
Web Maps

Barry Rowlingson

August 14, 2009

Javascript web mapping

There is great demand these days for maps on web pages. Providers such as
Google and Yahoo! have mapping systems that allow users to add data onto
their base maps for web pages.

However there are also mapping frameworks written in Javascript that run
within web browsers. They can then fetch map data locally or over the web for
display. All that’s necessary to make the map public is to put it on a public
web server. This provides a very low bar to publishing spatial data.

The big map data companies restrict use of their map data. As an alter-
native, the OpenStreetMap project has been sourcing freely usable data and
encouraging the collection and creation of data by anyone with a GPS or GPS-
enabled phone. A very high quality map database with a wide coverage has
been created this way. This data can be combined with open source javascript
mapping tools to create a freely usable and re-usable map system.

Spatial data in R

The sp package contains functions for handling spatial data along the lines of
the Open Geospatial Consortium Simple Features specification. This covers
point, line, and area features (including holes and islands). Each feature can
have a database-style record of attributes. Spatial data can also have a coordi-
nate reference system to enable projections and conversions between reference
systems.

This package will make use of the sp package objects for spatial data.

State data

For this section we will create a simple map from the USA state locations and
data provided with R. First, we need the webmaps package – this also loads the
sp package:

> require(webmaps)

1

Then we make a SpatialPointsDataFrame from the state data:

> state=data.frame(state.x77)
> state$Name = rownames(state)

> coordinates(state) = cbind(state.center$x, state.center$y)

And now we can make a map

> osmMap(layer(state ,"States"), t i t l e ="State Data",

+ outputDir="./states1")

[1] "./states1/index.html"

Now open that file in your web browser and you should see a map. You can
click on the points to get the state data:

This map is produced using the OpenLayers mapping toolkit and Open-
StreetMap base layer. At upper-left are the zoom and navigation controls (al-
though you can also drag and use a mouse wheel). Upper-right is a control to
let you switch layers on and off. Bottom-left is a scale bar, and bottom right are
your mouse coordinates and a bookmarkable ‘permalink’ - this lets you zoom
and shift your map, and then get a web link you can use to preserve the state
of the map.

The points on the map are drawn using the default OpenLayers colours.
You can change the appearance by passing an lstyle object using the style
parameter:

2

> osmMap(layer(state ,"States",

+ lstyle(fillColor="blue",

+ strokeColor="black")

+),

+ t i t l e ="State Data",

+ outputDir="./states2")

[1] "./states2/index.html"

OpenLayers has a simple ‘attribute replacement’ system for styling features
from attributes. If we want to set the point radius according to the murder rate,
we just set the point radius style attribute like this:

> osmMap(layer(state ,"States",

+ lstyle(fillColor="blue",

+ strokeColor="black",

+ pointRadius="${Murder}")
+),

+ t i t l e ="State Data",

+ outputDir="./states3")

[1] "./states3/index.html"

3

Note that you can’t set a style value to an arithmetic expression of an at-
tribute. If you want the radius to show the population you’ll have to create an
appropriately scaled population value first (I chose the murder rate here as an
example since its values are good for pixel sizes). Another way of doing this is to
edit the generated Javascript - see the OpenLayers docs for more information.

Raster Overlays

The layer() function creates a layer for vector data - points, lines, or polygons.
Gridded raster data can be added as a map layer using the ilayer() function.

This takes a list with x,y and z values. The z value is a matrix with values
from 0 to 1.

> require(splancs)
> pts = cbind(rnorm(100,0.5,.5),rnorm(100 ,53.5,.5))

> pts = rbind(pts ,cbind(rnorm(100,-1,.5),rnorm(100,52,.5)))

> k = kernel2d(pts ,sbox(pts),0.4 ,100 ,100)

Xrange is -2.5445 2.148067

Yrange is 50.57569 55.03465

Doing quartic kernel

> k$z = k$z / max(k$z)
> kl = ilayer(k,name="density",colorRamp(c("blue","red")))
> pts = data.frame(pts)

4

> coordinates(pts) ← cbind(pts[,1],pts[,2])

> ptsl = layer(pts ,"Points",lstyle(fillColor="white",

+ strokeColor="black",

+ pointRadius =4))

> osmMap(kl,ptsl , t i t l e ="Kernel Smoothing",outputDir="./smooth")

[1] "./smooth/index.html"

John Snow cholera data

This is a famous data set from the 1854 map of cholera cases in London. The
data used here come from the snow_files.zip downloaded from the web site
for the book Applied Spatial Data Analysis with R by Bivand, Pebesma, and
Gómez-Rubio, http://asdar-book.org/.

The data come as four shapefile sets - the building outlines, death locations,
the location of the suspected Broad Street pump, and the locations of other
water pumps in the area. We can read these in using readOGR from rgdal, and
approximate the plot on page 107:

> require(rgdal)

> buildings = readOGR("./JohnSnow","buildings")

OGR data source with driver: ESRI Shapefile

Source: "./JohnSnow", layer: "buildings"

with 158 rows and 2 columns

Feature type: wkbPolygon with 2 dimensions

5

> deaths = readOGR("./JohnSnow","deaths",verbose=FALSE)
> pumps = readOGR("./JohnSnow","nb_pump",verbose=FALSE)
> brdst = readOGR("./JohnSnow","b_pump",verbose=FALSE)
> plot(buildings)
> points(deaths ,cex= sqrt(deaths@data$Num_Cases/2),
+ col ="#000000",bg="#808080",pch =21)
> points(pumps ,pch=8,lwd=3,cex=1)

> points(brdst ,pch=4,lwd=8,cex=1.5)

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●●

●

●●
●
●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●●

●

●●

●

●●
●

●

●
●

●

But this lacks context - we want to see these points on a modern map of
London. The first thing we need to do is project the data to the WGS84
coordinate system used by web mapping packages.

Although the shapefiles have coordinate systems set in their .prj files, these
seem to be slightly wrong, so the first thing we do is give them the correct
projection string from the EPSG database distributed with the sp package:

> bng = CRS("+init=epsg :27700") # British Grid

> wgs84 = CRS("+init=epsg :4326") # WGS84

> proj4string(buildings) = bng

> proj4string(deaths) = bng

> proj4string(pumps) = bng

> proj4string(brdst) = bng

> buildings = spTransform(buildings , wgs84)

> deaths = spTransform(deaths ,wgs84)

6

> pumps = spTransform(pumps ,wgs84)

> brdst = spTransform(brdst ,wgs84)

At this point the datasets are all correctly converted to WGS84, so we can
create a web map with our data layers on:

> osmMap(layer(buildings ,"Buildings",

+ lstyle(fillOpacity =0.2,fillColor="black")

+),

+ layer(deaths ,"Deaths",

+ lstyle(fillColor="black",fillOpacity =1.0)

+),

+ layer(brdst ,"BroadStPump",

+ lstyle(fillColor="red",fillOpacity =1.0)

+),

+ layer(pumps ,"Pumps",

+ lstyle(fillColor="blue",fillOpacity =1.0)

+),

+ outputDir="./SnowMap1")

[1] "./SnowMap1/index.html"

Now we’ll use an external graphic scaled according to the number of cases.
We’ll create a new data column to get roughly the same scaling as when using
the cex= parameter in the R example:

> deaths$size = 6 * sqrt(deaths$Num_Cases/2)
> osmMap(layer(buildings ,"Buildings",

7

+ lstyle(fillOpacity =0.2,fillColor="black")),

+ layer(deaths ,"Deaths",

+ lstyle(externalGraphic="skull.png",

+ pointRadius="${size}",
+ fillOpacity =1.0)),

+ layer(brdst ,"BroadStPump",

+ lstyle(fillColor="red",fillOpacity =1.0)),

+ layer(pumps ,"Pumps",

+ lstyle(fillColor="blue",fillOpacity =1.0)),

+ outputDir="./SnowMap2")

[1] "./SnowMap2/index.html"

Of course this map does not hold a candle to John Snow’s original, but serves
to illustrate some of the capabilities of OpenLayers.

8

