SINGULAR SPECTRUM ANALYSIS IN R

JAN DE LEEUW

ABSTRACT. Meet the abstract. This is the abstract.

1. INTRODUCTION

Singular Spectrum Analysis (SSA from now on) decomposes an observed
time series into a sum of component series, in which the components
hopefully capture and show the dynamics of the series more clearly.
The SSA decomposition method can be thought of as one possible gen-
eralization of the singular value decomposition (SVD), or of principal
component analysis (PCA), to a single time series. It can display and
isolate trends and seasonal effects, as well as stationary residuals.

SSA originated and has mostly been studied and applied in geophysics
and atmospheric science. A comprehensive early review paper is |Ghil
et al. [2002]. The technique is not very well known is statistics, despite
the publication some time ago of the book by (Golyandina et al.| [2001].
Recent examples, perhaps showing an increasing interest, are the review
paper by Hassani [2007)], and the application published by Bilancia and
Steal [2008].

2. PCA OF STATIONARY SERIES

Suppose x is a T-dimensional vector random variable with E(xx") = Q.
The cross product matrix Q, which we assume to be positive definite, has
spectral decomposition Q = QA?Q’. Define z = A~'Q’x. Then E(zZz’) =
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AT1Q'QQA~! = 1. Also x = QAz, the Karhunen-Loéve Decomposition of
X.

In the usual time series analysis we only observe a single T-dimensional
realization x of x, and we have no idea what Q is. If we assume x is
stationary, however, we can estimate wg; with s > t by the average of
the T — (s — t) products x,x, for which u — v = s — t. Thus

T—(s—t)

z XvXv+(s—t)-
v=1

Now compute O = QA2Q’ and 2 = A"1Q’x. Again x = QA2. The
columns of Q are Empirical Orthogonal Functions or EOF’s.

_ 1
CT—-(s—1)

Wt

More specific assumptions about the nature of the stationary process
may lead to more precise estimates of ), provided of course these as-
sumptions are more or less true. For instance, we might assume that
x is AR(1), in which case Q only depends on the variance o2 and the
autocorrelation p.

1 dg<-function(s) {

2 n<-nrow(s); nn<-1:n; r<-rep(0,n)

3 for (k in 0:(n-1))

4 rlk+1]<-mean(s[which(outer(nn,k+nn,"=="))1)
5 return(toeplitz(r))

6 }

3. THE FOUR-STEP PROGRAM

3.1. Embedding. Suppose {x1,x2,- - ,Xr} is our observed time series.
For now, we assume there are no gaps (missing data). Choose a window
width2 <L < |3T]. DefineK =T —~L+1,s0thatK = [3T]1+1>L+1.
Define the K x L matrix Z with row i equal to {xj, Xj+1, - - ,Xi+L—-1}-
Thus z;; = xi4j—1, which implies that Z is a Hankel matrix. Z is constant
along its skew-diagonals, if i + j = k + € then z;; = zy,.

3.2. Decomposition. The |singular value decomposition/ or SVD of Z is
Z = UAV’. Here U is a K x L orthonormal matrix, V is L x L square
orthonormal, and A is a diagonal matrix of order L. We suppose, for
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identification purposes, that the diagonal elements of A are non-negative
and are in non-increasing order along the diagonal. The SVD can also be
written as

L
Z=>Zs=

s=1
Each of the Z is a rank-one matrix, and the Z; are orthogonal in the

sense that both Z;Z] = 0 and Z;Z, = 0 for s # t. Also, for the sum of
squares, a.k.a. the squared Frobenius norm,

L
4
AU Vg,
s=1

L L
$SQ(Z) = > $SQ(Zs) = > A2,
s=1

s=1
If we define
AZ
A t
Seo1 A2
then the 71; add up to one, and can be interpreted as the percentage

>

M

of the sum of squares “explained” by Z;, i.e. by the singular triple
(Ag, ut,ve).

3.3. Grouping. Suppose 7 = {Iy,- - - ,Ig} is a partition of {1,2,--- L},
and define Z¢ = 2361§ Zs. Obviously we still have Z = Zgzl Z¢. More-
over Z¢Z, = 0 and ZéZu =0 for & # u, and

$SQ(Z) = i SSQ(Zg) = i > Az
=i =1

SGIE

3.4. Hankelization. Suppose we have a partition 7 into E sets, and cor-
responding Z. Find the Hankel matrices Zg that minimize SSQ(Z — Zg).
They can be computed simply by Hankelizing or diagonal averaging, i.e.
by replacing all elements for which i + j is constant by their average.
At the same time this define a time series Xg, with element k equal to
the elements of Z~§ for which i + j = k — 1. Since Hankelizing is a linear
operation, and since Z is Hankel already, we have

M

Z=> Zs,

=1

as well as

=
Il
Mo
=
[{a

g
L
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This is the SSA decomposition of x, or rather it is a SSA decomposition,
because it depends on the choice of the window width and the grouping
of the singular triples.

Note, by the way, that Hankelizing a matrix is an orthogonal projection,
and thus

$SQ(Z) = > SSQ(Zg),
£=1
as well as

SSQ(x) = > SSQ(Xg).
£=1

4. CHOICES

4.1. Window width. There are many sophisticated methods to choose
window width. |Golyandina et al.|[2001, p. 18] suggest determining the
fractal dimension of the series, or to find an approximate order using
autoregression. In our code we use L = L%TJ as the default, and generally
that seems to work rather well.

4.2. Grouping. We have chosen a simple grouping method based on w-
correlations defined in |Golyandina et al. [2001, p. 46-47]. These are
just cosines between time series, using a weighted inner product that
de-emphasizes the beginning and end of the series.

We first use the trivial grouping in which each singular triple defines
a group. Compute the L x L matrix R of w-correlations, and choose a
cut-off quantity 0 < € < 1. the ladjacency matrix A defined by

1 if vyl > €,

aje = :

0 otherwise.
We then use |Warshall’s Algorithm [Warshall, 1962 to compute the [tran-
sitive closure of the relation corresponding with A, and we use the |equiv-
alence classes of this relation to define the groups.

In principle any clustering method can be used here. In|Bilancia and Stea
[2008], for example, complete linkage hierarchical clustering is used.
Given the almost infinite number of cluster methods that are available
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there is a great deal of flexibility here [Gan et al., |2007] . Even if we
limit ourselves to cluster methods available in R, we have many different
choices. Also note that there are many clustering methods that do not
require pairwise similarity measures first, and work directly on the data
matrix.

5. EXAMPLES

5.1. Nile. Data are from the package datasets in base R. The series, of
length 100, is the annual flow of the river Nile at Ashwan 1871-1970. A
timeplot is given in Figure

’ Insert Figure about here ‘

For the SSA we use window width 50 and cut-off 0.25. The first singu-
lar triple explains 97.4% and the next two 0.32% and 0.22%. The grouping
gives the six groups {{1}, {2}, {- - -rest- - -}, {32,33}, {36,37}, {48,49}}.

’ Insert Figure about here ‘

5.2. Accidental Deaths. Data are from package MASS and give monthly
totals of accidental deaths in the USA from 1973-1978. The series has
length 72, and is plotted in Figure [2(a)

Insert Figure|2(a)| about here

For the SSA we use window width 36 and cut-off 0.25. The first singular
triple explains 99.01% and the next two 0.68% and 0.12%. The grouping
gives the ten groups

{{1},{2,3}, {4, 51}, {6}, {7,8}, {9,101,
{11,---,18},{---rest-- -1}, {31}, {35,36}}.

’ Insert Figure about here ‘

5.3. Milk. The data from package TSA give the average monthly milk
production per cow in the US from 1994 to 2005. The series has length
144, and is plotted in Figure|3(a)
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Insert Figure|3(a)| about here

SSA with the default settings gives 10 components. The first component
explains 99.85% of the total sum of squares. The groups are

{{1},{2,3},{4,5}, 16}, {7,8}, {- - -rest- - -},
{12,13}, {34,35}, {44, - - - , 70}, {71,72}}.

The 10 components are plotted in Figure

’ Insert Figure about here ‘

5.4. Beer Sales. Data from package TSA. Monthly beer sales in millions
of barrels from 1975 to 1990. The series has length 192, and is plotted

in Figure

’ Insert Figure about here ‘

’ Insert Figure about here ‘

5.5. CO2. Data from package datasets. Mauna Loa Atmospheric CO»
Concentration, monthly 1959-1997. The series has length 468, and is
plotted in Figure

’ Insert Figure[5| about here

Window width is 234, and the algorithm with cut-off 0.25 gives 12 groups.
The first eigenvalue explains 99.9955% of the total sum of squares.

6. VARIATIONS

6.1. To Center or Not to Center.

6.2. From Hankel to Toeplitz. Expanding the time series to a Hankel
matrix, and decomposing this matrix into a sum of Hankel matrices,
takes up a large amount of space. We can avoid all this, by working
with the matrix C = Z’Z and its eigen-decomposition C = VA2V’. Now
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Zs = Zvsvg, which becomes in elementwise notation
L L

(Zs)ik = z ZijVjsVks = z Xi+j-1VjsVks
j=1 Jj=1

Hankelizing means setting
1 ,
(xs)y = —= D2 {(Z)u | i+ k=v+1}
%

Suppose (i, k) are the n, index pairs forwhich1 <i<Kand1l <k <L
and i + k = v + 1. This means that max(1,(v + 1) — L) < i < min(v,K)
and k = (v +1) —i. Thus

min(v,K) L

1
(Xs)v = o > D Xigjo1VjsV(ve1)—iss
Vi=max(1,(v+1)-L) j=1

The expression only involves the eigenvectors of C and the values of the
original series. No Embedding and no Hankelizing is required.

6.3. Effect of Window Width.

7. EXTENSIONS
7.1. Gaps.

7.2. Multivariate Series.
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APPENDIX A. CODE

A.1. R Code.

1 #

2 # ssa package

3 # Copyright (C) 2008 Jan de Leeuw <deleeuw@stat.ucla.edu>

4 # UCLA Department of Statistics, Box 951554,

5 # Los Angeles, CA 90095-1554

6 #

7 # This program is free software; you can redistribute it

8 # and/or modify it under the terms of the GNU General Public

9 # License as published by the Free Software Foundation;

10 # either version 2 of the License, or (at your option)

11 # any later version.

12 #

13 # This program is distributed in the hope that it will be

14 # useful, but WITHOUT ANY WARRANTY; without even the implied

15 # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

16 # PURPOSE. See the GNU General Public License for more details.

17 #

18 #  You should have received a copy of the GNU General Public

19 # License along with this program; if not, write to the

20 #  Free Software Foundation, Inc., 675 Mass Ave, Cambridge,

21 # MA 02139, USA.

22 #

23

24 #

25 # version 0.0.1, 2008-10-10, initial

26 # version 0.1.0, 2008-10-16, similarity and cluster parameters

27 # version 0.2.0, 2008-10-17, got rid of hankel

28 # version 0.3.0, 2008-10-17, added Toeplitz SSA

29 # version 0.3.1, 2008-10-19, C code for crossproduct

30 # version 0.3.2, 2008-10-19, preprocessing option

31 # version 0.3.3, 2008-10-19, C code for fromCross

32 # version 0.4.0, 2008-10-19, added Fourier SSA

33 #

34 # to do:

35 #

36 # -- add clustering methods

37 # -- add similarity measures

38 # -- add preprocessors

39 # -- ndim for eigen

40 # -- better algorithm for Toeplitz eigenvectors

41 #

42

43 dyn.load("ssa.so™)

44

45 ssa<-function(data,L=floor(length(data)/2),b=as.1ist(1:L),preproc=center,

46 ndim=width,method="hankel",ssa_similarity=ssa_w_cor,ssa_cluster=ssa_trans,
par=.25) {

47 if (lidentical(class(data),"ts")) stop("Data should be of class ts")

48 data<-preproc(data); T<-length(data); K<-T-L+1
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49 if (identical(method,"toeplitz™)) {

50 cross<-toeplitz(rconv(data,l:L))

51 s<-eigen(cross)$vectors

52 }

53 if (identical(method, "hankel™)) {

54 cross<-hankel(data,L)

55 s<-eigen(cross)$vectors

56 }

57 if (identical(method,"fourier")) {

58 s<-sincos(L)

59 }

60 a<-fromCross(data,s)

61 r<-ssa_similarity(a,L,K)

62 b<-ssa_cluster(r,par)

63 a<-sapply(b, function(kk) rowSums(as.matrix(al[,kk])))
64 r<-ssa_similarity(a,L,K)

65 y<-ts(a,start=start(data),end=end(data),frequency=frequency(data))
66 return(1ist(y=y,b=b,s=colSums(aA2),r=r))
67 }

68

69 ssa_w_cor<-function(z,1,k) {

70 1s<-min(1,k); ks<-max(1,k)

71 n<-nrow(z); w<-rep(ls,n)

72 w[1l:1s]<-1:1s; w[(ks+1):n]J<-n-(ks:(n-1))
73 c<-crossprod(z,w#z); d<-diag(c)

74 return(c/sqrt(outer(d,d)))

75}

76

77 ssa_trans<-function(r,cut) {

78 s<-ifelse(abs(r)>cut,1,0)

79 v<-warshall(s)

80 h<-unique(v)

81 return(apply(Ch,1,function(v) which(v==1)))
82 1}

83

84 warshall<-function(a) {
85 n<-nrow(a)
86 for (j in 1:n) {

87 for(Gi in 1:n) {

88 if (ali,jl==1) a[i,]l<-pmax(ali,],alj,]1)
89 }

90 }

91 return(a)

92 1}

93

94 sincos<-function(L) {

95 x<-2xpix(1:L)/L

96 M<-floor(L/2)

97 if (is.even(L)) N<-M-1 else N<-M
98 s<-matrix(0,L,N+M+1)

99 for (k in 1:N)

100 s[,kl<-sin(xxk)

101 for (k in 0:M)
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102 s[,N+k+1]<-cos(xx*k)
103 return(apply(s,2,function(z) z/sqrt(sum(zA2))))
104 1}
105
106 center<-function(x) x-mean(x)
107
108 ident<-function(x) x
109
110 rconv<-function(x,Tlag) {
111 .C("cconv",
112 as.integer(lag),
113 as.integer(length(lag)),
114 as.double(x),
115 as.integer(length(x)),
116 as.double(vector("double",Tength(1ag)))) [[5]1]
117 3}
118
119 hankel<-function(x,L){
120 cc<-rep(0,LxL); T<-length(x)
121 c1<-.C("hankelC",
122 as.doubTle(x),
123 as.double(cc),
124 as.integer(L),
125 as.integer(T))
126  return(matrix(c1[[2]1]1,L,L))
127 }
128
129 fromCross<-function(x,s) {
130 L<-nrow(s); T<-length(x)
131 aa<-rep(0,TxL); s<-as.vector(s)
132 al<-.C("fromCrossC",
133 as.double(x),
134 as.double(s),
135 as.double(aa),
136 as.integer(L),
137 as.integer(T))
138 return(matrix(al[[3]11,T,L))
139 3}
140
141 ds.even<-function(x) return((as.integer(x) %% 2) == 0)
A.2. C Code.
1
2 void
3 cconv (int =1, int #m, double =*x, int xn, double =xs)
4 {
5 double xy, xz, =u;
6 dint i;
7 for (i =0; i < xm; i++)
8 {
9 y =x+ (xn - 1[11);

11
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z=x+ 1[1];

u = x;

s[i] = 0.0;

while (u < y)

S[i] += #u++ = #Z++;

}

}

void

hankelC(double #x, double xc, int =1, int =t)

{

int i, j, h, K, L, T; double s;

L==x1; T==t; K=T - L + 1;

for (3 =1; j <= L; j++) for (h = 3; h <= L; h++) {
s = 0.0;
for (i = 1; i <= K; i++) s += x[i1+j-2] = x[i+h-2];
clj+ k-1 xL-1]=ch+ G- =L-1]=
}

}

void

fromCrossC(double #x, double s, double =a, int =1,

. *

nt i,
ouble sv, sw;

L=2xT; T=xt; K=T - L + 1;

for G =1; 1 <=T; i++) {

ilw = (i + 1) - L; if (GTw < 1) ilw = 1;
iup = i; if (Gup > K) iup = K;

ni = iup - ilw + 1;

for (3 =1; j <= L; j+ {

-

j, k, h, ilw, dup, ni, K, L, T;

sv = 0.0;
for (k = ilw; k <= iup; k++) {
sw = 0.0;

for (h = 1; h <= L; h++)

sw += x[k + h - 2] = s[h + (j - 1)

S35

* L - 1];

sv +=sw x s[(i + 1) - k+ (J - 1) =L - 1];

}
ali + (3 -1 =T - 1] = sv / ((double) ni);
}
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