

##

## Importance of Components:

## Comp.1 Comp.2
## Explained Variance (%) 49.0909 14.2383
## Cumulative Variance (%) 49.0909 63.3293

We see that we explain around 63% of the variance.

op <- par(mfrow = c(1,2))

plot (fitfull, plot.type = "screeplot")
plot (fit2d)

par (op)

Now we fit a one-dimensional ordinal PCA.



12 Gifiin R

fitld <- princals(ABC6, ndim = 1)
fitld

## Call: princals(data = ABC6, ndim = 1)
##

## Loss: 0.0004027617

## Number of iterations: 9

##

## Eigenvalues:

## Comp.1

## 2.98415

summary (£fit1d)

##

## Importance of Components:

## Comp.1
## Explained Variance (%) 49.7359
## Cumulative Variance (%) 49.7359

Let us compare it with the outcome of a standard PCA solution using princomp() and
compute the ratio of the first eigenvalues.

ABC6m <- sapply(ABC6, function(x) as.numeric(levels(x))[x])
fitpc <- princomp (ABC6m)
fitpc

## Call:

## princomp(x = ABC6m)

##

## Standard deviations:

#i# Comp.1 Comp. 2 Comp. 3 Comp.4 Comp.5 Comp.6
## 1.6732946 0.9832548 0.8268262 0.7708195 0.6209486 0.5968660
##

## 6 variables and 208 observations.

fitld$eigenvalues/(fitpc$sdev™2) [1] ## etgenvalue ratio NLPCA/PCA

##  Comp.1
## 1.065801

The eigenvalue ratio of suggests 1.07 a slight improvement of NLPCA over standard PCA.
This implies that the response categories are approximately equidistant and the relation-
ship between the variables is not far from linear. If we want to mimic standard PCA with
PRINCALS, we declare all the variables as numeric.
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fitldm <- princals(ABC6, ndim = 1, level = "numerical")
fitldm

## Call: princals(data = ABC6, ndim = 1, level = "numerical")
##

## Loss: 0.0004178631

## Number of iterations: 6

##

## Eigenvalues:

## Comp.1

## 2.87104

fitldm$eigenvalues/(fitpc$sdev™2) [1]

##  Comp.1
## 1.025404

The size of the eigenvalue ratio decreased since we are essentially doing the same thing.
Finally, we can also abandon the order assumption in the response categories and treat all
variables as nominal. This is the least restrictive of our one-dimensional PRINCALS models.

fitldc <- princals(ABC6, ndim = 1, level = "nominal")
fitldc

## Call: princals(data = ABC6, ndim = 1, level = "nominal")
##

## Loss: 0.0004026197

## Number of iterations: 11

#t

## Eigenvalues:

## Comp.1

## 2.98521

We see that the nominal PCA leads pretty much to the same fit as the ordinal version which
suggests that the ordinal scale level for the variables holds.

5. Discussion

In this paper theoretical foundations of the methodology used in the homals package are elabo-
rated and package application and visualization issues are presented. Basically, homals covers
the techniques described in Gifi (1990): Homogeneity analysis, NLCCA, predictive models,
and NLPCA. It can handle missing data and the scale level of the variables can be taken into
account. The package offers a broad variety of real-life datasets and furthermore provides nu-
merous methods of visualization, either in a two-dimensional or in a three-dimensional way.
Future enhancements will be to replace indicator matrices by more general B-spline bases
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and to incorporate weights for observations. To conclude, homals provides flexible, easy-to-
use routines which allow researchers from different areas to compute, interpret, and visualize
methods belonging to the Gifi family.
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