
TikZ Device
LATEX Graphics for R

-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

x
p
(x

)

p(x) = 1
√

2π

e−
x

2

2

∫
2

−2

p(x)dx ≈ 0.954

The tikzDevice Package

http://r-forge.r-project.org/projects/tikzdevice

Charlie Sharpsteen and Cameron Bracken

Version GitHub Dev-Beta November, 2011

Contents

1 Introduction 1

2 Acknowledgements 1

I Usage and Examples 2

3 Loading the Package 2

3.1 R Options That Affect Package Behavior . 3

4 The tikz() Function 6

4.1 Description . 6
4.2 Usage . 6
4.3 Font Size Calculations . 7
4.4 UTF-8 Output . 8
4.5 Examples . 8

4.5.1 Default Mode . 8
4.5.2 bareBones Mode . 10
4.5.3 standAlone Mode . 12
4.5.4 console output Mode . 13
4.5.5 Getting around special LATEX characters . 13
4.5.6 Using the Global Options: An XeLATEX example . 13
4.5.7 Annotating Graphics with TikZ Commands . 16
4.5.8 tikz() vs. pdf() for plotmath symbols and Unicode characters 18

5 The getLatexCharMetrics() and getLatexStrWidth() Functions 19

5.1 Description . 19
5.2 Usage . 19
5.3 Examples . 19

II Installation Guide 21

6 Obtaining a LATEX Distribution 21

6.1 Windows . 21
6.2 UNIX/Linux . 21
6.3 Mac OS X . 21

i

http://r-forge.r-project.org/projects/tikzdevice

7 Installing TikZ and Other Packages 22

7.1 Using a LATEX Package Manager . 22
7.2 Manual Installation . 22

III Package Internals 24

8 Introduction and Background 24

9 Anatomy of an R Graphics Device 25

10 Calculating Font Metrics 25

10.1 Character Metrics . 26
10.2 Calling R Functions from C Functions . 27
10.3 Implementing a System Call to LATEX . 29

11 On the Importance of Font and Style Consistency in Reports 33

12 The pgfSweave Package and Automatic Report Generation 33

ii

Caveat Utilitor

This is a friendly reminder that the tikzDevice package is currently considered by its designers to be a
beta work. The package will remain in Beta until the 1.0 release to allow the authors to consider de-
sign decisions underlying the package. This means the authors are currently reserving the right to

alter the package interface in ways that may break existing code that uses the package. Two
open issues that may necessitate such a change are:

• Handling of characters encoded using UTF8
• Compatibility with multiple TEX dialects such as ConTEXt or plain TEX.

The stability of the package interface is a priority to us but currently we are allowing other concerns to
outrank it. When we commit to maintaining a given package structure, the beta flag will be removed and
consistency of interface will become a top priority.

Thanks for giving our package a try!
–The tikzDevice Team

1 Introduction

The tikzDevice package allows for R graphics output in a native LATEX format. That is, the tikz() func-
tion produces plain-text files that can be interpreted using TikZ, a package for LATEX. These files can be
directly included in LATEX documents by way of the \input{} statement. Allowing LATEX to handle both
typesetting and figure composition bestows the resulting document with a clean, unified look as there are
no discontinuities in the size and selection of fonts used in the text and those used in the figures.

This document is divided into three parts. The first part describes the functions that the package makes
available to the R user and provides examples of their capabilities. Besides the R environment, use of the
TikZ device device requires the user to have a working LATEX compiler along with an installed version of the
TikZ package– version 2.00 or greater. The second part of this documentation offers suggestions on how to
get these tools working properly.

The third part of the documentation is intended for those who are curious as to the details of how this
package has been implemented. It attempts to explain how the TikZ package does the things that it does
and why it chooses to do them that way. The authors have attempted to write this part of the documentation
in a way that is accessible to users as well as developers. This has been done in the hope that this project
may serve as a case study in creating an R graphics device. This part of the documentation may also
help those considering undertaking the transition from casual package-building to full-on hacking of the R

internals.

2 Acknowledgements

This package would not have been possible without the hard work and ingenuity of many individuals. This
package straddles the divide between two great open source communities– the R programming language and
the TEX typesetting system. It is our hope that this work will make it easier to leverage the strengths of
both systems.

First off, we would like to thank the R Core Team for creating such a wonderful, open and flexible program-
ming environment. Compared to other languages we have used, creating packages and extensions for R has
always been a liberating experience.

1

This package started as a fork of the PicTEX device, created by Valerio Aimale. Without access to such a
concise, compact example of implementing a R graphics device we likely would have abandoned the project
in it’s infancy. We would also like to thank Paul Murrel for all of his work on the R graphics system and
especially for his research and documentation concerning the differences between the font systems used by
TEX and R.

This package also owes it’s existence to Friedrich Leisch’s work on the Sweave system and Roger D. Peng’s
cacheSweave extension. These two tools got us interested in the concept of Literate Programming and devel-
opment of this package was driven by our desire to achieve a more seamless union between our reports and
our code.

The performance of this package is also enhanced by the database capabilities provided by Roger D. Peng’s
filehash package. Without this package, the approach to calculating font metrics taken by the tikzDevice

would be infeasible.

Last, but certainly not least, we would like to thank Till Tantau, Mark Wibrow and the rest of the PGF/TikZ
team for creating the LATEX graphics package that makes the output of this device meaningful. We would
also like to express deep appreciation for the excellent documentation that has been created for the TikZ
system.

As always, there are many more who have contributed in ways too numerous to list.

Thank you!
–The tikzDevice Team

Part I

Usage and Examples

3 Loading the Package

The functions in the tikzDevice package are made accessible in the R environment by using either the
library() or require() functions like so:

require(tikzDevice)

Upon loading, the package will search for a usable LATEX compiler. Access to LATEX is essential for the device
to produce correct output as the compiler is queried for font metrics several times during device output. For
more information on why communication between the device and LATEX is necessary, see Part III. If the
search for a compiler is successful the package startup message should look similar to the following:

filehash: Simple key-value database (2.0-1 2008-12-19)

tikzDevice: A Device for R Graphics Output in PGF/TikZ Format (v0.3.5)

Checking for a LaTeX compiler...

pdfTeX 3.1415926-1.40.9-2.2 (Web2C 7.5.7)

kpathsea version 3.5.7

...

A working LaTeX compiler was found in:

The R environment variable R_LATEXCMD

2

Global option tikzLatex set to:

/usr/texbin/latex

If a working LATEX compiler cannot be found, the tikzDevice package will fail to load and a warning message
will be displayed:

An appropriate LaTeX compiler could not be found.

Access to LaTeX is currently required in order for the

TikZ device to produce output.

The following places were tested for a valid LaTeX compiler:

A pre-existing value of the global option tikzLatex

The R environment variable R_LATEXCMD

The R environment variable R_PDFLATEXCMD

The global option latexcmd

The PATH using the command latex

The PATH using the command pdflatex

...

Error : .onLoad failed in loadNamespace for tikzDevice

Error: package/namespace load failed for tikzDevice

In this case, tikzDevice has done it’s very best to locate a working compiler and came up empty. If you
have a working LATEX compiler, the next section describes how to inform the tikzDevice package of its
location. For suggestions on how to obtain a LATEX compiler, see Part II.

3.1 R Options That Affect Package Behavior

The tikzDevice package is influenced by a number of options that may be set locally in your R scripts or in
the R console or globally in a .Rprofile file. All of the options can be set by using options(<option> = <value>).
These options allow for the use of custom documentclass declarations, LATEX packages, and typesetting engines
(e.g. XeLaTeX). The defaults , if are any for a given option, are shown below the description. The global
options are:

tikzDefaultEngine Specifies which typesetting engine functions in the tikzDevice package will prefer. Current
possible values are pdfTEX or X ETEX which will respectively trigger the use of the pdfLATEX and
X ELATEX compilers.

options(tikzDefaultEngine = ’pdftex ’)

Or..

options(tikzDefaultEngine = ’xetex’)

Choosing the TEX engine

tikzLatex and tikzXelatex Specifies the location of the LATEX and X ELATEX compilers to be used by tikzDe-

vice. Setting a default for this this option may help the package locate a missing compiler:

3

options(tikzLatex = ’/path/to/latex/compiler ’)

options(tikzXelatex = ’/path/to/xelatex/compiler ’)

Setting default compilers in .Rprofile

tikzMetricsDictionary When using the graphics device provided by tikzDevice, you may notice that R ap-
pears to “lag" or “hang" when commands such as plot() are executed. This is because the device must
query the LATEX compiler for string widths and font metrics. For a normal plot, this may happen
dozens or hundreds of times- hence R becomes unresponsive for a while. The good news is that the
tikz() code is designed to cache the results of these computations so they need only be performed once
for each string or character. By default, these values are stored in a temporary cache file which is
deleted when R is shut down. A location for a permanent cache file may be specified:

options(tikzMetricsDictionary = ’/path/to/dictionary/location ’)

Setting a location in .Rprofile for a permanent metrics dictionary

tikzDocumentDeclaration A string. The documentclass declaration when standAlone == TRUE as well as when
font metrics are calculated

options(tikzDocumentDeclaration = "\\ documentclass{article}")

Default

tikzFooter A character vector. The footer to be used only when standAlone==TRUE

options(tikzFooter = c("\\end{document}"))

Default

tikzLatexPackages and tikzXelatexPackages Character vectors. These are the packages which are included
when using the standAlone option as well as when font metrics are calculated. If you use additional
packages that affect fonts, such as mathpazo which provides a Palatino-style font, these packages should
be added to this list.

options(tikzLatexPackages = c(

"\\ usepackage{tikz}",

"\\ usepackage[active ,tightpage]{ preview}",

"\\ PreviewEnvironment{pgfpicture}",

"\\ setlength \\ PreviewBorder {0pt}")

)

Default

4

options(tikzLatexPackages = c(

getOption("tikzLatexPackages"),

"\\ usepackage{mathpazo}"

))

Adding a package that affects fonts

tikzMetricPackages and tikzUnicodeMetricPackages Character vectors. These are the extra packages which are
additionally loaded when doing font metric calculations. As you see below, the font encoding is set to
Type 1. This is very important so that character codes of LATEX and R match up. The Unicode metric
packages are used when a X ETEX engine is in use.

options(tikzMetricPackages = c(

"\\ usepackage[utf8]{ inputenc}",

"\\ usepackage[T1]{ fontenc}",

"\\ usetikzlibrary{calc}")

)

Default

tikzSanitizeCharacters A character vector of special latex characters to replace. These values should corre-
spond to the replacement values from the tikzReplacementCharacters option.

options(tikzSanitizeCharacters = c(’%’,’$’,’}’,’{’,’^’))

Default

tikzReplacementCharacters A character vector of replacements for special latex characters. These values should
correspond to the values from the tikzSanitizeCharacters option.

options(tikzReplacementCharacters = c(’\\%’,’\\$’,’\\’,’\\’,’\\^’))

Default

tikzRasterResolution When tikz is requested to add a raster to a graphic, the raster is written to a PNG file
which is then included into the LaTeX code. This option controls the resolution (dpi) at which the
PNG files are created.

options(tikzRasterResolution = 300)

Default

tikzPdftexWarnUTF A TRUE/FALSE value that controls whether warnings are printed if Unicode characters are
sent to a device using the pdfTEX engine.

For convenience the function setTikzDefaults() is provided which sets all the global options back to their
original values.

5

The proper placement of a .Rprofile file is explained in ?Startup. For the details of why calling the LATEX
compiler is necessary, see Part III.

A Word of Caution About Setting Options.

A lot of power is given to you through these global options, and with great power comes great responsi-
bility. For example, if you do not include the TikZ package in the tikzLatexPackages option then all of the
string metric calculations will fail. Or if you use a different font when compiling than you used for cal-
culating metrics, strings may be placed incorrectly. There are innumerable ways for packages to clash in
LATEX so be aware.

4 The tikz() Function

4.1 Description

The tikz() function provides most of the functionality of the tikzDevice package. This function is respon-
sible for creating new R graphics devices that translate the output of graphics functions to the TikZ format.
The device supports many levels of output that range from stand-alone LATEX documents that may be com-
piled directly to code chunks that must be incorporated into existing LATEX documents using the \include{}

function.

4.2 Usage

The tikz() function opens a new graphics device and may be called with the following arguments:

tikz(file = "Rplots.tex", width = 7, height = 7,

bg="transparent", fg="black", pointsize = 10, standAlone = FALSE,

bareBones = FALSE, console = FALSE, sanitize = FALSE,

engine = getOption("tikzDefaultEngine),

documentDeclaration = getOption("tikzDocumentDeclaration"),

packages = getOption("tikzLatexPackages"),

footer = getOption("tikzFooter"))

file A character string indicating the desired path to the output file. It is recommended, but not required,
that the filename end in .tex.

width The width of the output figure, in inches.

height The height of the output figure, in inches.

bg The starting background color for the plot.

fg The starting foreground color for the plot.

pointsize Base pointsize used in the LaTeX document. This option is only referenced if a valid pointsize
cannot be extracted from the value of getOption("tikzDocumentDeclaration"). See Subsection 4.3 for more
details.

standAlone A logical value indicating whether the resulting file should be suitable for direct processing by
LATEX.

bareBones A logical value indicating whether the resulting TikZ code produced without being placed within
a LATEX tikzpicture environment.

6

console Should the output of tikz be directed to the R console (default FALSE). This is useful for dumping
tikz output directly into a LATEX document via sink. If TRUE, the file argument is ignored. Setting file=”

is equivalent to setting console=TRUE.

sanitize Should special latex characters be replaced (Default FALSE). See the section “Options That Affect
Package Behavior” for which characters are replaced.

engine A string specifying which TeX engine to use. Possible values are ’pdftex’ and ’xetex’.

documentDeclaration See Section 3.1, “Options That Affect Package Behavior.”

packages See Section 3.1, “Options That Affect Package Behavior.”

footer See Section 3.1, “Options That Affect Package Behavior.”

The first five options should be familiar to anyone who has used the default graphics devices shipped with R.
The options file, width, height, bg and fg represent the standard graphics parameters currently implemented
by tikzDevice. The last two options, standAlone and bareBones, are specific to the tikz() graphics device and
affect the structure the output file. Using these options tikz() supports three modes of output:

• Graphics production as complete LATEX files suitable for compilation.

• Graphics production as complete figures suitable for inclusion in LATEX files.

• Graphics production as raw figure code suitable for inclusion in an enclosing tikzpicture environment
in a LATEX file.

4.3 Font Size Calculations

The overarching goal of the ‘tikzDevice’ is to provide seamless integration between text in R graphics and
the text of LaTeX documents that contain those graphics. In order to achieve this integration the device
must translate font sizes specified in R to corresponding font sizes in LaTeX. The issue is that font sizes in
LaTeX are controlled by a “base font size” that is specified at the beginning of the document- typically 10pt.
There is no easy way in LaTeX to change the font size to a new numerical value, such as 16pt for a plot
title. Fortunately, the TikZ graphics system allows text to be resized using a scaling factor. The tikzDevice

calculates a scaling factor used to approximate other font sizes using the following three inputs:

• The “base font size” specified when the graphics device is created.

• The “character expansion factor” parameter, specified using the ‘cex’ argument to functions such as
described in the documentation of the R function par().

• The “font size” parameter, specified using the ‘ps’ argument to functions such as par() or the ‘fontsize’
argument to functions such as gpar().

The calculation used is:

Scaling Factor = cex ·

ps

base font size

The tricky bit is the specification of the “base font size”. By default the tikzDevice will attempt to determine
this parameter by scanning the value of options("tikzDocumentDeclaration") using the regular expression
\d+[pt]. With the default header:

\documentclass[10pt]article

This regular expression will return 10 as the base pointsize to be used by the device. If the regular expression
fails to produce a match, the value of the pointsize argument to the tikz() function will be used.

7

4.4 UTF-8 Output

Version 0.6.0 introduced support for (multibyte) Unicode characters in the text of graphics. There are a few
important implications/limitations of this feature:

System Requirements: A working version of X ELATEX along with the packages fontspec and xunicode are
required for direct processing of Unicode input. If tikzDevice cannot find X ELATEX then Unicode support
cannot be guaranteed.

Encoding: tikzDevice will try its best to convert characters from other encodings but do not count on it
converting things correctly, best to do the conversion yourself beforehand to avoid unexpected output.

Fonts: Having a Unicode character actually show up in your LATEX document relies on the font you use
having the glyph available. We leave it up to the user to know for themselves what is available.
Otherwise you will likely just get no output in place of where the character should be.

plotmath: There is specifically no support for input of plotmath characters as unicode since the user can
simply input LATEX math directly. We strongly encourage the use of LATEX math over plotmath for style
and consistency’s sake. A consequence of this is that most of the R examples and demos of plotmath
won’t work without significant manipulation (your milage may vary but you may get anything from
errors to warnings to documents that mysteriously won’t compile). That is not to say that the output
could not be duplicated with tikzDevice but the examples will not work out of the box.

Compiling: A graphic that contains UTF-8 characters should be compiled with X ELATEX (or possibly
LuaLATEX) with the xunicode and fontspec packages enabled.

ASCII only: Everything should be exactly the same as previous versions if only ASCII (single byte) char-
acters are used (i.e. character codes less than 132).

4.5 Examples

4.5.1 Default Mode

The most common use of the tikz() function is to produce a plot that will be included in another LATEX
document, such as a report. Running the following example in R will produce a very simple graphic using
the plot() function.

require(tikzDevice)

tikz(’simpleEx.tex ’,width =3.5, height =3.5)

plot(1,main=’Hello World!’)

dev.off()

A simple LATEX document is then required to display the output of the basic tikz() command. This document
must include the TikZ as one of the packages that it loads. The TikZ package provides several optional
libraries that provide additional functionality, however none of these libraries are currently required to use
the output of tikz(). Inside the LATEX document, the contents of the file simpleEx.tex are imported using the
\include{} command.

8

\documentclass{article}

% All LaTeX documents including

% tikz() output must use this

% package!

\usepackage{tikz}

\begin{document}

\begin{figure }[!h]

\centering

% The output from tikz()

% is imported here.

\input{simpleEx.tex}

\caption{Simple Example}

\end{figure}

\end{document}

Example LATEX Document

0.6 0.8 1.0 1.2 1.4

0
.6

0
.8

1
.0

1
.2

1
.4

Hello World!

Index

1

Figure 1: Example of simple tikz() usage.

One of the most exciting aspects of the tikz() function is that it allows the inclusion of arbitrary LATEX
code in plotting commands. An important issue to note is that many LATEX commands pare prefixed by the
backaslash, \, character. This character has a special meaning as an escape charcter in many computing
applications, including R. Therefore, it is necessary to place two backslashes, \\, in the input to R commands
in order to cause one to appear in the output. The next example demonstrates how to use LATEX commands
in plot annotation.

9

require(tikzDevice)

tikz(’latexEx.tex ’,

width =3.5, height =3.5)

x <- rnorm (10)

y <- x + rnorm(5,sd =0.25)

model <- lm(y ~ x)

rsq <- summary(model)$r.squared

rsq <- signif(rsq ,4)

plot(x,y,main=’Hello \\ LaTeX!’)

abline(model ,col=’red ’)

mtext(paste(" Linear model: $R^{2}=" ,

rsq ,"$"),line =0.5)

legend(’bottomright ’, legend =

paste("$y = ",

round(coef(model)[2],3), ’x +’,

round(coef(model)[1],3), ’$’,

sep=’’), bty= ’n’)

dev.off()

-1 0 1 2

-1
0

1
2

3

Hello LATEX!

x

y

Linear model: R2 = 0.9796

y = 1.002x + 0.165

Figure 2: A more complicated example of tikz() usage incorporating natively rendered LATEX commands.

4.5.2 bareBones Mode

barBones output is designed to facilitate inclusion of code generated by tikz() into a larger TikZ graphic.
Normally tikz() packages the commands it produces as a self-contained figure. This is done by placing
the \begin{tikzpicture} and \end{tikzpicture} commands at the beginning and end of the output file. When
bareBones is invoked, the tikzpicture environment is omitted which allows the output to be embedded inside
another tikzpicture of the users own construction.

require(tikzDevice)

require(maps)

tikz(’westCoast.tex ’, bareBones=TRUE)

map(’state ’, regions=c(’california ’, ’oregon ’, ’washington ’),

lwd=4, col=’grey40 ’)

eurekaLon <- grconvertX (-124.161 , to=’device ’)

eurekaLat <- grconvertY (40.786 , to=’device ’)

longviewLon <- grconvertX (-122.962 , to=’device ’)

longviewLat <- grconvertY (46.148 , to=’device ’)

coosLon <- grconvertX (-124.237 , to=’device ’)

coosLat <- grconvertY (43.378 , to=’device ’)

sfLon <- grconvertX (-122.419 , to=’device ’)

sfLat <- grconvertY (37.775 , to=’device ’)

tikzAnnotate(paste(’\\ coordinate (humBay) at (’,

eurekaLon , ’,’, eurekaLat , ’);’, sep=’’))

tikzAnnotate(paste(’\\ coordinate (longView) at (’,

longviewLon , ’,’, longviewLat , ’);’, sep=’’))

10

tikzAnnotate(paste(’\\ coordinate (coosBay) at (’,

coosLon , ’,’, coosLat , ’);’, sep=’’))

tikzAnnotate(paste(’\\ coordinate (sfBay) at (’,

sfLon , ’,’, sfLat , ’);’, sep=’’))

dev.off()

The \include{} command may now be used to import the device output into another tikzpicture. The included
code must be wrapped in a scope environment that contains the options x=1pt and y=1pt. This informs TikZ
of the units being used in the coordinates of the plot output. The options xshift and yshift may also be
applied to the scope in order to position the plot. The following code demonstrates how to embed bareBones

output in a tikzpicture:

\begin{tikzpicture}

% Include bareBones output inside a scope with x and y units set to 1pt

\begin{scope}[x=1pt,y=1pt]

\input{figs/westCoast}

\end{scope}

% Label ports using coordinates placed into the barBones output by the

% tikzAnnotate function.

\foreach \name/\port in {

Longview/longView ,

Coos Bay/coosBay ,

Humboldt Bay/humBay ,

Oakland/sfBay%

} {

\node[circle , draw , ultra thick , fill=green !60! brown!40,

outer sep=6pt,minimum size =12pt,

pin={[

draw , ultra thick ,

rounded corners ,

pin edge={black , ultra thick , <-, >=stealth}

] 180 : \name}] at (\port) {};

}

\end{tikzpicture}

Example of a TikZ environment including bareBones output

11

Longview

Coos Bay

Humboldt Bay

Oakland

Figure 3: A TikZ drawing with embedded output from tikz(bareBones=TRUE).

4.5.3 standAlone Mode

When the standAlone option is passed to tikz(), the resulting .tex file will be a complete LATEX document
designed to be compiled on its own. This means that in addition to \begin{tikzpicture} and \end{tikzpicture}

the file will also contain \begin{document}, \end{document} and a LATEX preamble. The preview package is also
used in files produced by standAlone and is used to crop the pages in the resulting document to the bounding
boxes of the figures that it contains. Stand-alone output may be produced in the following manner:

12

require(tikzDevice)

tikz(’standAloneExample.tex ’,standAlone=T)

plot(sin ,-pi ,2*pi,main="A Stand Alone TikZ Plot")

dev.off()

Note that files produced using the standAlone option should not be included in LATEX documents using the
\input{} command! Use \includegraphics{} or load the pdfpages package and use \includepdf{}.

4.5.4 console output Mode

Version 0.5.0 of tikzDevice introduced the console option. Instead of sending its output to a file tikz will
send it output to stdout. This kind of output can be redirected to a file with sink() or spit out directly into
a TEX document from a Sweave file so that the TEX file is self contained.

\documentclass{article}

\usepackage{tikz}

\usepackage[nogin]{ Sweave}

\begin{document}

\begin{figure }[ht]

\centering

<<inline ,echo=F,results=tex >>=

require(tikzDevice)

tikz(console=T,width=5,height =5)

x <- rnorm (100)

plot(x)

dummy <- dev.off()

@

\caption{caption}

\label{fig:inline}

\end{figure}

\end{document}

consoleExample.Rnw

4.5.5 Getting around special LATEX characters

4.5.6 Using the Global Options: An XeLATEX example

It is also possible to use other typesetting engines like XeLATEX by using the global options provided by
tikzDevice. The following example was inspired by Dario Taraborelli and his article The Beauty of La-
TeX.

13

http://nitens.org/taraborelli/latex
http://nitens.org/taraborelli/latex

#Set options for using XeLaTeX

options(tikzLatex = ’xelatex ’)

options(tikzDocumentDeclaration = ’\\ documentclass{article}’)

The preview package must be loaded first with the xetex driver option

options(tikzLatexPackages = c(

"\\ usepackage[active ,tightpage ,xetex]{ preview}"

,"\\ PreviewEnvironment{pgfpicture}"

,"\\ setlength \\ PreviewBorder {0pt}"

,"\\ usepackage{fontspec}"

,"\\ usepackage[colorlinks , breaklinks , pdftitle ={The Beauty of LaTeX},"

,"pdfauthor ={ Taraborelli , Dario }]{ hyperref}"

,"\\ usepackage{tikz}"

,"\\ usepackage{color}"

,"\\ definecolor{Gray}{rgb }{.7 ,.7 ,.7}"

,"\\ definecolor{lightblue }{rgb }{.2 ,.5 ,1}"

,"\\ definecolor{myred}{rgb}{1,0,0}"

,"\\ newcommand {\\red }[1]{\\ color{myred} #1}"

,"\\ newcommand {\\ reda }[1]{\\ color{myred }\\ fontspec[Variant =2]{ Zapfino }#1}"

,"\\ newcommand {\\ redb }[1]{\\ color{myred }\\ fontspec[Variant =3]{ Zapfino }#1}"

,"\\ newcommand {\\ redc }[1]{\\ color{myred }\\ fontspec[Variant =4]{ Zapfino }#1}"

,"\\ newcommand {\\ redd }[1]{\\ color{myred }\\ fontspec[Variant =5]{ Zapfino }#1}"

,"\\ newcommand {\\ rede }[1]{\\ color{myred }\\ fontspec[Variant =6]{ Zapfino }#1}"

,"\\ newcommand {\\ redf }[1]{\\ color{myred }\\ fontspec[Variant =7]{ Zapfino }#1}"

,"\\ newcommand {\\ redg }[1]{\\ color{myred }\\ fontspec[Variant =8]{ Zapfino }#1}"

,"\\ newcommand {\\lbl }[1]{\\ color{lightblue} #1}"

,"\\ newcommand {\\ lbla }[1]{\\ color{lightblue }\\ fontspec[Variant =2]{ Zapfino }#1}"

,"\\ newcommand {\\ lblb }[1]{\\ color{lightblue }\\ fontspec[Variant =3]{ Zapfino }#1}"

,"\\ newcommand {\\ lblc }[1]{\\ color{lightblue }\\ fontspec[Variant =4]{ Zapfino }#1}"

,"\\ newcommand {\\ lbld }[1]{\\ color{lightblue }\\ fontspec[Variant =5]{ Zapfino }#1}"

,"\\ newcommand {\\ lble }[1]{\\ color{lightblue }\\ fontspec[Variant =6]{ Zapfino }#1}"

,"\\ newcommand {\\ lblf }[1]{\\ color{lightblue }\\ fontspec[Variant =7]{ Zapfino }#1}"

,"\\ newcommand {\\ lblg }[1]{\\ color{lightblue }\\ fontspec[Variant =8]{ Zapfino }#1}"

,"\\ newcommand {\\old }[1]{"

,"\\ fontspec[Ligatures ={Common , Rare},Variant =1,%

Swashes ={ LineInitial , LineFinal }]{ Zapfino}"

,"\\ fontsize {25pt}{30pt}\\ selectfont #1}%"

,"\\ newcommand {\\ smallprint }[1]{\\ fontspec{Hoefler Text }\\ fontsize {10pt}{13pt}"%

,"\\color{Gray }\\ selectfont #1}%\n"

))

#Set the content using custom defined commands

label <- c(

"\\ noindent {\\red d}roo{\\lbl g}"

,"\\ noindent {\\ reda d}roo{\\ lbla g}"

,"\\ noindent {\\ redb d}roo{\\ lblb g}"

,"\\ noindent {\\ redf d}roo{\\ lblf g}\\\\[.3 cm]"

,"\\ noindent {\\ redc d}roo{\\ lblc g}"

,"\\ noindent {\\ redd d}roo{\\ lbld g}"

XeLATEX Example

14

,"\\ noindent {\\ rede d}roo{\\ lble g}"

,"\\ noindent {\\ redg d}roo{\\ lblg g}\\\\[.2 cm]")

#Set the titles using custom defined commands , and hyperlinks

title <- c(

"\\ smallprint{D. Taraborelli (2008) ,

\\href{http://nitens.org/taraborelli/latex}%","{The Beauty of \\LaTeX}}"

,"\\ smallprint {\\\\\\ emph{Some rights reserved }.%

,"\\href{http://creativecommons.org/licenses/by-sa/3.0/}

{\\ textsc{cc-by-sa}}}"

)

#Draw the graphic

lim <- 0:(length(label)+1)

tikz(’xelatexEx.tex ’,standAlone=T,width=5,height =5)

plot(lim ,lim ,cex=0,pch=’.’,xlab = ’Xe\\LaTeX{} Test ’,

ylab=’’, main = title[1], sub = title [2])

for(i in 1: length(label))

text(i,i,label[i])

dev.off()

Compiling the resulting file xelatexEx.tex like so:

xelatex xelatexEx.tex

Compiling with XeLATEX

will produce the output in Figure 4! Please note some of the fonts used in the example may not be available
on your system.

15

!"#$%&%'(&)**+#,-../01 $2)#3)%456#(7#89$:;

!"#$%&'()*+ %&$+$&,$-! ""#$%#&'

! " # $ % & ' () *+ & , &

Figure 4: Result of XeLATEX example

4.5.7 Annotating Graphics with TikZ Commands

The function tikzAnnotate provides the ability to annotate you graphics with TikZ commands. There are a
lot of exciting possibilities with this feature; It basically opens up the door for you to draw anything on your
plot that can be drawn with TikZ. Check out the results in Figure 5.

require(tikzDevice)

Load some additional TikZ libraries

tikz(" annotation.tex",width=4,height=4,

packages = c(getOption(’tikzLatexPackages ’),

"\\ usetikzlibrary{decorations.pathreplacing }",

"\\ usetikzlibrary{positioning }",

"\\ usetikzlibrary{shapes.arrows ,shapes.symbols }")

)

p <- rgamma (300 ,1)

outliers <- which(p > quantile(p ,.75)+1.5*IQR(p))

boxplot(p)

Add named coordinates that other TikZ commands can hook onto

16

tikzCoord(1, min(p[outliers]), ’min outlier ’)

tikzCoord(1, max(p[outliers]), ’max outlier ’)

Use tikzAnnotate to insert arbitrary code , such as drawing a

fancy path between min outlier and max outlier.

tikzAnnotate(c("\\ draw[very thick ,red ,",

Turn the path into a brace.

’decorate ,decoration ={brace ,amplitude =12pt},’,

Shift it 1em to the left of the coordinates

’transform canvas ={ xshift=-1em}]’,

’(min outlier) --’,

Add a node with some text in the middle of the path

’node[single arrow ,anchor=tip ,fill=white ,draw=green ,’,

’left =14pt,text width =0.70in,align=center]’,

’{Holy Outliers Batman!}’, ’(max outlier);’))

tikzNode can be used to place nodes with customized options and content

tikzNode(

opts=’starburst ,fill=green ,draw=blue ,very thick ,right=of max outlier ’,

content=’Wow!’

)

dev.off()

0
1

2
3

4
5

6

Holy
Outliers
Batman!

Wow!

Figure 5: An example using TikZ annotation.

17

4.5.8 tikz() vs. pdf() for plotmath symbols and Unicode characters

This is a side-by-side example showing how tikz(..., engine = ’xetex’) handles UTF-8 characters and plotmath symbols compared to the standard R
pdf() device.

2 4 6 8 10

2
4

6
8

1
0

text(...) examples

~~~~~~~~~~~~~~

R is GNU ©, but not ® ...

1:10

1
:1
0

«Latin-1 accented chars»: éè øØ å<Å æ<Æ

the text is CENTERED around (x,y) = (6,2) by default

or Left/Bottom - JUSTIFIED at (2,1) by 'adj = c(0,0)'

β^ = (XtX)−1Xty

expression(hat(beta) == (X^t * X)^{-1} * X^t * y)

x =∑
i=1

n xi

n

Le français, c'est façile: Règles, Liberté, Egalité, Fraternité...

Jetz no chli züritüütsch: (noch ein bißchen Zürcher deutsch)

Figure 6: example(text) using the standard pdf() device.

..

2

.

4

.

6

.

8

.

10

.

2

.

4

.

6

.

8

.

10

.

text(...) examples

.. R is GNU ©, but not ® ....
1:10

.

1:
10

.

«Latin-1 accented chars»: éè øØ å<Å æ<Æ

.

the text is CENTERED around (x,y) = (6,2) by default

.

or Left/Bottom - JUSTIFIED at (2,1) by ’adj = c(0,0)’

.

β̂ = (XtX)−1Xty

.

\displaystyle\hat{\beta} = (XˆtX)ˆ{-1}Xˆty

.

x̄ =
n∑

i=1

xi

n

.

Le français, c’est façile: Règles, Liberté, Egalité, Fraternité...

.

Jetz no chli züritüütsch: (noch ein bißchen Zürcher deutsch)

Figure 7: example(text) using tikz(..., engine = ’xetex’).

18



5 The getLatexCharMetrics() and getLatexStrWidth() Functions

5.1 Description

These two functions may be used to retrieve font metrics through the interface provided by the tikzDevice

package. Cached values of the metrics are returned if they have been calculated by the tikzDevice before.
If no cached values exist, the LATEX compiler will be invoked to generate them.

5.2 Usage

The font metric functions are called as follows:

getLatexStrWidth( texString, cex = 1, face= 1)

getLatexCharMetrics( charCode, cex = 1, face = 1 )

texString A string for which to compute the width. LATEX commands may be used in the string, however all
backslashes will need to be doubled.

charCode An integer between 32 and 126 which indicates a printable character in the ASCII symbol table
using the T1 font encoding.

cex The character expansion factor to be used when determining metrics.

face An integer specifying the R font face to use during metric calculations. The accepted values are as
follows:

1: Text should be set in normal font face.

2: Text should be set in bold font face.

3: Text should be set in italic font face.

4: Text should be set in bold italic font face.

5: Text should be interpreted as plotmath symbol characters. Requests for font face 5 are currently
ignored.

5.3 Examples

The getLatexStrWidth() function may be used to calculate the width of strings containing fairly arbitrary
LATEX commands. For example, consider the following calculations:

getLatexStrWidth( "The symbol: alpha" )

[1] 82.5354

getLatexStrWidth( "The symbol: $\\alpha$" )

[1] 65.08636

For the first calculation, the word “alpha" was interpreted as just a word and the widths of the characters
‘a’, ‘l’, ‘p’, ‘h’ and ‘a’ were included in the string width. For the second string, \alpha was interpreted as a
mathematical symbol and only the width of the symbol ‘α’ was included in the string width.

The getLatexCharWidth() function must be passed an integer corresponding to an ASCII character code and
returns three values:

19



• The ascent of the character- the distance between the baseline and the highest point of the character’s
glyph.

• The descent of the character- the distance between the baseline and the lowest point of the character’s
glyph.

• The width of the character.

The character ‘y’ has an ASCII symbol code of 121 and possesses a tail that descends below the text line.
Therefore a non-zero value will be returned for the descent of ‘y’. The character ‘x’, ASCII code 120, has no
descenders, so its descent will be returned as zero.

# Get metrics for ’y’

getLatexCharMetrics (121)

[1] 4.30450 1.94397 5.27649

# Get metrics for ’x’ - the second value is the descent

# and should be zero or very close to zero.

getLatexCharMetrics (120)

[1] 4.30450 0.00000 5.27649

Note that characters, along with numbers outside the range of [32-126], may not be passed to the getLatexCharMetrics()

function. If for some reason a floating point number is passed, it will be floored through conversion by
as.integer().

getLatexCharMetrics(’y’)

NULL

getLatexCharMetrics (20)

NULL

# Will return metrics for ’y’

getLatexCharMetrics (121.99)

[1] 4.30450 1.94397 5.27649

20



Part II

Installation Guide

This section is intended to offer pointers on how to obtain a LATEX distribution if there is not one already
installed on your system. The distributions detailed in this section are favorites of the tikzDevice devel-
opers as they integrated package managers which greatly simplify the process of installing additional LATEX
packages. Currently this section is not, and may never be, a troubleshooting guide for LATEX installation.
For those unfortunate situations we refer the user to the documentation of each distribution.

6 Obtaining a LATEX Distribution

A LATEX distribution provides the packages and support programs required by the tikzDevice and the
documents that use its output. In addition a LATEX compiler, a few extension packaged are required.
Section 7 describes how to obtain and install these packages.

6.1 Windows

Windows users will probably prefer the MiKTeX distribution available at http://www.miktex.org. An amazing
feature of the MiKTeX distribution is that it contains a package manager that will attempt to install missing
packages on-the-fly. Normally when LATEX is compiling a document that tries to load a missing package it
will wipe out with a warning message. When the MiKTeX compilers are used compilation will be suspended
while the new package is downloaded.

6.2 UNIX/Linux

For users running a Linux or UNIX operating system, we recommend the TeX Live distribution which is
available at http://www.tug.org/texlive/acquire.html. TeX Live is maintained by the TeX Users Group and
a new version is released every year. Note that the version of TeX Live provided by many Linux package
management systems is the 2007 version. We recommend using TeX Live 2008 or higher as the tlmgr

package manager was introduced in the 2008 distribution. Using tlmgr greatly simplifies the adding and
removing packages from the distribution. The website offers an installation package, called install-tl.tar.gz

or something similar, that contains a shell script that can be used to install an up-to-date version of the TeX
Live distribution.

6.3 Mac OS X

For users running Apple’s OS X, we recommend the Mac TeX package available at http://www.tug.org/mactex/.
Mac TeX is basically TeX Live packaged inside a convenient OS X installer along with a few add-on packages.
One striking difference between the Mac TeX and TeX Live installers is that the installer for Mac TeX includes
the whole TeX Live distribution in the initial download- for TeX Live 2008 this amounts to approximately
1.2 GB. This is quite a large download that contains several packages that the average or even advanced
user will never ever use. To conserve time and space we recommend installing from the basic installer at
http://www.tug.org/mactex/morepackages.html and using the tlmgr utility to add desired add-on packages.

Adam R. Maxwell has created a very nice graphical interface to tlmgr for OS X called the TeX Live Utility.
It may be obtained from http://code.google.com/p/mactlmgr/ and we highly recommend it.

21

http://www.miktex.org
http://www.tug.org/texlive/acquire.html
http://www.tug.org/mactex/
http://www.tug.org/mactex/morepackages.html
http://code.google.com/p/mactlmgr/


7 Installing TikZ and Other Packages

Unsurprisingly, tikzDevice requires the TikZ package to be installed and available in order to function
properly. TikZ is an abstraction of a lower-level graphics language called PGF and both are distributed as
the the pgf package.

7.1 Using a LATEX Package Manager

The easiest way to install LATEX packages is by using a distribution that includes a package manager such as
MiKTeX or TeX Live/Mac TeX. For Windows users, the MiKTeX package manager usually handles package
installation automagically during compilation of a document that is requesting a missing package. The
MiKTeX package manager, mpm, can also be run manually from the command prompt:

mpm --install packagename

Using mpm to install packages

For versions of TeX Live and Mac TeX dated 2008 or newer, the tlmgr package manager is used in an almost
identical manner:

tlmgr install packagename

Using tlmgr to install packages

7.2 Manual Installation

Sometimes an automated package manager cannot be used. Common reasons may be that one is not
available, as is the case with the TeX Live 2007 distribution, or that when running the package manager you
do not have write access to the location where LATEX packages are stored, as is the case with accounts on
shared computers. If this is the case, a manual install may be the best option for making a LATEX package
available.

Generally, the best place to find LATEX packages is the Comprehensive TeX Archive Network, or CTAN

located at http://www.ctan.org. In the case of the PGF/TikZ package, the project homepage at http://www.

sourceforge.net/projects/pgf is also a good place to obtain the package- especially if you would like to play
with the bleeding-edge development version.

Generally speaking, all LATEX packages are stored in a specially directory called a texmf folder. Most TEX
distributions allow for each user to have their own personal texmf folder somewhere in their home path. The
most usual locations, and here usual is and unfortunately loose term, are as follows:

~/texmf

For UNIX/Linux

22

http://www.ctan.org
http://www.sourceforge.net/projects/pgf
http://www.sourceforge.net/projects/pgf


~/ Library/texmf

For Mac OS X

# None predefined. However the following command will open

# the MiKTeX options panel and a new texmf folder may be assigned

# under the "Roots" tab.

mo

For Windows, using MiKTeX

The location of files and subfolders in the texmf directory should follow a standard pattern called the TEX Di-
rectory Structure or TDS which is documented here: http://tug.org/tds/tds.pdf. Fortunately, most packages
available on CTAN are archived in such a way that they will unpack into a TDS-complient configuration.
TDS-complient archives usually have the phrase tds somewhere in their filename and may be installed from
a UNIX shell1 like so:

# For zip files.

unzip package.tds.zip -d /path/to/texmf

# For tarballs.

tar -xzf -C /path/to/texmf package.tar.gz

Installing LATEX package archives

For packages that aren’t provided in TDS-complient form look for installation notes- usually provided in the
form of an INSTALL file. If all else fails LATEX packages can usually be installed by copying the files ending in
.sty to texmf/tex/latex/.

After package files have been unpacked to a texmf folder, the database of installed packages needs to be up-
dated for the LATEX compiler to take notice of the additions. This is done with the mktexlsr command:

mktexlsr

# Successful package installation can be checked by running the

# kpsewhich command. For a package accessed in a document

# by \usepackage{package}, kpsewhich should return a path to

# package.sty

kpsewhich tikz.sty

/Users/Smithe/Library/texmf/tex/latex/pgf/frontendlayer/tikz.sty

Registering new LATEX packages

1Sorry Windows users, we enjoy using command prompt about as much as a poke in the eye with a sharp stick. Hence we

don’t use it enough to offer advice. May we suggest Cygwin?

23

http://tug.org/tds/tds.pdf
http://www.cygwin.com


Part III

Package Internals

We will encourage you to develop the three
great virtues of a programmer: laziness,
impatience, and hubris.

Programming Perl

–Larry Wall

8 Introduction and Background

Caveat Lector

The following introduction currently presents a vision(delusion?) of what this section of the documenta-
tion could be. Currently the only portion of the inner workings of this package that we attempt to explain
and document are those related to using the LATEX compiler to obtain font metrics.

We learn best through working with examples. When it comes to programming languages this involves
taking working code that someone else has written, breaking it in as many places at it can possibly be
broken, and then trying to build something out of the wreckage. Open source software facilitates this process
wonderfully by ensuring the source code of a project is always available for inspection and experimentation.
The tikzDevice its self was created by disassembling and then rebuilding Valerio Aimale’s PicTEX device
driver which is a part of the R core codebase.

This section is our attempt to help anyone who may be experimenting with our code, and by extension
the internals of the R graphics system. There may also be useful, or useless, tidbits concerning building R
packages and interacting with the core R language. The R language can be extended in so many interesting
and useful ways and it is our hope that the following documentation may provide a case study for anyone
attempting such an extension.

We will make an attempt to assume no special expertise with any of the systems or programming languages
leveraged by this package and described by this documentation. Therefore, if you are an experienced de-
veloper and find yourself thinking “My god, are they really about to launch into a description of how C
header files work?", please feel free to skip ahead a few paragraphs. We received our formal introduction to
computer programming in a college engineering program- therefore our programming background is rooted
in Fortran (or, if you prefer, fortran). We are attempting to write the sort of documentation that we
would have found invaluable at the start of this project

Therefore, this section is for all the budding developers like ourselves out there- people who have done
some programming and who are starting to take a close look at the nuts and bolts of the R programming
environment. If you feel like you are wandering through a vast forest getting smacked in the face by every
branch then maybe this section will help pull some of those branches out of the way...

...then again we have a lot of material to cover: R, C, LATEX, TikZ , typography and the details of comput-
erized font systems. Our grip may fail and send those branches flying back with increased velocity.

We wish you luck!
-The tikzDevice Team

24



9 Anatomy of an R Graphics Device

The core of an R graphics device is a collection of functions, written in C, that perform various specialized
tasks. A description of some of these functions can be found in the R Internals manual while the main
documentation is in the C header file GraphicsDevice.h. For most R installations this header file can be
found in the directory R_HOME/include/R_ext. For copies of R distributed in source code form, GraphicsDevice.h
is located inside R-version/src/include/R_ext. The following is a description of the functions each graphics
device is expected to provide:

Drawing Routines

circle This function is required to draw a circle
centered at a given location with a given
radius.

clip This function specifies a rectangular area
to be used a a clipping boundary for any
device output that follows.

line This function draws a line between two
points.

polygon This function draws lines between a list of
points and then connects the first point to
the last point.

polyline This function draws lines between a list of
points.

rect This function is given a lower left corner
and an upper right corner and draws a rect-
angle between the two.

text This function inserts text at a given loca-
tion.

Font Metric Routines

metricInfo This function is given the name of a single
character and reports the ascent, descent

and width of that character.

strWidth This function is given a text string and re-
ports the width of that string.

Utility Routines

activate This function is called when the device is
designated as the active output device- i.e.
by using dev.set() in R

close This function is called when the device is
shut down- i.e. by using dev.off() in R

deactivate This function is called when another device
is designated as the active output device.

locator This function is mainly used by devices
with a GUI window and reports the loca-
tion of a mouseclick.

mode This function is called when a device be-
gins drawing output and again when the
device finishes drawing output.

newPage This function initiates the creation of a
new page of output.

size This function reports the size of the canvas
the device is drawing on.

10 Calculating Font Metrics

Font metrics are measurements associated with the glyphs, or printed characters, of a particular font. R

requires three of these metrics in order to produce correctly aligned output. The three metrics graphics
devices are required to supply are:

Ascent

g
Ascent is the distance between the baseline and the tallest
point on a character’s glyph. For the "g" printed to the left,
the ascent has been calculated as: 24.99963pt

Descent

g
Descent is the distance between the baseline and the lowest
point on a character’s glyph. For the "g" printed to the left,
the descent has been calculated as: 7.77771pt

25



Width

g
Width is the distance between the left and right sides of a char-
acter’s glyph. For the "g" printed to the left, the width has
been calculated as: 20.0pt

Providing font metrics and string widths is without a doubt most difficult task a R graphics device must
undertake. The calculation of string widths is made even difficult for the tikzDevice as we attempt to
process arbitrary LATEX strings. Inside R the string “$\alpha$" literally has 8 characters, but when it is
typeset it only has one: α.

Calculating font metrics is a tricky business to begin with and the fact that the typeset representation
of a LATEX string is different from its representation in source code compounds the difficulty of the task
immensely. Therefore, we took the path of laziness and started looking for an easy way out (remember the
three great virtues of a programmer?). The solution we came up with seemed easy enough– make LATEX
calculate these metrics for us, after all that is what a LATEX compiler does for a living.

Now, how to do that?

10.1 Character Metrics

As a starting point, let’s examine the interface of the C function that R calls in order to determine character
metrics:

void (metricInfo )(int c, const pGEcontext gc,

double* ascent , double* descent , double* width ,

pDevDesc dd);

Function declaration for metricInfo

The most important variables involved in the function are c, ascent, descent and width. The incoming variable
is c, which contains the character for which R is requesting font metrics. Interestingly, c is passed as an
integer, not a character as one might expect. What’s up with that? Well, the short answer is that R passes
the ASCII or UTF8 symbol code of a character and not the character it’s self. How to use that character code
to recover a character will be explained later.

The outgoing variables are ascent, descent and width. The asterisks, ‘*’, in their definitions mean these
variables are passed as pointers as opposed to values. A complete discussion of the differences between
pointers and values could, and has, filled up several chapters of several programming books. The important
distinction in context of the metricInfo function is that when a number is assigned to a pointer variable, that
number is available elsewhere after the function terminates. In contrast, when a number is assigned to a
value variable, that number disappears when the function ends unless it is explicitly sent back out to the
wide world through the return statement. So, the main task of the metricInfo function is to assign values to
ascent, descent and width.

The other two variables present in the function are the pGEcontext variable gc and the pDevDesc variable dd. gc

contains information such as the font face, foreground color, background color, character expansion factor,
ect. currently in use by the graphics system. dd is the object which contains R’s representation of the graphics
device. For the sake of simplifying the following discussion, we will ignore these variables.

So, to recap– we have an integer c coming in that represents a code for a character in the ASCII or UTF8 symbol
tables (for the sake of the following discussion, we will assume ASCII characters only). Our overall task is to
somehow turn that integer into three numbers which can be assigned to the pointer variables ascent, descent
and width. And, since we’re being lazy, we’ve decided that the best way to do that is to ask the LATEX
compiler to compute the numbers for us.

Recovering these numbers from the LATEX compiler involves the execution of three additional tasks:

26



1. We must write a LATEX input file that contains instructions for calculating the metrics.

2. We call the LATEX compiler to process that input file.

3. We must read the compiler’s output in order to recover the metrics.

Each of these tasks could be executed from inside our C function, metricInfo. However, we will run into some
difficulties- namely with step 2, which involves calling out to the operating system with orders to run LATEX.
Each operating system handles these calls a little differently and our package must attempt to get this job
done whether it is running on Windows, UNIX, Linux or Mac OS X.

Portable C code could be written to handle each of these situations, but that is starting to sound like work
and we’re trying to be lazy here. What we need is to be able to work at a higher level of abstraction. That
is– instead of using C, we need to be working inside a language that shields us from such details as what
operating system is being used. R may have called this C function to calculate font metrics, but we really
want to do the actual computations back inside R.

10.2 Calling R Functions from C Functions

The “Ritual of the Calling of the R Function" is easy enough to perform as long as you don’t have burning
need to know all the details of the objects you are handling. The C level representation of a R object such
as a variable or function is an object known as a SEXP. For the exact details on what a SEXP is and how it
works, we refer the interested user to chapter one of the R Internals manual.

The R function we will be calling is declared in the R environment as follows:

getLatexCharMetrics <- function( charCode ){

# System call to LaTeX

}

Definition of target R function

In order to call this function for C, we need a vector composed of two C-level R objects– one containing the
name of the function we are calling and another one containing the value we are passing for charCode. This
is set up in C as follows:

void (metricInfo )(int c, const pGEcontext gc, double* ascent , double* descent ,

double* width , pDevDesc dd){

SEXP RCallBack;

PROTECT( RCallBack = allocVector(LANGSXP , 2) );

SEXP metricFun = findFun( install (" getLatexCharMetrics "), R_Global_Env );

SETCAR( RCallBack , metricFun );

SETCADR( RCallBack , ScalarInteger( c ) );

Preparing a R function call inside C

27



SET_TAG( CDR( RCallBack ), install (" charCode ") );

\\ To be continued ...

}

The first thing that happens in the code chunk above is that a new SEXP variable named RCallBack is created.
This variable will be the agent through which we will communicate with the R environment. The next action
is to allocate our callback variable as a vector of length 2– we need one slot for the R function name and one
slot for the value that is being passed into the function. This allocation happens inside the R environment,
so it is executed inside the PROTECT statement. The reason for using PROTECT is that the R garbage collector is
constantly on the prowl for unused objects in the R environment. An object is considered “unused" if it is
not attached to any variable name in the R environment. Since the object is only attached to the variable
RCallBack in our C function, the R garbage collector will see it a valid candidate for deletion. The purpose of
PROTECT is to keep our new vector from being trashed.

The next portion of the C function retrieves the R function object for getLatexCharMetrics. The function is
searched for in R global namespace, so it must be one that is available to the user from the R command prompt
when the package is loaded. The function is stored in the SEXP variable metricFun. We do not have to involve
PROTECT in the assignment since getLatexCharMetrics exists as a variable name in the R environment.

The last portion of the code chunk is responsible for loading the function name and call value into RCallBack.
The CAR statement is used to retrieve the value of a SEXP variable and the SETCAR statement is used to set the
value of a SEXP. In this case we use SETCAR to designate the R function stored in metricFun as the first value of
RCallBack.

When dealing with a vector SEXP such as RCallBack, which has 2 slots, we need to use a different function
to access the second slot. The CDR function will allow us to move to the second slot in RCallBack where we
may perform a SETCAR to specify a value. In the example code, these operations were combined by using the
SETCADR function which has the same effect as:

SETCAR( CDR(RCallBack), ScalarInteger( c ) );

After assigning the value of the C variable c as the second value of RCallBack, we need to "tag" it as the value
that corresponds to the charCode argument of getLatexCharMetrics. This is done by using the SET_TAG function.
Once again, we use CDR to shift our area of operation to the second slot of RCallBack. Now that the RCallBack

object is set up, we are ready to actually call the getLatexCharMetrics function.

SEXP LatexMetrics;

PROTECT( LatexMetrics = eval( RCallBack , R_GlobalEnv) );

Executing a R function call inside C

And that’s it! We create a new SEXP to hold the return values of getLatexCharMetrics and execute the eval

function to cause getLatexCharMetrics to be executed inside the R environment. The details of the R function
will be explained in the next section, for now let’s assume that it returns the three values we’re interested
in as a vector of three numbers. How do we extract these values and assign then to ascent, descent and
width?

28



*ascent = REAL(RMetrics )[0];

*descent = REAL(RMetrics )[1];

*width = REAL(RMetrics )[2];

UNPROTECT (2);

return;

Recovering return values from a R function call

Here the REAL function is used to coerce the SEXP variable RMetrics to a vector of real numbers. These numbers
are then extracted and assigned to the return values of metricInfo. In C we must specify the ‘first’ value in a
vector using the index 0 rather than the index 1 2. The last thing to do is release the restrictions we placed
on the R garbage collector. Since we used the PROTECT function twice, we must call UNPROTECT and pass 2 as
the argument.

10.3 Implementing a System Call to LATEX

Now we may turn to the actual guts of the R function getLatexCharMetrics. The first thing we need to do is
set up a file for LATEX input:

getLatexCharMetrics <- function( charCode ){

texDir <- tempdir ()

texLog <- file.path( texDir ,’tikzStringWidthCalc.log’ )

texFile <- file.path( texDir ,’tikzStringWidthCalc.tex’ )

texIn <- file( texFile , ’w’)

# To be continued ...

Creating a LATEX input file

The first thing we do is choose a place to create this input file. Now, when the LATEX compiler is run on a .tex

file, a lot of additional files get created– the whole process is a bit messy. Since the user probably wouldn’t
appreciate having to clean up our mess, we use the tempdir() function to retrieve a path to a temporary

directory on the system. Here is the first place we benefit from the added level of abstraction granted by R.
Each operating system has different locations for temporary directories. If we were still working in C, we
would have to worry about such details. R takes care of those details for us.

Now that we have a place to work, we set up a couple of filenames- one for the input file, which ends in .tex

and one for the LATEX log file, which ends in .log. We then open the .tex file for writing. The next step is
to setup the preamble of the LATEX file.

2There are good logical reasons for this from the point of view of a computer scientist– but if your background in arrays is

rooted in linear algebra it will be a bit disorienting.

29



writeLines("\\ documentclass{article}", texIn)

writeLines("\\ usepackage[T1]{ fontenc}", texIn)

writeLines("\\ usepackage{tikz}", texIn)

writeLines("\\ usetikzlibrary{calc}", texIn)

writeLines("\\ batchmode", texIn)

Setting up the preamble of a LATEX input file

Here we have started a standard LATEX input file by specifying article as the document class. We also add
the fontenc package and specify T1 as its option. This ensures we are using the Type 1 font encoding- by
default TEXand LATEX use an encoding called OT1. Why do we need to worry about font encodings? Well,
a font encoding specifies which ASCII symbol codes map to which characters and by default, R expects us
to be using the Type 1 encoding (R does support other encodings- but we’re ignoring that for now). For
example, in the Type 1 encoding, the character that corresponds to the ASCII code 60 is the less-than sign:
‘<’. If we were to allow TEX to retain its default OT1 encoding, that same character code would instead map
to an upside-down exclamation point: ‘¡’.

The other two packages we load are the tikz package and its calc library. Essentially we will have TikZ drop
the character into a box and report some measurements concerning the size of that box. The last command,
batchmode tells LATEX that there isn’t any user available to interact with– so it should bother to stop and ask
any questions while processing this file.

The next step is to set up the part of the LATEX file that will actually calculate and report the widths we are
looking for. As mentioned before, this is done by setting the character inside a TikZ node and extracting
the dimensions of the box that surrounds it. In an attempt to improve clarity, the following code will be
presented as straight LATEX – getLatexCharMetrics inserts it into the texIn file by means of writeLines as we
have been doing all along. The string highlighted in red should be replaced with the value of the variable
charCode that was passed in to the functiongetLatexCharMetrics.

\begin{tikzpicture}

\node[inner sep=0pt,outer sep=0pt] (char) {\char charCode };

\path let \p1 = ($( char.east) - (char.west)$),

\n1 = {veclen (\x1,\y1)} in (char.east) -- (char.west)

node{ \typeout{tikzTeXWidth =\n1} };

\path let \p1 = ($( char.north) - (char.base)$),

\n1 = {veclen (\x1,\y1)} in (char.north) -- (char.base)

node{ \typeout{tikzTeXAscent =\n1} };

\path let \p1 = ($( char.base) - (char.south)$),

\n1 = {veclen (\x1,\y1)} in (char.base) -- (char.south)

node{ \typeout{tikzTeXDescent =\n1} };

Extracting character dimensions using TikZ

What the heck just happened? Well, first we instructed LATEX to enter the TikZ picture environment using
\begin{tikzpicture}. Then we ordered TikZ to create a node named "char" containing the command \char

30



followed by the value of charCode. For example, if we were passed ‘103’ as the character code, which
corresponds to the character ‘g’, the node line should be:

\node[inner sep=0pt,outer sep=0pt] (char) {\char 103};

The inner sep and outer sep options are set to 0pt in order to ensure the boundaries of the node ‘hug’ the
contents tightly. Now the whole point of setting the character inside a node is that TikZ defines ‘anchors’
along the bounding box of the node. All anchors are referred using a node name.posistion notation. Since
we named the node char, all the anchors start with char. The anchor posistions relevant to our problem are
shown below:

g(char.north)
(char.south)

(char.base)

(char.east)(char.west)

Node Bounding Box

The ‘base’ anchor sits on the baseline of the text– therefore to calculate the ascent of the character ‘g’, all
we have to do is figure out the difference in height between the positions char.north and char.base. Similarly,
for the descent we would calculate the difference in height between char.base and char.south and width can
be obtained using char.west and char.east. This is the purpose of the admittedly cryptic \path commands
that are inserted in the LATEX input file. Let’s examine one of them:

\path let \p1 = ($(char.north) - (char.base)$),

\n1 = {veclen (\x1 ,\y1)} in node{ \typeout{tikzTeXAscent =\n1} };

So, what exactly is going on here? Normally, the \path command is used to draw lines between points and
add additional coordinates or nodes along those lines. For example, the command:

\path[draw] (0,0) -- (1,1) node {Hi!};

Draws a line from (0,0) to (1,1) and places a node at (1,1) containing the word ‘Hi!’. In the TikZ code
produced by getLatexCharMetrics, the let operation is specified. Basically, let postpones the actual drawing
of a path and performs calculations until the in keyword is encountered. The result of these calculations are
stored in a set of special variables which must start with \n, \p, \x or \y. The first let operation executed
is:

31



\p1 = ( $(char.north) - (char.base)$ )

This performs a vector subtraction between the coordinates of char.north and char.base. The resulting x and
y components are stored in the ‘point’ variable \p1. The second operation executed is:

\n1 = {veclen (\x1 ,\y1)}

This code let operation treats the coordinates stored in \p1 as a vector and calculates its magnitude. The
‘1’ appended to the \x and \y variables specifies that we are accessing the x and y components of \p1. This
result is stored in the ‘number’ variable \n1. Now, that our metric is stored in \n1, our final task is to ensure
it makes it into the LATEX .log file– this is done by adding a node containing the \typeout command. The
contents of the node:

\typeout{tikzTexAscent =\n1}

Cause the phrase ‘tikzTexAscent=’ to appear in the .log file- followed by the ascent calculated using the
node anchors. After the ascent, descent and width have been calculated the LATEX compiler may be shut
down, this is done by adding the final two lines to the input file:

writeLines("\\ makeatother", texIn)

writeLines("\\@@end", texIn)

close(texIn)

Terminating a LATEX compilation

Now that the input file has been prepped, we must process it using the LATEX compiler and load the contents
of the resulting .log so that we may search for the metrics we dumped using \typeout.

latexCmd <- getOption(’tikzLatex ’)

latexCmd <- paste( latexCmd , ’-interaction=batchmode ’,

’-output -directory ’, texDir , texFile)

silence <- system( latexCmd , intern=T, ignore.stderr=T)

texOut <- file( texLog , ’r’ )

logContents <- readLines( texOut )

close( texOut )

Terminating a LATEX compilation

The LATEX compiler is executed through the system function which handles the details of implementing a
system call on whatever operating system we happen to be using. We assign the return value of the system

32



function to a dummy variable called silence so that no output floods the user’s screen. The last task is to
extract our metrics from the text of the .log we loaded.

match <- logContents[ grep(’tikzTeXWidth=’, logContents) ]

width <- gsub(’[=A-Za-z]’,’’,match)

match <- logContents[ grep(’tikzTeXAscent=’, logContents) ]

ascent <- gsub(’[=A-Za-z]’,’’,match)

match <- logContents[ grep(’tikzTeXDescent=’, logContents) ]

descent <- gsub(’[=A-Za-z]’,’’,match)

return( as.double( c(ascent ,descent ,width) ) )

Parsing the .log file text

Here we use the grep function to search through the log output for the tags ‘tikzTeXWidth=’, ‘tikzTeXAs-
cent=’ and ‘tikzTeXDescent=’ that we specified when we used \typeout. After we recover a line containing
one of these tags, we use the gsub command to remove the letters and the equals sign from the text line–
leaving just the number we’re interested in. These values are then coerced using as.double and set as the
return value of getLatexCharMetrics.

11 On the Importance of Font and Style Consistency in Reports

If you haven’t figured it out by now, we are quite picky about the way our graphics and reports look. We are
especially picky about the consistency in fonts (both sizes and shapes). Without launching into a diatribe
about this, we just want to say with tools like tikzDevice you no longer have to settle for what is “just
okay.” So go nuts, be picky about how your text and graphics look. Don’t be afraid to snub your nose at
reports which pay no attention to detail. Be that person who says “NO! I wont settle for half rate graphics,
I want the best!”

12 The pgfSweave Package and Automatic Report Generation

Now for a little shameless self promotion. The authors of tikzDevice have another package called pgf-

Sweave which provides a driver for Sweave. pgfSweave started as an interface to eps2pgf and its ability to
interpret strings in eps files as LATEX. This was used to much the same effect as tikzDevice. The problem
was the conversion from eps to pgf was SLOW. Long story short, by combining this functionality with the
externalization feature of pgf and the cacheSweave we were able to achieve bearable compilation speed and
nice looking graphics. pgfSweave is in the process of getting pumped up by interfacing with the tikzDevice

package. We hope that the combination will be a self-caching, consistency-inducing, user-empowering tool
for high quality reports.

33

http://sourceforge.net/projects/eps2pgf/


References

Murrell, P. (2005), Using Computer Modern Fonts in R Graphics, http://www.stat.auckland.ac.nz/~paul/R/CM/
CMR.html.

Peng, R. D. (2006), Interacting with data using the filehash package, R News, 6 (4), 19–24.

R Development Core Team (2009), R Internals: Version 2.9.1.

Tantau, T. (2008), The TikZ and PGF Packages: Manual for version 2.00.

34

http://www.stat.auckland.ac.nz/~paul/R/CM/CMR.html
http://www.stat.auckland.ac.nz/~paul/R/CM/CMR.html

	Introduction
	Acknowledgements
	I Usage and Examples
	Loading the Package
	R Options That Affect Package Behavior

	The tikz() Function
	Description
	Usage
	Font Size Calculations
	UTF-8 Output
	Examples
	Default Mode
	bareBones Mode
	standAlone Mode
	console output Mode
	Getting around special LaTeX characters
	Using the Global Options: An XeLaTeX example
	Annotating Graphics with TikZ Commands
	tikz() vs. pdf() for plotmath symbols and Unicode characters


	The getLatexCharMetrics() and getLatexStrWidth() Functions
	Description
	Usage
	Examples


	II Installation Guide
	Obtaining a LaTeX Distribution
	Windows
	UNIX/Linux
	Mac OS X

	Installing TikZ and Other Packages
	Using a LaTeX Package Manager
	Manual Installation


	III Package Internals
	Introduction and Background
	Anatomy of an R Graphics Device
	Calculating Font Metrics
	Character Metrics
	Calling R Functions from C Functions
	Implementing a System Call to LaTeX

	On the Importance of Font and Style Consistency in Reports
	The pgfSweave Package and Automatic Report Generation


