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1 Introduction

ssWavelets is an R package that is meant to be used in conjunction with the sampSurf package
(Gove, 2012) to perform wavelet decomposition on the results of a sampling surface simulation.
In general, the wavelet filter decomposes the sampSurf simulation results by scale (distance), with
each scale corresponding to a different level of the decomposition. This results in a set of anisotropic
wavelet coefficients for each scale or level, one each for horizontal, vertical and diagonal components;
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the sum of these yields an isotropic decomposition for that scale. Residual smooth coefficients for
the coarsest level are also available from applying the scaling filter, and its mean corresponds
to the sample mean of the sampling surface from sampSurf. Interesting as these ‘raw wavelet’
decompositions may be, the main interest of the wavelet analysis from a sampling perspective
has to do with the sample variance, which is the sampling surface variance from a simulation run
of sampSurf. The different wavelet decomposition variances corresponding to the raw wavelet
coefficients can be easily constructed at each level from the coefficients as we will see in § 2.2 & 4.3.
These wavelet variances also correspond to a decomposition of the sample variance, or, its total or
average ‘energy’ (§ 2.2), depending upon the particular level, filter, and use. Covariance analysis,
which may prove useful in the comparison of sampling methods at different scales, is discussed in
§ 2.3 & 4.6.

There are a number of good texts on wavelet analysis. Most cover time series applications, and a
few do cover images, but in varying degrees of completeness (actually, most are quite terse compared
to the 1-D application in time series/signals). For example, Percival and Walden (2000) is a very
good reference, even though they do not cover images at all. Fortunately the R waveslim package
(Whitcher) is used in this book, as well as in another good reference Gençay et al. (2002). Other
sources are discussed in the material that follows, many of which are papers rather than books.

The rest of this vignette documents both the main classes and methods available in the ssWavelets
package, and presents a number of examples illustrating their use on sampSurf results. Sections 1.1
and 2 review the notation and some of the basics of wavelet analysis, with special emphasis on the
variance. This manual is not a manual on wavelet analysis; therefore, only a brief review is presented
here. The main intent is to demonstrate the link between wavelet filtering and its possible uses in
the analysis of variance in simulation of sampling methods using sampSurf objects. The latter are
particularly amenable to this analysis, because wavelet filtering requires raster ‘images,’ which was
inherent in the design of sampSurf (though not for this reason).

The ssWavelets package is made available to one’s session either using library or by. . .

R> require(ssWavelets, quietly= TRUE)

1.1 Notation

The notation used in the wavelet field is not standardized. I have adopted the notation from Percival
and Walden (2000) (& used in Geilhufe et al. (2013) for images) and where applicable some other
sources, especially in the context of 2D applications, which these authors do not consider. To being,
from Percival and Walden. . .

J = the largest level available in the discrete wavelet transform (DWT) for the sample size:
N = 2J . Note that we may play a little loose with this notation and call J the maximal
partial maximal overlap discrete wavelet transform (MODWT) in places rather then J0.
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J0 = the last level for a partial DWT or MODWT.

j = the level index for the scaling filter, with scale given by τj .

L = the width of the wavelet or scaling filter (unit scale). For the Haar wavelet, L = 2.

Lj = the width of the jth level wavelet or scaling filter; Lj ≡ (2j − 1)(L − 1) + 1 (Percival and
Walden, 2000, p. 96). For the Haar wavelet, this becomes Lj ≡ (2j − 1)(2− 1) + 1 = 2j .

M = the number of rows, or cells in the y direction in an image.

N = for signals, this is the (diadic) length of the series. For images, it is the number of columns,
or cells in the x direction. Normally we will deal with square images so that N ≡M .

τj = 2j−1 is the unitless standardized scale of the jth level wavelet coefficients (j ≥ 1). Geilhufe
et al. (2013) use τj = 2j−1 for the wavelet filter and 2τj = 2 · 2j−1 = 2j for the scaling
filter. In time series analysis, the distance between observations must also be considered,
i.e., ∆t. In practical applications then τj corresponds to a physical scale of τj∆t, which has
meaningful units (Percival and Walden, 2000, p. 59). In image analysis, the physical scale
would correspond to distance rather than time (Geilhufe et al., 2013); thus, we would have
τ ′j = τj∆x, where ∆x is the cell extent in the x direction and likewise for y. Again, since
sampSurf uses square cells, we may write τ ′j = τj∆xy if desired since they are both the
same. In what follows, we will use τj interchangeably, such that the context will dictate the
interpretation. Also, what is used in summaries and figures is τj from the wavelet filter.

Mj = M − Lj + 1 is the number of non-boundary jth-level coefficients in y.

Nj = N − Lj + 1 is the number of non-boundary jth-level coefficients in x.

Note that for both N and M , the references given above begin the image index (or time series)
at zero, so that the index ranges to N − 1 (for 1D, § 2.2.1) and M − 1 (for 2D, § 2.2.2). This
convention works quite well with C code, since arrays begin at index zero. But R does not support
indexes beginning at zero, so in R, they run from 1, . . . , N and 1, . . . ,M depending on the case.
Note that Walker (2008, Chapter 4) also uses this latter indexing; his indexing begins with the first
row and column at the bottom left of the image, which corresponds well with the raster package
(Hijmans, 2016), where the origin is at the lower left.

2 Overview: MODWT Wavelet Decomposition

This section presents a very simplified overview of the MODWT wavelet decomposition. Please
see the references below for more details. There are many wavelet filters available in waveslim,
as well as a number of different decompositions. The full list of available filters may be found in
the code for the waveslim::wave.filter function; the full list of decompositions can be found in
the waveslim help. Currently ssWavelets allows Haar wavelet filters to be used. This restriction
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could easily be lifted to any supported in waveslim, but right now there seems to be little need for
anything more complicated for the analysis of sampling surfaces.

2.1 Matrix approach: Haar wavelets

The matrix approach is used only for illustration, it is not what is used in waveslim, and thus
this vignette for the decomposition. But it illustrates most simply what is going on in the actual
pyramid algorithm used in waveslim::modwt.2d.

The Haar wavelet is of length L = 2, with l = 0, . . . , L− 1 in general. The wavelet filter coefficient
vector, h, for level j = 1 of the decomposition has 2τ1 = 2 coefficients: h1 = (h1,0, h1,1)

′ =
(−1/

√
2, 1/

√
2)′. The corresponding scaling filter coefficient vector, g1, is related to the wavelet filter

by (Percival and Walden 2000, p. 75, Geilhufe et al. 2013)

g1,l = (−1)l+1h1,L−1−l

yielding the vector g1 = (g1,0, g1,1)
′ = (1/

√
2, 1/

√
2)′. As an aside, Percival and Walden (2000, p. 75)

also note that if we are given the scaling filter, then the wavelet filter coefficients can be deduced
similarly by

h1,l = (−1)lg1,L−1−l (1)

This latter method is used in waveslim::qmf. If the scaling filter is as given above, then (1) gives
wavelet coefficients: h1 = (h1,0, h1,1)

′ = (1/
√
2,−1/

√
2)′. These coefficients are also used by Geilhufe

et al. (2013) and are the reverse of those given above. The order does matter in the sense of how
the matrices set up below. Note the indexes on hj,l in the following. . .

R> #Haar wavelet coefficients from scaling coefficeints...

R> (g = c(1/sqrt(2), 1/sqrt(2)))

[1] 0.70710678 0.70710678

R> L = 2

R> l = 0:1

R> (-1)^l

[1] 1 -1

R> L-1-l

[1] 1 0
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R> (-1)^l*rev(g)

[1] 0.70710678 -0.70710678

R> (h = (-1)^l*g[L-1-l])

[1] 0.70710678 -0.70710678

R> waveslim::wave.filter('haar')

$length

[1] 2

$hpf

[1] 0.70710678 -0.70710678

$lpf

[1] 0.70710678 0.70710678

In the list returned from waveslim::wave.filter, h1 is the hpf (high pass filter) slot, and similarly,
g1 is the lpf (low pass filter) slot.

The two-dimensional filters obtained from the wavelet and scaling vectors are given by the outer
(tensor)1 product of the vectors as in Lark and Webster (2004); viz.,

hh = h1h
′
1 =

1

2
·

[
− 1√

2
1√
2

] [
− 1√

2
1√
2

]
=

[
1
4 −1

4

−1
4

1
4

]
wavelet-wavelet: diagonal (2)

hg = h1g
′
1 =

1

2
·

[
− 1√

2
1√
2

] [
1√
2

1√
2

]
=

[
−1

4 −1
4

1
4

1
4

]
wavelet-scaling: vertical (3)

gh = g1h
′
1 =

1

2
·

[ 1√
2
1√
2

] [
− 1√

2
1√
2

]
=

[
−1

4
1
4

−1
4

1
4

]
scaling-wavelet: horizontal (4)

gg = g1g
′
1 =

1

2
·

[ 1√
2
1√
2

] [
1√
2

1√
2

]
=

[
1
4

1
4

1
4

1
4

]
scaling-scaling: smooth (5)

1See, e.g., http://exampleproblems.com/wiki/index.php/Tensor_product
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Table 1 presents a cross reference chart that shows how the above filters correspond to the results
in modwt.2d (first column) and the matrices from Geilhufe et al. (2013). See § 4.2 for more on the
list structure returned from modwt.2d.

Table 1: Key to the list structure returned in, e.g., modwt.2d
and related in R package waveslim with reference to Geilhufe
et al. (2013) for the matrix and filter notation. Note that the
matrices returned as the modwt.2d “List Elements” below are
for levels j = 1, . . . , J as detailed in § 4.2.

List Filters
Element Description Typea Convolution Matrix
(2nd, 1st) (2nd, 1st) (2nd·1st)

LHj horizontal S–W g · h Ṽ

HLj vertical W–S h · g Ũ

HHj diagonal W–W h · h W̃

LLJ smooth S–S g · g Z̃

a W is the wavelet (H: high-pass) filter (h).

S is the scaling (L: low-pass) filter (g).

Note that it appears in Geilhufe et al. (2013) that the sense of the filter names (i.e., W-S) are the
opposite of what is adopted elsewhere; e.g., Lark and Webster (2004).

An example is presented in Figure 1 for an LH1 decomposition. Note that as the matrix in (4)
is evaluated across the scene, it produces a positive value at the western inclusion zone boundary
where the surface increases from zero to the estimate height, and a negative value on the eastern
edge of the boundary where the reverse situation is encountered (negative of the estimate to zero).

2.2 Wavelet variances

There are several sources on wavelet variance and the sample variance. Most of these are one-
dimensional (time series) applications and theory and include Percival and Walden (2000, Chap. 8)
and Percival and Mondal (2012). Two-dimensional (image) theory and applications include Mondal
and Percival (2012), Geilhufe et al. (2013) and Lark and Webster (2004), the latter of which also
includes some information on wavelet covariances when comparing two images (or, in our case, two
sampling methods).

There are two main types of variances from wavelet analysis that are discussed in the literature
above. The first is called the wavelet variance and only involves the wavelet components of the
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Figure 1: Sampling surface for single-tree circular plot sampling (see § 3) and corresponding raw
wavelet coefficients (right) for the LH1 decomposition from modwt.2d.

decomposition (no scaling components are involved—see the scaling variance below for more infor-
mation). The second is called the sample variance, which does indeed involve both components,
and will be shown below to be equivalent to the sampSurf surface variance. The wavelet variance
is calculated as part of the sample variance as shown below and is of interest at all scales for its
contribution to the decomposition of the sampSurf total surface variance.

Finally, the concept of the energy in a time series (7) (Percival and Walden (2000, p. 42), Percival
and Mondal (2012)) or image (12) (Mondal and Percival, 2012) was evidently coined by physicists.
It is equivalent to what is more commonly known as the sums of squares. However, note that the
term average energy (AE) is used herein to apply to E[X2] in (6), because it is what is calculated
in the routine covMODWT, and seems to be more appropriate for our purposes as a component of
the sample variance. Thus average energy is equivalent to the mean sums of squares, or simply
mean square. Please be aware that energy is adopted here and that the two terms may be used
somewhat interchangeably in what follows.

2.2.1 1-dimensional development

The variance decomposition in one dimension assumes a vector time series X with N observations
Xt ranging from t = 0, 1, . . . , N − 1. The sample variance derives from the familiar relation2

Var(x) = E[X2]− E[X]2 (6)

2See, e.g., https://en.wikipedia.org/wiki/Algebraic_formula_for_the_variance.
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Now, let the ‘energy’ in the time series X be given by3

‖X‖2 = X′X =

N−1∑
t=0

X2
t (7)

or, substituting the jth-level wavelet W̃j and scaling Ṽj (smooth) coefficient vectors gives

‖X‖2 = ‖W̃1‖2 + ‖Ṽ1‖2 (8)

for the first-level (j = 1) decomposition. the sample variance is given by. . .

σ̂2X =
1

N

N−1∑
t=0

(Xt − X̄t)
2 (9)

=
1

N
‖X‖2︸ ︷︷ ︸

E[X2]

− X̄2
t︸︷︷︸

E[X]2

(10)

and substituting (8) gives

=
1

N
‖W̃1‖2︸ ︷︷ ︸
σ̂2
W1

+
1

N
‖Ṽ1‖2 − X̄2

t︸ ︷︷ ︸
σ̂2
V1

(11)

For a J0th level decomposition, the above extends directly as

‖X‖2 =

J0∑
j=1

‖W̃j‖2 + ‖ṼJ0‖2

which implies that

σ̂2X =

J0∑
j=1

σ̂2Wj
+ σ̂2VJ0

where, analogous to the above,

σ̂2Wj
=

1

N
‖W̃j‖2

σ̂2VJ0
=

1

N
‖ṼJ0‖2 − X̄2

t

3Where the squared matrix norm is equivalent to the dot, or inner product; viz., ‖X‖2 ≡ 〈X,X〉 (see, e.g.,
https://en.wikipedia.org/wiki/Inner_product_space#Norms_on_inner_product_spaces).
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where σ̂2Wj
is the empirical wavelet variance and σ̂2VJ0

is the empirical scaling variance. More details

can be found in the above references, where most of the above comes from Percival and Mondal
(2012).

2.2.2 2-dimensional development

The two-dimensional variance decomposition is a straightforward extension of the one-dimensional
case. Let Xu,v index an image X (formally a realization of a random field) with finite extents
u = 0, 1, . . . ,M−1 rows and v = 0, 1, . . . , N−1 columns (Mondal and Percival, 2012, § V). Mondal
and Percival (2012) and Geilhufe et al. (2013) both get more complicated than we will here, allowing
for differing levels j and j′ (more precisely, scales τj and τj′) for rows and columns, respectively.
Here we simply are interested in the diagonal decomposition where j ≡ j′, i.e., the level of the
decomposition is always the same between rows and columns, vastly simplifying both notation and
implementation. Given this, also define W̃j,u,v as the (u, v)th cell of the jth level wavelet-wavelet

decomposition matrix W̃j,j (Table 1). Matrices Ṽj,u,v & Ṽj,j , Ũj,u,v & Ũj,j , and Z̃j,uv & Z̃j,j , all
have similar definitions.

The decomposition again starts with (6), such that the total energy in the image is given by the
sums of squares of all elements (Mondal and Percival, 2012, § V)

‖X‖2 =

N−1∑
u=0

M−1∑
v=0

X2
u,v (12)

and again (assuming for the moment that J0 = 1), substituting in the image decomposition matrices
for j = 1 gives

= ‖W̃1‖2 + ‖Ũ1‖2 + ‖Ṽ1‖2 + ‖Z̃1‖2 (13)

as the total energy in the scene. Note from the above that the wavelet transformation is energy
preserving (Mondal and Percival, 2012). It follows that in two dimensions, the sample variance for
level j = 1 is given by

σ̂2X =
1

NM

N−1∑
u=0

M−1∑
v=0

(Xu,v − X̄)2 (14)

=
1

NM
‖X‖2︸ ︷︷ ︸

E[X2]

− X̄2︸︷︷︸
E[X]2

(15)
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and substituting (13) gives

=
1

NM

(
‖W̃1‖2 + ‖Ũ1‖2 + ‖Ṽ1‖2

)
︸ ︷︷ ︸

σ̂2
WUV1

+
1

NM
‖Z̃1‖2 − X̄2︸ ︷︷ ︸
σ̂2
Z1

(16)

This generalizes in a straightforward way to any level J0 as

‖X‖2 =

J0∑
j=1

(
‖W̃j‖2 + ‖Ũj‖2 + ‖Ṽj‖2

)
+ ‖Z̃J0‖2 (17)

giving (Mondal and Percival, 2012, first equation, p. 543)

σ̂2X =
1

NM

 J0∑
j=1

(
‖W̃j‖2 + ‖Ũj‖2 + ‖Ṽj‖2

)
+ ‖Z̃J0‖2

− X̄2 (18)

which again is in the form E[X2]− E[X]2, and implies that

σ̂2X =

J0∑
j=1

σ̂2WUVj + σ̂2ZJ0

where, analogous to the above,

σ̂2WUVj =
1

NM

(
‖W̃j‖2 + ‖Ũj‖2 + ‖Ṽj‖2

)
(19)

σ̂2WUV =

J0∑
j=1

σ̂2WUVj (20)

σ̂2ZJ0
=

1

NM
‖Z̃J0‖2 − X̄2 (21)

such that σ̂2WUVj
is the jth level empirical wavelet variance with total σ̂2WUV , and σ̂2ZJ0

is the

empirical scaling variance. More details can be found in the above references, where most of the
above comes from Mondal and Percival (2012). Note that in their first equation for the diagonal
sample variance decomposition, (Mondal and Percival, 2012, p. 543), have the outer parenthesis in
the wrong place, which is corrected above in (18). This is also true of their equation (12) on the
previous page for the general j, j′ decomposition.

Finally, let the average energy in the image corresponding to E[X2] be given by

Ê =
1

NM

 J0∑
j=1

(
‖W̃j‖2 + ‖Ũj‖2 + ‖Ṽj‖2

)
+ ‖Z̃J0‖2

 (22)
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which is simply (17) divided by the number of samples (cells) in the image. Thus, we can also write

σ̂2X = Ê − X̄2 (23)

2.3 Wavelet covariances

The covariance development exactly parallels that for the variance in the last section. Here, how-
ever, in two dimensions we have images X and Y which have the same raster extents. These
two images will have been generated from two different sampling methods applied to the same
population of trees or downed logs. Our relation (6) generalizes to

Cov(x, y) = E[X · Y ]− E[X]E[Y ] (24)

with total covariance energy—sums of cross products of all elements—given (loosely) as

‖XY‖ =

N−1∑
u=0

M−1∑
v=0

Xu,vYu,v (25)

Basically everything else follows in similar manner from § 2.2.2. There will be two input sets of raw
wavelet decomposition matrices (one for each method), and the squared terms in § 2.2.2 become
the multiplication of the respective components for X and Y over all (u, v) as in (25). The result
is one output set of wavelet covariance components exactly as described for the variance. In fact,
the routine (covMODWT) that computes the variances for a one-scene analysis and covariances for a
two-scene analysis uses the same covariance code and simply duplicates the single scene in X to
create a replicate Y for variance calculation.

3 Example Surfaces Used

In the following we generate several surfaces that will be used as illustrations in the remainder of
this document. All sampling simulations are volume surfaces. However, any attribute available in
sampSurf could be used if desired.

As note in § 2.1, the waveslim package modwt.2d routine for MODWT analysis is used for the
decomposition in the ssMODWT method used below. The latter also performs a MODWT+MRA
(multiresolution analysis) decomposition using waveslim::mra.2d. These will be discussed more
in § 4.2.
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3.1 Simple 1-, 2-, or 3-tree surface

Simple is good for understanding what is going on. In this spirit, we have some simple surfaces for
illustration. These all use circular plot sampling; the single-tree surface was used in Figure 1. . .

R> sscp1 = makeSS('ss.1tree', 'circularPlotIZ', plotRadius = 16)

Number of trees in collection = 1

Heaping tree: 1,

R> sscp2 = makeSS('ss.2tree', 'circularPlotIZ', plotRadius = 16, runQuiet = TRUE)

R> sscp3 = makeSS('ss.3tree', 'circularPlotIZ', plotRadius = 16, runQuiet = TRUE)

R> J.cp = 3

R> mocp1 = ssMODWT(sscp1, J = J.cp)

Inclusion zone class: circularPlotIZ

Surface variance = 0.21720573

Wavelet variance = 0.2171527 (MODWT)

Surf/Wave var ratio = 1.0002442

Check: surface var matrix = 0.2171527 = E[X^2] - E[X]^2

Surface mean = 0.23171762

Wavelet mean = 0.23171762 (MODWT)

Wavelet mean = 0.23171762 (MRA)

R> mocp2 = ssMODWT(sscp2, J = J.cp)

Inclusion zone class: circularPlotIZ

Surface variance = 2.9649516

Wavelet variance = 2.9642277 (MODWT)

Surf/Wave var ratio = 1.0002442

Check: surface var matrix = 2.9642277 = E[X^2] - E[X]^2

Surface mean = 1.0431076

Wavelet mean = 1.0431076 (MODWT)

Wavelet mean = 1.0431076 (MRA)

R> mocp3 = ssMODWT(sscp3, J = J.cp)

Inclusion zone class: circularPlotIZ
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Surface variance = 20.917246

Wavelet variance = 20.912139 (MODWT)

Surf/Wave var ratio = 1.0002442

Check: surface var matrix = 20.912139 = E[X^2] - E[X]^2

Surface mean = 2.7554208

Wavelet mean = 2.7554208 (MODWT)

Wavelet mean = 2.7554208 (MRA)

In each of the above wavelet decompositions we have used J = 3 for the maximum decomposition
level.4

3.2 Bartlett Experimental Forest plots

The following example uses the 1989 measurement for plot 34 on the ‘Density Study’ at the Bartlett
Experiment Forest, Bartlett, NH, USA (BEF). The Density Study is one of many silvicultural
treatments on the BEF. The study was designed with the idea of applying different treatments to
existing even-aged stands with the intent of eventual conversion to uneven-aged structure. More
details may be found in Leak and Solomon (1975) or Leak and Gove (2008); final stand structures
are described in Gove et al. (2008). The original treatment for plot 34 was cutting to 40 square
feet of basal area per acre with 30 percent of the residual basal area in sawtimber trees over 10.5
inches dbh. . . .

R> #circular plot sampling

R> ss.bef = ssBEF(befp34, plotRadius = 16, bufferWidth = 20, runQuiet = TRUE)

Input BEF plot = befp34

Number of trees = 77

Units = English

Inclusion zone: circularPlotIZ

Plot width = 130

Buffer width = 20

Plot extent w/ buffer = -20 to 150

R> J.bef = 5 #J_0 for BEF

R> mo.bef = ssMODWT(ss.bef$ss, J = J.bef)

Inclusion zone class: circularPlotIZ

4The makeSS function simply facilitates the creation of the sampling surfaces and is available from the author on
request.
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Surface variance = 1260260

Wavelet variance = 1260216.4 (MODWT)

Surf/Wave var ratio = 1.0000346

Check: surface var matrix = 1260216.4 = E[X^2] - E[X]^2

Surface mean = 977.65134

Wavelet mean = 977.65134 (MODWT)

Wavelet mean = 977.65134 (MRA)

The routine ssBEF5 simply makes a sampSurf object from these data with the appropriate plot
size and buffer; it is available on request from the author. Note that all trees are used here, though
one can subsample the plot if desired with the N argument in ssBEF. The maximum MODWT
decomposition level for plot 34 is J = 5.

The measurements on the Density study were all in ‘English’ (Imperial) units.6 One can easily
generate a comparable data frame in metric (SI) units using ssBEF, which allows for a coarser
resolution (∆xy of one meter versus one foot), simplifying the subsequent analysis with fewer grid
cells. However, it looks blocky in display so we will stay with English units here. The 16ft (a
50th-acre plot) plot radius is approximately equivalent to 5m.

3.3 Critical height sampling surface

This example is a sampling surface using critical height sample with a metric 3 BAF prism7. . .

R> jtr = Tract(c(x = 64, y = 64), cellSize=1) #square tract, dyadic grid ~0.5ha

R> jbtr = bufferedTract(10, jtr)

R> ag3m = angleGauge(3) #metric

R> sschs = sampSurf(20, jbtr, iZone = 'criticalHeightIZ', angleGauge = ag3m,

+ topDiam = c(0,0), startSeed = 123, referenceHeight = 'dbh')

Number of trees in collection = 20

Heaping tree: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

The wavelet analysis on the critical height surface is. . .

5Available from the author on request.
6More appropriately in the United States, U.S. Customary Units. See https://en.wikipedia.org/wiki/United_

States_customary_units for the distinction.
7With reference height at DBH so it can be directly compared with other methods like horizontal point sampling

(HPS).
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R> J.chs = 5

R> modwtchs.p = ssMODWT(sschs, reflect=FALSE, J=J.chs)

Inclusion zone class: criticalHeightIZ

Surface variance = 52.440687

Wavelet variance = 52.427884 (MODWT)

Surf/Wave var ratio = 1.0002442

Check: surface var matrix = 52.427884 = E[X^2] - E[X]^2

Surface mean = 4.6024029

Wavelet mean = 4.6024029 (MODWT)

Wavelet mean = 4.6024029 (MRA)

3.4 Summary

In each of the above results from the MODWT analysis (which includes a MODWT+MRA § 4.5),
note that both the wavelet means are the same as that for the actual sampling surface. The variance
is also very close for the MODWT analysis and will be discussed in more detail in § 4.2.8 This
MODWT decomposition uses periodic boundary correction (see § 6 for details).

4 The ssWavelets Class Structure

The main objects used in package ssWavelets arise from formal S4 class definitions. The class
hierarchy relations are shown in the sections that follow.

4.1 The “ssWavelet” class

The wavelet decomposition classes begin with the virtual “base” class “ssWavelet”. Its structure
is quite simple and forms a simple basis for other functional classes.

R> showClass('ssWavelet')

Virtual Class "ssWavelet" [package "ssWavelets"]

Slots:

8Of course, variance decomposition does not work on the MRA.
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Name: description wfName ss

Class: character character sampSurf

Known Subclasses:

Class "ssMODWT", directly

Class "ssCovMODWT", by class "ssMODWT", distance 2

The slots in the “ssWavelet” class are. . .

description: A character description pertaining to the object.

wfName: The wavelet filter name, which must be one of waveslim::wave.filter.

R> modwtchs.p@wfName

[1] "haar"

ss: The sampling surface object on which the decomposition is performed.

4.2 The “ssMODWT” class

The “ssMODWT” class discussed in detail in this section, is a subclass of “ssWavelet”. . .

R> showClass('ssMODWT')

Class "ssMODWT" [package "ssWavelets"]

Slots:

Name: ss.modwt vars.modwt ss.mra levels description wfName

Class: list list list list character character

Name: ss

Class: sampSurf

Extends: "ssWavelet"

Known Subclasses: "ssCovMODWT"
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In the above we see that objects of “ssMODWT” inherit three slots from the “ssWavelet” virtual
class as described in the previous section. Other slots added in this class are. . .

ss.modwt: The MODWT analysis performed by waveslim::modwt.2d via the ssMODWT object
constructor method. Note that the results are spatially rectified back to the original scene
using shift.2d by default (shift = TRUE) in the call to ssMODWT. This is discussed more in
§ 4.5.

R> names(modwtchs.p@ss.modwt)

[1] "LH1" "HL1" "HH1" "LH2" "HL2" "HH2" "LH3" "HL3" "HH3" "LH4" "HL4" "HH4"

[13] "LH5" "HL5" "HH5" "LL5"

The names of its contents are shown in the above for a level J = 5 decomposition. Each
of these decomposition matrices are copied exactly from the list output of modwt.2d and
saved in the object.9 Those for level j = 1 are shown in the following. . .

1. LH1: the wavelet “detail” horizontal decomposition for level one.

2. HL1: the wavelet “detail” vertical decomposition for level one.

3. HH1: the wavelet “detail” diagonal decomposition for level one.

4. LLJ: the final “smooth” or average for the last level (coarsest), taking the mean of this
matrix gives the LL.mean discussed in § 4.3.2.

though in general, for j = 1, . . . , J , they follow Table 1. Note that summing the above
matrices at each level yields the isotropic decomposition for the level.

vars.modwt: This slot contains a rather extensive list of variances. These are discussed in detail
below in § 4.3.

ss.mra: The results from doing a MODWT+MRA analysis using waveslim::mra.2d exactly
parallel those for the ss.modwt slot.

R> names(modwtchs.p@ss.mra)

[1] "LH1" "HL1" "HH1" "LH2" "HL2" "HH2" "LH3" "HL3" "HH3" "LH4" "HL4" "HH4"

[13] "LH5" "HL5" "HH5" "LL5"

levels: This is a list with levels and other parameters that are discussed in more detail § 4.4.

9The same can be said for other methods in waveslim such as mra.2d.

Wednesday 24th May, 2017 1:53pm



ssWavelets Users Guide. . . §4 The ssWavelets Class Structure Gove 18

4.3 ssMODWT variances

This section details the different variances stored in the “ssMODWT” object. The object has
several different wavelet variances that are calculated and stored automatically.

R> str(modwtchs.p@vars.modwt, 1)

List of 4

$ isCovariance: logi FALSE

$ summary :List of 4

$ total :List of 3

$ image :List of 6

The following three sections provide details on the makeup of these slots and how they relate to
the variances given in § 2.2.2. The isCovariance slot is TRUE if the variances below were obtained
from a covariance analysis between two different sampling methods (see § 7.2) and thus we are
dealing with an object of class “ssCovMODWT” in § 4.6.10 Note in the sections below that when
isCovariance = TRUE, “variance” can be replaced with “covariance”.

4.3.1 summary: Marginal summary variances

The summary component of this list contains the ‘marginal’ wavelet variances. These correspond
to the raw wavelet coefficient vectors described in § 4.2. The isotropic variance is also included in
addition to the directional wavelet variances. . .

R> str(modwtchs.p@vars.modwt$summary)

List of 4

$ LH.var : Named num [1:5] 0.876 2.22 4.318 5.265 5.449

..- attr(*, "names")= chr [1:5] "LH1" "LH2" "LH3" "LH4" ...

$ HL.var : Named num [1:5] 0.988 2.684 5.648 6.367 4.02

..- attr(*, "names")= chr [1:5] "HL1" "HL2" "HL3" "HL4" ...

$ HH.var : Named num [1:5] 0.0993 0.3241 1.2986 3.2764 2.6559

..- attr(*, "names")= chr [1:5] "HH1" "HH2" "HH3" "HH4" ...

$ iso.var: Named num [1:5] 1.96 5.23 11.26 14.91 40.25

..- attr(*, "names")= chr [1:5] "iso1" "iso2" "iso3" "iso4" ...

10The isCovariance element is a hold-over from the pre-S4 version, which I elected not to change for simplicity.
Under S4, a simple class check could replace this.
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These are vectors, one component for each level in the decomposition j = 1, . . . , J0.

Directional variances: The directional wavelet variances are LH.var, HL.var and HH.var and do
not include any contributions from the smooth at level J0. These can be computed by taking the
mean squares (average energies) of each raw wavelet coefficient matrix at each level. Alternatively,
since the matrices of mean squares are found in the image slot of the object 4.3.3, one can simply
sum the corresponding image matrices to get the components of each vector as demonstrated below.

LH.var: This is the horizontal (scaling-wavelet) variance component at each level; i.e., it is the jth
level average energy of the raw coefficients. . .

σ̂2Vj =
1

NM

N−1∑
u=0

M−1∑
v=0

Ṽ2
j,u,v j = 1, . . . , J0

=
1

NM
‖Ṽj‖2

As noted above, this can also be computed from the average energy in the corresponding image

matrix, as demonstrated in the following. . .

R> modwtchs.p@vars.modwt$summary$LH.var #horizontal

LH1 LH2 LH3 LH4 LH5

0.87579834 2.21966697 4.31772209 5.26465564 5.44890494

R> sapply(modwtchs.p@vars.modwt$image$LH.var, sum)

LH1 LH2 LH3 LH4 LH5

0.87579834 2.21966697 4.31772209 5.26465564 5.44890494

HL.var: The vertical (wavelet-scaling) variance component at each level is given by

σ̂2Uj
=

1

NM

N−1∑
u=0

M−1∑
v=0

Ũ2
j,u,v j = 1, . . . , J0

=
1

NM
‖Ũj‖2

As demonstrated in the following. . .
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R> modwtchs.p@vars.modwt$summary$HL.var #vertical

HL1 HL2 HL3 HL4 HL5

0.98770304 2.68413193 5.64757758 6.36724800 4.02045680

R> sapply(modwtchs.p@vars.modwt$image$HL.var, sum)

HL1 HL2 HL3 HL4 HL5

0.98770304 2.68413193 5.64757758 6.36724800 4.02045680

HH.var: The diagonal (wavelet-wavelet) variance component at each level, which is given by

σ̂2Wj
=

1

NM

N−1∑
u=0

M−1∑
v=0

W̃2
j,u,v j = 1, . . . , J0

=
1

NM
‖W̃j‖2

As demonstrated in the following. . .

R> modwtchs.p@vars.modwt$summary$HH.var #diagonal

HH1 HH2 HH3 HH4 HH5

0.099296932 0.324114937 1.298573279 3.276368629 2.655936137

R> sapply(modwtchs.p@vars.modwt$image$HH.var, sum)

HH1 HH2 HH3 HH4 HH5

0.099296932 0.324114937 1.298573279 3.276368629 2.655936137

Isotropic Variances: The isotropic wavelet variance (iso.var) for each vector component corre-
sponds to σ̂2WUVj

, for each level j = 1, . . . , J0 − 1. Note, however, that the J0th level adds in the
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smooth contribution to the wavelet variance; viz.,

σ̂2isoJ0
= σ̂2VJ0

+ σ̂2UJ0
+ σ̂2WJ0

+
1

NM
‖Z̃J0‖2

= σ̂2WUVJ0
+

1

NM
‖Z̃J0‖2

= σ̂2WUVJ0
+ σ̂2ZJ0

+ X̄2

R> (i.v = modwtchs.p@vars.modwt$summary$iso.var) #isotropic

iso1 iso2 iso3 iso4 iso5

1.9627983 5.2279138 11.2638729 14.9082723 40.2471393

R> (i.v2 = with(modwtchs.p@vars.modwt$summary, LH.var + HL.var + HH.var))

LH1 LH2 LH3 LH4 LH5

1.9627983 5.2279138 11.2638729 14.9082723 12.1252979

R> (LL.var = i.v[J.chs] - i.v2[J.chs]) #S-S variance

iso5

28.121841

R> #total isotropic average energy over all j...

R> (ae1 = sum(i.v2 + c(rep(0, J.chs - 1), LL.var)))

[1] 73.609997

R> (ae2 = sum(modwtchs.p@vars.modwt$summary$iso.var))

[1] 73.609997

Thus, the sum over all levels is the average energy Ê (i.e., corresponding to E[X2]) in (22) as shown
above. Subtracting X̄2 from this yields the total sample variance as shown in the following section.
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4.3.2 total: Totals

The total component of this list contains the mean and wavelet variance for the smooth component,
and overall sample variance.

R> str(modwtchs.p@vars.modwt$total)

List of 3

$ LL.mean : num 4.6

$ LL.var : num 28.1

$ modwt.var: num 52.4

The overall wavelet sample variance, modwt.var, is σ̂2X in relation (18). The energy identity (12)
is the squared norm (since X is a matrix with N rows and M columns) giving the sums of squares
of the sampling surface values (e.g., Percival and Walden, 2000, p. 42). Thus, to get the overall
wavelet sample variance (equal to the sampSurf variance) one must subtract off the squared surface
mean (LL.mean) from the sum of the isotropic variances over all levels. This is shown in the result
below, which can be compared with the corresponding slots in the object. . .

R> with(modwtchs.p@vars.modwt, sum(summary$iso.var) - total$LL.mean^2)

[1] 52.427884

R> (modwt.var = modwtchs.p@vars.modwt$total$modwt.var)

[1] 52.427884

R> (ssVar = modwtchs.p@ss@surfStats$var)

[1] 52.440687

Note the slight discrepancy between the MODWT and sampSurf variances in the above. Recall
that the wavelet variances are defined based on a divisor of MN , the dimensions of the entire scene.
However, the sampSurf variance is the traditional sample variance that is based on MN − 1. We
can illustrate this difference as follow. . .
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R> NM = ncell(modwtchs.p@ss@tract) #total image size

R> modwt.var*NM/(NM - 1) #equals ssVar

[1] 52.440687

The wavelet variance for the smooth term, LL.var, is simply 1
NM ‖Z̃J0‖

2 as demonstrated in § 4.3.1.
Finally, σ̂2ZJ0

can be easily calcluated as. . .

R> with(modwtchs.p@vars.modwt$total, LL.var - LL.mean^2)

[1] 6.9397292

4.3.3 image: Image variances

The “image variances” are the average energy on a per cell (u, v) basis, with each set of images
indexed over j = 1, . . . , J0 as applicable; i.e., only J0 for LL.var. Therefore, each of the different
components of this list is either another list or a matrix. . .

R> str(modwtchs.p@vars.modwt$image, 1)

List of 6

$ LH.var :List of 5

$ HL.var :List of 5

$ HH.var :List of 5

$ LL.var : num [1:64, 1:64] 0.000764 0.00074 0.000703 0.000672 0.000646 ...

$ iso.var :List of 5

$ isoSurf.var: num [1:64, 1:64] 0.00115 0.00119 0.00122 0.00123 0.00123 ...

The slots in the lists above each contain image matrices as will be shown and described more fully
in the following sections.

In what follows, we define the square of a matrix to be the same as squaring each individual element
of the matrix as in R. The elements in each matrix are the individual values of the average energy
at (u, v). These might be loosely denoted as E[D2

j,u,v], where D is one of the wavelet decomposition
matrices at level j.
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LH.var: This set of matrices corresponds to the average energy in the horizontal decomposition;
that is, the 1

NM Ṽ2
j , j = 1, . . . , J0 matrices, each with elements (u, v).

R> str(modwtchs.p@vars.modwt$image$LH.var)

List of 5

$ LH1: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ LH2: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ LH3: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ LH4: num [1:64, 1:64] 2.13e-06 4.73e-06 8.64e-06 1.39e-05 1.90e-05 ...

$ LH5: num [1:64, 1:64] 1.24e-04 9.92e-05 8.59e-05 7.55e-05 6.67e-05 ...

HL.var: The 1
NM Ũ2

j , j = 1, . . . , J0 vertical average energy matrices, each with elements (u, v).

R> str(modwtchs.p@vars.modwt$image$HL.var)

List of 5

$ HL1: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ HL2: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ HL3: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ HL4: num [1:64, 1:64] 2.13e-06 4.73e-06 8.64e-06 1.39e-05 2.18e-05 ...

$ HL5: num [1:64, 1:64] 0.000258 0.000336 0.000399 0.000432 0.000445 ...

HH.var: The 1
NM W̃2

j , j = 1, . . . , J0 diagonal average energy matrices, each with elements (u, v).

R> str(modwtchs.p@vars.modwt$image$HH.var)

List of 5

$ HH1: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ HH2: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ HH3: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ HH4: num [1:64, 1:64] 2.13e-06 4.73e-06 8.64e-06 1.39e-05 1.90e-05 ...

$ HH5: num [1:64, 1:64] 2.22e-07 1.21e-06 7.50e-06 1.25e-05 1.48e-05 ...
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LL.var: The 1
NM Z̃2

J0
smooth average energy matrix with elements (u, v).

R> str(modwtchs.p@vars.modwt$image$LL.var)

num [1:64, 1:64] 0.000764 0.00074 0.000703 0.000672 0.000646 ...

iso.var: Like the marginal vector of the same name, this matrix is the sum over all of the directional
component matrices and includes the smooth matrix at the final level. . .

Ĩj =


1

NM

(
Ṽ2
j + Ũ2

j + W̃2
j

)
for j = 1, . . . , J0 − 1, J0 > 1

1
NM

(
Ṽ2
J0

+ Ũ2
J0

+ W̃2
J0

+ Z̃2
J0

)
for j = J0

(26)

R> str(modwtchs.p@vars.modwt$image$iso.var)

List of 5

$ iso1: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ iso2: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ iso3: num [1:64, 1:64] 0 0 0 0 0 0 0 0 0 0 ...

$ iso4: num [1:64, 1:64] 6.39e-06 1.42e-05 2.59e-05 4.17e-05 5.99e-05 ...

$ iso5: num [1:64, 1:64] 0.00115 0.00118 0.0012 0.00119 0.00117 ...

isoSurf.var: This matrix is the sum over all of the individual J0 level matrices in the previous
iso.var slot; i.e., Ĩ1 + . . .+ ĨJ0 . Below we see that the sum over all (u, v) cells in isoSurf.var is
just another sample estimate of E[X2], the total average energy, to be compared with that given
by the sampling surface itself. . .

R> str(modwtchs.p@vars.modwt$image$isoSurf.var)

num [1:64, 1:64] 0.00115 0.00119 0.00122 0.00123 0.00123 ...

R> NM = ncell(modwtchs.p@ss@tract) #total image size

R> AE = sum(matrix(modwtchs.p@ss@tract)^2)/(NM) #sampSurf total AE

R> SV = sum(modwtchs.p@vars.modwt$image$isoSurf.var) #MODWT total AE

R> AE - SV

[1] 1.8474111e-13
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It is important to note that even though the total average energies in the original sampling surface
and the MODWT wavelet decomposition sum to exactly the same value, their image representations
are different on a per cell basis. That is, while the MODWT decomposition preserves total energy,
it does not preserve the individual (u, v) energies on a per cell basis. Hence, the MODWT average
energy surface will be different from the sampSurf surface, as would be expected since the former is
composed of the sum of the scale-based decompositions, while the latter is essentially the average-
square of the original sampling surface values as shown above.

An example contrasting the sampSurf and cumulative (isoSurf.var) MODWT variance surfaces
at level J0 (the only level we can compare them at) is presented in Figure 2. The figure illustrates
quite plainly the difference between the two surfaces. Level j = 1 inclusion zone boundaries can be
seen exaggerated like moon craters in several places. The MODWT surface is spread out, with a
smaller maximum than the sampSurf version, due to the different combined scale smoothing effects
in the image. The ssEnergy function computes the average energy from a sampSurf scene in the
corresponding slot of the “ssMODWT” object.11

R> ae = ssEnergy(mo.bef, showPlot = FALSE) #sampSurf AE

R> (mo.bef.range = range(matrix(ae)))

[1] 0.0000 1014.6854

R> mo.pal = palMODWT(100, range = mo.bef.range) #a nice palette

R> plot3D(ae, col = mo.pal)

R> (mo.bef.range = range(mo.bef@vars.modwt$image$isoSurf.var))

[1] 0.00000 571.91254

R> M = nrow(mo.bef@ss@tract)

R> N = ncol(mo.bef@ss@tract)

R> plot3D(raster(mo.bef@vars.modwt$image$isoSurf.var, 0,M, 0,N), col = mo.pal)

4.4 Decomposition levels

The levels used in the decomposition are given in the levels slot and correspond to the definitions
in § 1.1. . .

11Please see ?ssEnergy for more information on this function.
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(a) sampSurf (b) MODWT

Figure 2: An sampSurf (left) and MODWT (right) isotropic average energy surface variance de-
composition for the BEF example in § 3.2.

R> modwtchs.p@levels

$J

[1] 5

$N

[1] 64

$M

[1] 64

$L

[1] 2

$j

[1] 1 2 3 4 5

$tau.j

[1] 1 2 4 8 16

$Lj

Wednesday 24th May, 2017 1:53pm



ssWavelets Users Guide. . . §4 The ssWavelets Class Structure Gove 28

[1] 2 4 8 16 32

$Nj

[1] 63 61 57 49 33

$Mj

[1] 63 61 57 49 33

Note in this example that we have N = M = 64 which, if we were doing a DWT diadic decompo-
sition would make N = M = 2J = 26. But here, we have specified J = 5, which is really J0 < J
in our above notation. In essence, J has no meaning in MODWT, though as noted above, we are
treating J ≡ J0 in the R code and elsewhere for MODWT.

4.5 MODWT versus MODWT+MRA

As noted above (§ 3), variances can only be calculated for the MODWT decomposition, not the
accompanying MRA. However, the MRA provides a multi-resolution analysis that is spatially rec-
tified to the original image, which is necessary for conducting any further analysis where juxtapo-
sition and alignment actually matter (just about everything). The normal result returned from a
MODWT analysis gets shifted progressively further away from the correct alignment, the higher
the decomposition level; i.e., the misalignment is cumulative.

R> mocp1.us = ssMODWT(sscp1, J = J.cp, shift = FALSE, runQuiet = TRUE)

R> plotMODWT2D(mocp1.us, waveType = 'ISO', type = 'var', level = J.cp,

+ decompType = 'modwt')

R> plotMODWT2D(mocp1, waveType = 'ISO', type = 'var', level = J.cp,

+ decompType = 'modwt')

The shift for a MODWT analysis is illustrated in Figure 3, where the level J = 3 decomposition
for a MODWT is shown both unshifted and shifted. Note that the wavelet coefficients do not
align correctly with the inclusion zone (they appear shifted to the right and down) in the unshifted
MODWT image, but they align perfectly after shifting. A MODWT+MRA decompostion would
appear very similar to the shifted version; however, the scales would be slightly different between
the two images, reflecting the difference in the decompositions.12

12Simply change decompType=‘mra’ to plot the MODWT+MRA analysis.
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(a) Unshifted
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(b) Shifted

Figure 3: An unshifted (left) MODWT isotropic variance decomposition at level J = 3 on the
single-tree circular plot sampling surface. Note that the decomposition is offset in the positive
x and negative y directions from the actual inclusion zone (solid line) compared to the rectified
(shifted) version (right).

4.6 The “ssCovMODWT” Class

A simple extension to the “ssMODWT” class is used to create a subclass that will allow wavelet
covariance estimation between two “sampSurf” objects (see § 7.2 for an example). The “ssCov-
MODWT” class is defined as. . .

R> showClass('ssCovMODWT')

Class "ssCovMODWT" [package "ssWavelets"]

Slots:

Name: ss.b ss.modwt.b ss.mra.b covStats ss.modwt vars.modwt

Class: sampSurf list list list list list

Name: ss.mra levels description wfName ss

Class: list list character character sampSurf

Extends:

Class "ssMODWT", directly

Class "ssWavelet", by class "ssMODWT", distance 2
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In addition to the slots in “ssMODWT”, this subclass adds the following slots. . .

ss.b: The second “sampSurf” object.

ss.modwt.b: The MODWT analysis corresponding to ss.b.

ss.mra.b: The MODWT+MRA analysis corresponding to ss.b.

covStats: A simple summary of the sampling surface and wavelet decomposition covariances and
correlations; note that the respective entries should match. . .

• ssCov: The covariance for the two sampling surfaces.

• ssCor: The correlation for the two sampling surfaces.

• modwtCov: The overall covariance for the MODWT analysis.

• modwtCor: The overall correlation for the MODWT analysis.

One very important point to keep in mind with regard to the “ssCovMODWT” object is that
the vars.modwt slot now holds a covariance analysis, not a variance analysis as in the simpler
“ssMODWT” objects. The individual wavelet variance analyses are not directly available in the
“ssCovMODWT” class object; therefore, it is necessary to save the “ssMODWT” objects that were
used to create the covariance object if individual variance results are required in further analysis.

5 Plotting

The raster package is used heavily in sampSurf. It is also extremely useful when displaying the
results from a modwt.2d wavelet analysis. It is a simple matter to cast the resultant matrices
into a “raster” class object and take advantage of the plotting and summary options built into
raster, both two- and three-dimensional. Examples of figures that can be generated for different
decomposition levels are illustrated in the following. These all take advantage of the raster facilities
for display.

5.1 plotMODWT2D: individual components within level

The most basic plotting routine is plotMODWT2D, it generates a display of the jth level decompostion
(MODWT or MODWT+MRA). However, it will only display one component at a time; i.e., LHj,
HLj, HHj, LLj, or ISOj, where the latter is the isotropic display. An illustration of this is displayed
in Figure 3.

This routine also supports a Lattice plot of an “ssMODWT” object. An example is given in
Figure 4 from the following. . .
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R> rl = plotMODWT2D(mocp2, waveType = 'ISO', type = 'var', level = 0,

+ decompType = 'modwt', addLattice = TRUE, showPlot = FALSE)

R> plot(rl$plt)
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0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Figure 4: A lattice version of an isotropic MODWT decomposition over all levels (isoSurf.var:
§ 4.3.3.

Note that the return object is a list with the Lattice plot as one of the components that can simply
be plotted. This option is not available for plotLevel2D in § 5.2.

5.2 plotLevel2D: all components within level

A perhaps more interesting display is produced by plotLevel2D, which calls plotMODWT2D to get
the individual component plots, and then combines them into one set for the jth level. The one
drawback to this plot can be that the scale of the isotropic component can be much greater than
that of the other components, and thus sometimes make it difficult to see details on the anisotropic
figures. This occasionally can be remedied by using a different color scheme, but more often the
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scale differences are too large. The inclusion zones, if desired, are displayed only the upper left
(horizontal) component. An illustration of this method is displayed in Figure 5.

R> plotLevel2D(modwtchs.p, type = 'var', level = J.chs, decompType = 'modwt')

Top left: horizontal

Top right: diagonal

Bottom right: vertical

Botton left: isotropic

Bottom middle: final smooth

R> plotLevel2D(modwtchs.p, type = 'raw', level = J.chs, decompType = 'modwt',

+ runQuiet = TRUE)
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Figure 5: A MODWT raw (left) and variance (right) decomposition at level j = 5 on the CHS
sampling surface (LH=upper left, HH=upper right, HL=lower right, ISO=lower left, LL=bottom).

Notice the difference in scale between the two sets of images in Figure 5. Even though the energy
is the square of the raw image coefficients (which can be large), recall that the average energy, and
thus the variance, is divided by N ×M , and therefore produces small values for the variance when
displayed on a per-pixel basis.
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6 Boundaries

As in forest sampling, there are potential pitfalls with edges of images because as the wavelet is
dilated to larger scales part of a wavelet can extend beyond the boundary when the location nears
the edge of the scene. Addison (2002, §2.15) has the most thorough discussion on this subject of the
books I have consulted so far, the result of which he calls a boundary effect, as we do in sampling.
He lists several potential correction mechanisms with regard to time series or signals, but most of
these also readily extend to images; e.g.,. . .

1. Zero padding: Pad around the image with zeros (background values in sampSurf). This is
automatic with “bufferedTract” boundary correction in sampSurf.

2. Value padding: Pad with some positive value.

3. Decay padding: Assume a decaying signal (surface) past the edges.

4. Periodization: Also known as “periodic boundary correction” (PBC: https://en.wikipedia.
org/wiki/Periodic_boundary_conditions). This is toroidal correction (Ripley, 1981, p. 152
& 166). It is a translation of the image such that the end wraps back to the beginning. This
is an immutable “option” in the R waveslim package without changing the code. In fact, one
can not choose no correction, a look at the R & C code shows that this is hard-wired in the C
dwt and modwt routines (both found in dwt.c). It is also hardwired into the mra and mra.2d

code, which calls these functions.

5. Reflection: The image is reflected in all directions. That is, it is folded about each edge to
make a mirror image on each side (Lark and Webster, 2004, Figure 4).

1D: Reflection is an option in waveslim, but only for 1D DWT, MODWT and MRA analysis.
If it is chosen the series is padded only on the end with the reflected values. In fact,
the R code is the following (see any of dwt, modwt or mra), with x as the time series
passed. . .

switch(boundary,
``reflection'' = x <− c(x, rev(x)),
``periodic'' = invisible(),
stop(``Invalid boundary rule in dwt''))

If one specifies ‘‘periodic’’, then nothing is done, because this is the unchangeable
default. If you specify ‘‘reflection’’, then the series is reflected on the upper end
only, and periodic correction is applied to this reflected series. Note that the 1D MRA
routine, mra, also allows reflection (and, as above, always applies periodization since
it simply calls the above routines first for the general decomposition)—the code is the
same as above.

2D: However, the 2D routines (dwt.2d, modwt.2d or mra.2d), have no facility for reflection,
they always simply apply periodization. The code looks like the following. . .
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switch(boundary,
``periodic'' = invisible(),
stop(``Invalid boundary rule in mra''))

It is difficult to know whether this is by design or oversight? It is probably by design as
the series would require reflecting for both rows and columns, and would, I think, also
need the diagonals (see the example from ssReflect below).

6. Windowing: It is not entirely clear at present how this is used for boundary correction.

7. Polynomial fitting: Use a fitted polynomial to extend in all directions.

8. Signal following: If we have a larger signal (area) surrounding the area of interest, then we
can simply use the extended area. We call this buffering in the case of, e.g., growth plots
where an external buffer is maintained surrounding the plot.

9. Wraparound: Rather than wrapping the signal/image, this wraps the wavelet and seems to
be favored by Addison (2002, p. 59).

The use of padding and periodization was discouraged by Lark and Webster (2004). In discussing
the latter they note. . .

Again this is clearly inappropriate. Discontinuities may appear at the boundary, and
the benefit of localization in wavelet analysis is lost if we generate coefficients near one
boundary using values from the opposite boundary. Standard implementations of the
pyramid algorithm use this solution.

These authors advocated reflection as the most appropriate. It is true that in some sense localization
is lost, however, as we note below, a more insidious problem can arise with reflection. Also, as noted
above, the waveslim package uses periodization exclusively. Even if one were to reflect the image
into a larger area, the modwt.2d routine will still used periodization on this image; more on this
below. These authors note, with respect to reflection. . .

This creates discontinuities in the derivatives of the data, but it is unlikely to lead to
misleading results as long as the scale parameters are restricted to values less than or
equal to half the shortest dimension of the sampling grid.

Ma and Zhang (2015) also eschew padding and periodization as “not appropriate for our study.”
They chose reflection stating that. . .

This approach may effectively reduce the boundary effect if we control the values of scale
parameters less than or equal to half of the shortest dimension of original data.
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However, these authors used the waveslim package modwt.2d routine in their analysis with no
mention of modification. Thus, it is possible that they were unaware that it automatically applied
periodization to the enlarge reflected image.

In a paper explicitly devoted to two-dimensional wavelet variance decomposition, Geilhufe et al.
(2013) make no mention of boundary correction methods applied in their analysis.

Reflection seems to be the correction method of choice. However, there is one salient point with
regard to tree populations that may negate this as a preferred method. In a spatial inhibition
process, as would be used to generate most tree populations—and indeed would be found in the
woods—generating trees near the boundary has preference because the boundary has no other
individuals to inhibit placing a tree there, unless there is one close by within the tract. Thus, there
is the potential for there to be more trees right near the edge. If the image is folded/reflected,
this will result in the same tree being replicated very close to itself (perhaps like a forked tree in
some extreme cases). This may or may not be acceptable. This does not appear to be an issue in
the Ma and Zhang and Lark and Webster studies as their phenomenon under study were not so
constrained. An example of a reflection applied to a sampling surface image is shown in Figure 6.

R> refchs = ssReflect(sschs)

R> plot(refchs, col = palMODWT(100, range = cellStats(refchs, range)))

R> plot(perimeter(sschs), add = TRUE)

The potential inhibition-related problem would not be of much concern in the case where we
generated a sampling surface using a buffered tract to contain all of the inclusion zones, since
then the trees themselves would lie within the internal buffer region. However, if we used mirage
correction (or walkthrough when it gets implemented), trees can lie right next to the boundary of
the tract. Also, coarse woody debris can cross the boundary and be clipped, and when reflected
create a mirror image of the log in question. This is not an inhibition problem, but would create a
type of discontinuity in the surface at the boundary due to the mirroring of the log.

The arguments put forth in the above studies that periodization is “clearly inappropriate” seem
reasonable for those studies, but as noted, may not be as applicable in the case of sampling surfaces,
especially using buffered tracts. Periodization is the toriodal correction as noted above and this has
been advocated by many authors like Ripley for boundary correction in spatial analysis. And it
does not suffer from the potential inihbition problem discussed above, unless a tree on one edge is
aligned with one on the opposite edge when translating, and this seems to have less of a potential for
happening than under reflection. The fact that it is in modwt.2d and also used in other branches
makes this appealing, but as noted, it will be applied regardless if this routine is used for the
analysis. An idealized example of a periodization as applied to the same sampling surface image
presented in Figure 6 is shown in Figure 7.
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Figure 6: Reflection of the critical height sampling surface (middle) about all sides.

R> torchs = ssToroid(sschs)

R> plot(torchs, col = palMODWT(100, range = cellStats(torchs, range)))

R> plot(perimeter(sschs), add = TRUE)

The example above is conceptually correct, but not algorithmically what is used in modwt.2d via
the pyramid algorithm. There, rows and columns are filtered one-by-one as if they were individual
time series, using the appropriate C routine for univariate time series filtering under MODWT in
waveslim. This is done in the correct order to generate the resulting matrices in Table 1. This
same routine is where periodization is automatically applied.

6.1 Reflection Plus Periodization

Gençay et al. (2002, p. 144) suggest that using both reflection and periodization (R+P) is a so-
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Figure 7: Periodization of the critical height sampling surface (middle) about all sides.

lution that has been used in Fourier analysis of signals (note this book is about time series, not
images). The ssMODWT constructor allows this option by passing reflect = TRUE in the call. The
MODWT decomposition is then applied to the entire image as in Figure 6 using periodization at
the boundaries of the extended image. Then the results of the analysis are clipped back to the
original tract extents at each level. However, this seems to cause wavelet statistics not to equate
correctly with the sampling surface statistics at higher levels. The following example compares the
previous MODWT decomposition, which used only periodization for boundary correction, to one
that uses periodization on a reflected sampling surface “image.”

R> modwtchs.rp = ssMODWT(sschs, reflect = TRUE, J = J.chs)

Reflection + Periodic

Inclusion zone class: criticalHeightIZ

Surface variance = 52.440687

Wavelet variance = 52.540737 (MODWT)
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Surf/Wave var ratio = 0.99809577

Check: surface var matrix = 52.541155 = E[X^2] - E[X]^2

Surface mean = 4.6024029

Wavelet mean = 4.6024483 (MODWT)

Wavelet mean = 4.6024029 (MRA)

R> sum(sapply(modwtchs.p@ss.modwt, sum)[1:(3*J.chs)]) #all but LLJ--should be zero

[1] -4.1530256e-14

R> sum(sapply(modwtchs.p@ss.mra, sum)[1:(3*J.chs)]) #all but LLJ--should be zero

[1] 1.94e-06

R> sum(sapply(modwtchs.rp@ss.modwt, sum)[1:(3*J.chs)]) #all but LLJ--should be zero

[1] 178.14795

R> sum(sapply(modwtchs.rp@ss.mra, sum)[1:(3*J.chs)]) #all but LLJ--should be zero

[1] -4.96e-06

Note in the above that the sums for the R+P correction are positive, not zero as they should be.
Further analysis (available from the author) shows that the problem comes at the higher levels of
decomposition, where the the sums are non-zero.

Elsewhere it has been demonstrated that it is the act of shifting and subsequent clipping out of the
internal image corresponding to the original tract that creates the bias in the MODWT decompo-
sition.13 The main culprit appears to be the act of shifting using waveslim::shift.2d, which is
applied to rectify the full image prior to clipping. This follows because the MODWT+MRA analy-
sis, which is also applied to the full augmented image before clipping, produces a zero bias; however,
it preserves additivity over sub-images as shown in the summary results above. Unfortunately, shift-
ing is necessary for re-alignment in MODWT, which is required for variance decomposition, so we
can not take advantage of the MODWT+MRA result here. Any analysis based on the raw wavelets,

13Extended analysis available from the author on request.
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however, would work fine with regard to the MODWT+MRA decomposition and that would be
the correct one to use in this case.

In summary, even though R+P is included in the ssMODWT generator function, it should be used
with caution when the results might be applied to variance estimates. However, it should be fine
for MODWT+MRA based on the raw wavelet decomposition.

7 Comparing Methods

In this section, we look at a few different ways that wavelets might give a little new insight into
comparing sampling methods.

7.1 Sample variance

The derivation (sort of) of the sample variance with regard to wavelet decomposition was outlined
in § 2.2. These same methods can be used to look at the wavelet variances as well and are mentioned
where appropriate. Most of this discussion will center around summaries given through the plotting
routines.

7.1.1 Image variance plots

The image plotting routines were demonstrated in § 5. Figures 3 and 5 show wavelet variance
results for single component plots at level j, and the set of directional and isotropic component
plots at the jth level, respectively. The image variances are interesting, but often, due to the nature
of the phenomenon of interest (areal sampling surfaces), may not be as informative for comparing
methods as the marginal displays demonstrated in the following section.

7.1.2 Marginal variance plots

The ‘marginal’ sample and wavelet variance plots are often more useful. They are marginal in the
sense that they display the sum of the variances over all sample points (cells) in individual images
at levels j = 1, . . . , J0. Unlike the image plots, these can be displayed only for the isotropic variance
components at the present time14. The following sampSurf and associated MODWT results are
used to compare circular plot sampling and horizontal point sampling on the simple three-tree
population.

14Though this could easily be changed if desired.
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R> #circularPlotIZ (default) plot radius is in meters...

R> sscp.8 = makeSS('ss.3tree', plotRadius = 8, runQuiet = TRUE)

R> sscp.10 = makeSS('ss.3tree', plotRadius = 10, runQuiet = TRUE)

R> sscp.12 = makeSS('ss.3tree', plotRadius = 12, runQuiet = TRUE)

R> hfs.J = 4

R> mocp.8 = ssMODWT(sscp.8, J = hfs.J)

Inclusion zone class: circularPlotIZ

Surface variance = 74.459497

Wavelet variance = 74.441318 (MODWT)

Surf/Wave var ratio = 1.0002442

Check: surface var matrix = 74.441318 = E[X^2] - E[X]^2

Surface mean = 2.761457

Wavelet mean = 2.761457 (MODWT)

Wavelet mean = 2.761457 (MRA)

R> mocp.10 = ssMODWT(sscp.10, J = hfs.J, runQuiet = TRUE)

R> mocp.12 = ssMODWT(sscp.12, J = hfs.J, runQuiet = TRUE)

R> #angleGauge object default is metric baf...

R> sshps.3 = makeSS('ss.3tree', 'horizontalPointIZ', angleGauge=angleGauge(3),

+ runQuiet = TRUE)

R> sshps.4 = makeSS('ss.3tree', 'horizontalPointIZ', angleGauge=angleGauge(4),

+ runQuiet = TRUE)

R> sshps.5 = makeSS('ss.3tree', 'horizontalPointIZ', angleGauge=angleGauge(5),

+ runQuiet = TRUE)

R> mohps.3 = ssMODWT(sshps.3, J = hfs.J)

Inclusion zone class: horizontalPointIZ

Surface variance = 45.642074

Wavelet variance = 45.630931 (MODWT)

Surf/Wave var ratio = 1.0002442

Check: surface var matrix = 45.630931 = E[X^2] - E[X]^2

Surface mean = 2.7776477

Wavelet mean = 2.7776477 (MODWT)

Wavelet mean = 2.7776477 (MRA)

R> mohps.4 = ssMODWT(sshps.4, J = hfs.J, runQuiet = TRUE)

R> mohps.5 = ssMODWT(sshps.5, J = hfs.J, runQuiet = TRUE)
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The hfsMODWT method combines any number of objects generated by ssMODWT into a data frame
in either (i) wide, or (ii) long format. For example, the results for horizontal point sampling from
the above objects in long format are. . .

R> args(hfsMODWT)

function (..., ids = NA, long = TRUE, runQuiet = TRUE)

NULL

R> cp.hfs = hfsMODWT(mocp.8, mocp.10, mocp.12, ids=c('cp8','cp10','cp12'),

+ long = TRUE)

R> hps.hfs = hfsMODWT(mohps.3, mohps.4, mohps.5, ids = c('baf3','baf4','baf5'),

+ long = TRUE)

R> head(hps.hfs)

id mean scaleVar waveVar waveSampVar avg.E izArea iso.j

1 baf5 2.7236325 31.044980 36.953536 67.998515 75.416689 151.84364 iso1

2 baf4 2.7796883 29.313877 28.085211 57.399087 65.125754 189.80456 iso1

3 baf3 2.7776477 25.337202 20.293729 45.630931 53.346258 253.07274 iso1

4 baf5 2.7236325 31.044980 36.953536 67.998515 75.416689 151.84364 iso2

5 baf4 2.7796883 29.313877 28.085211 57.399087 65.125754 189.80456 iso2

6 baf3 2.7776477 25.337202 20.293729 45.630931 53.346258 253.07274 iso2

iso.var tau.j j

1 4.9260724 1 1

2 3.3381179 1 1

3 2.2378952 1 1

4 6.1527443 2 2

5 4.3362901 2 2

6 2.9489208 2 2

Long format: Long format is set up for conditioning plots using lattice or similar. In the exam-
ple here we see several columns of information that are contained in the data frame as follows. . .

id: A simple sampling method identifier that will be used in the legend to identify the methods.
This defaults to the object names passed.

mean: The sampling surface mean.

scaleVar: The empirical scaling variance, which is given by σ̂2ZJ0
(21).
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waveVar: The total empirical wavelet variance over all levels as given by σ̂2WUV (20).

waveSampVar: The wavelet sample variance, σ̂2X , which is equal to the sampling surface variance
given by sampSurf, as demonstrated in § 4.3.2.

avg.E: This is the average energy, Ê (22), in the marginal decomposition for each sampling method
passed.

izArea: The average inclusion zone area for variable radius methods. Of course, this is simply
the plot size for fixed-area methods.

iso.j: This is the isotropic identifier at level j that corresponds to the column names in wide
format giving the isotropic variances below.

iso.var: The isotropic variances as described in § 4.3.1. These are indexed by id and j above,
and corresponding to the iso.j columns in wide format.

tau.j: The τj as defined in § 1.1; i.e., distance at level j.

j: The decomposition level j as defined in § 1.1

The sample variance plot is generated using varPlot from the data frames created in the calls to
hfsMODWT. The variance actually plotted is the iso.var described above. . .

R> args(varPlot)

function (..., sampMeth = c("Meth.A", "Meth.B"), groupSM = TRUE,

units = c("metric", "English"), isoSmooth = TRUE, showPlot = TRUE,

fileName = "", ylab = "Isotropic Variance", xlab = "Distance",

scales = "same", type = "b", pch = 19, as.table = TRUE, theme = c("plain",

"custom", "ggplot", "economist"), runQuiet = FALSE)

NULL

R> varplt = varPlot(cp.hfs, hps.hfs, sampMeth = c('cp','hps'), groupSM = TRUE,

+ scales = 'free', theme = 'ggplot')

units = metric

isoSmooth = TRUE

The number of sampling methods that can be compared is essentially unlimited and can simply be
added to the ‘...’ argument list; one such data set is all that is required. The sampMeth argument
provides the identifiers for the conditioning panels corresponding to the data frames. Any argument
following the ‘...’ must be specifically named or the routine will interpret them as members of
the ‘...’ argument list and throw an error. The plot generated above is shown in Figure 8.
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Figure 8: Marginal isotropic sample variance plot comparing circular plot and horizontal point
sampling for volume on a 3-tree population.

Wide format: While long format is most useful for conditioning plots, hfsMODWT also can produce
a data frame in wide format. For example, the horizontal point sampling results in wide format
are. . .

R> cp.hfsw = hfsMODWT(mocp.8, mocp.10, mocp.12, ids=c('cp8','cp10','cp12'),

+ long = FALSE)

R> hps.hfsw = hfsMODWT(mohps.3, mohps.4, mohps.5, ids = c('baf3','baf4','baf5'),

+ long = FALSE)

R> head(hps.hfsw)

id iso1 iso2 iso3 iso4 mean scaleVar

mohps.5 baf5 4.9260724 6.1527443 9.7108995 54.626973 2.7236325 31.044980

mohps.4 baf4 3.3381179 4.3362901 7.3363250 50.115021 2.7796883 29.313877

mohps.3 baf3 2.2378952 2.9489208 5.2490808 42.910361 2.7776477 25.337202
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waveVar waveSampVar avg.E izArea

mohps.5 36.953536 67.998515 75.416689 151.84364

mohps.4 28.085211 57.399087 65.125754 189.80456

mohps.3 20.293729 45.630931 53.346258 253.07274

It is straightforward to match the results in wide format to those in long format described previously.
For example, the ISOj columns in wide format correspond to the iso.var column at the jth level.
They have simply been ‘stacked’ and indexed to create the long format version. An example where
we can bind together wide format results is shown in § 8.

Other uses for hfsMODWT output are described in § 8 and ??.

7.2 Sample covariance

In § 2.3 we briefly described the calculation of the wavelet covariance between two sampling methods
represented on two images, X and Y. The covariances themselves are calculated by passing the two
sampSurf images to covMODWT as described there. However, the function ssCovMODWT wraps this
into a simple interface that takes as arguments the two respective MODWT objects as returned
from ssMODWT. It returns an object of class “ssCovMODWT” that is a subclass of “ssMODWT”,
and is detailed in § 4.6. Extensions include a second sampSurf object (the Y image) that is returned
in the ss.b slot. Furthermore, the vars.modwt slot now contains the covariance results in exactly
the same format as presented in § 4.3, where the isCovariance slot is now set to TRUE.

R> args(ssCovMODWT)

function (ssMODWT.a, ssMODWT.b, ...)

NULL

The function exCovMODWT15 applies ssCovMODWT on our one-, two-, or three-tree sample populations
from § 3.1. The examples that follow use circular plot sampling with different plot sizes for a volume
sampling surface.

7.2.1 One-tree Example

The examples that follow use a 12 m and 16 m plot radius.

15Available from the author on request.
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R> exCovMODWT('ss.1tree', level = 1, waveType = 'LH', runQuiet = TRUE)

Wavelet type = LH

Squared differences...

Level 1 computed covariances = 0
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Figure 9: Horizontal (LH1) MODWT 12 m raw (top left), 16 m raw (top right), and raster sum
of the two surfaces (bottom left) with the covariance surface decomposition at level j = 1 (bottom
right) for the single-tree circular plot sampling surface.

First the above output from exCovMODWT demonstrates that the squared difference between a co-
variance (marginal sum over the image) calculated on the raster sum of the two methods (Figure 9
lower left) is equivalent to the covariance image (marginal sum) calculated in ssCovMODWT and dis-
played in the lower right. Note that since the raw wavelet coefficients do not overlap at any lattice
point, the covariance is zero for both images.

By way of explanation, when the LH1 filter in (4) is applied to the 12 m surface we see the usual
outline as in the top left figure, and similarly for the top right for the 16 m. It is important to note
that all other grid cells are zero in the background. The raw coefficient (raster addition) composite
of the two is in the bottom left to illustrate what is available for the product of the two images for
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covariance calculation. Since they have no non-zero grid cells in the respective decompositions in
common, the result is zero covariance when multiplied (as mentioned, zero surface values on one
image multiplied by non-zero along the edges of the other). Note that the first three raw images
are displayed simply to illustrate what is going on here in pictures, which makes it much simpler
to understand than the final (zero-surface) covariance product alone.

Level j = 2 is very similar to that of the above, but with two double-ring approximately four-pixel
wide (τ2 = 2 m) results, still non-overlapping (zero covariance).16 Each level is quite interesting
to look at and decipher what is going on with regard to the covariance surface at those distances.
It is not until level j = 3 that we actually get some overlap because now τ3 = 4 m, which just
“happens” to be the distance between the two plot radii, generating covariance in the two surfaces.
Figure 10 presents the results of the following run for an isotropic pair of surfaces with the same
sampling methods as in Figure 9, but at j = 3.

R> exCovMODWT('ss.1tree', level = 3, waveType = 'ISO', runQuiet = TRUE)

Wavelet type = ISO

Squared differences...

Level 3 computed covariances = 7.5231638e-37

***>Careful: the product of 2 ISOs is not the same as the sum of the products

of the individual anisotropic components if cross-product != 0<***

The same idea applies here as for the horizontal decomposition above. The background cells are all
zero other than those shown by the isotropic raw wavelets for the two images, and the composite
raster sum. The final covariance can be envisioned by imagining the product of the two surfaces
in the top row as before.17 It is interesting that the covariance surface is all positive in this case,
simply because of the perfect separation at j = 3 and alignment of the two inclusion zones. In
other not so contrived examples, this will not be the case, the covariance will be both positive and
negative through the surface.

Two total average covariance images are shown in Figure 11. The leftmost image is the average
covariance energy as calculated directly from the two individual sampSurf images using ssEnergy.
The right image is the average covariance energy for the combined scenes; that is, the cumulative
isotropic covariance over all levels, plus the level J0 smooth as defined in 4.3.3, but for covariances,
in the image$isoSurf.var slot in the object.

R> exCovMODWT('ss.1tree', level = 0, waveType = 'ISO', runQuiet = TRUE)

16Because of the circular edge nature of the inclusion zone, decomposition pixel width will vary for each image
row.

17Again, the sum in the lower left just shows the overall coverage potential of the two images and can’t be used
to obtain the covariance.
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Figure 10: Isotropic (ISO3) MODWT 12 m raw (top left), 16 m raw (top right), and raster sum
of the two surfaces (bottom left) with the covariance surface decomposition at level j = 3 (bottom
right) for the single-tree circular plot sampling surface.

Wavelet type = ISO

Squared differences...

Total average energies = 8.9055001e-31

Total "average energy" = 0.26565714

The sampSurf covariance energy image is, of course, what we would expect as the definitive image
without wavelet decomposition. It is a positive-valued cylinder contained within the 12 m radius
circular plot, with all other values outside the plot zero. Again, this derives from the fact that even
though the surface cylinder associated with the 16 m plot has values throughout its inclusion zone,
when those values outside the 12 m plot are multiplied by the 12 m surface, they become zero.
Therefore, the covariance inside the 12 m plot is the product of the two sample surfaces within that
circumference.

On the other hand, the wavelet covariance energy image accumulates all of the individual isotropic
images at each scale plus the smooth. As such, it can be seen to spread the variance out over
an area that not only contains the 16 m plot, but also many background values as well. Recall
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Figure 11: The average sampling surface covariance energy from the two sampling meth-
ods (left) and the isotropic surface MODWT total average covariance energy as given by the
image$isoSurf.var image (right) for the single-tree circular plot sampling surfaces.

that J0 = 5 implies that τ5 = 16 m in this example, so it has spread out in all directions by that
amount due to the level j = 5 component of the decomposition. Thus, just as in the case of the
total average energy for the variance, it is assigning covariance to cells where there is no original
surface. The interpretation can conveniently be thought of as a covariance between sample points
at these distances, since a sample point with zero estimate (surface height) is just as acceptable as
one with an non-zero estimate.

Finally, in the results of the above run from exCovMODWT we see that the squared differences between
the sum of the energies for each of the two images is zero. In other words, the sample covariance
energy is preserved in the spatial decomposition surface since it exactly equals the population value.
Thus, the spatial covariance decomposition of the average energy is different from the population
image, but the sum of these, which is our estimate for E[X · Y ], is the same for both surfaces.

7.3 Resolution

All of the examples have been based on a resolution of ∆xy = 1 m (ft) (§ 1.1). In theory, any resolu-
tion should work for wavelet decomposition just as it does in sampSurf. However, a simple example
with a resolution of ∆xy = 0.5 m demonstrates that there is a problem in waveslim::shift.2d.

R> sscp3.s = makeSS('ss.3tree', 'circularPlotIZ', plotRadius = 16, cellSize = 0.5)

Number of trees in collection = 3
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Heaping tree: 1,2,3,

R> ssMODWT(sscp3.s, J = J.cp, shift = FALSE)

Inclusion zone class: circularPlotIZ

Surface variance = 20.949876

Wavelet variance = 20.948597 (MODWT)

Surf/Wave var ratio = 1.000061

Check: surface var matrix = 20.948597 = E[X^2] - E[X]^2

Surface mean = 2.7655902

Wavelet mean = 2.7655902 (MODWT)

Wavelet mean = 2.7655902 (MRA)

R> ssMODWT(sscp3.s, J = J.cp, shift = TRUE)

Warning in .local(ss, ...):

Resolutions other than 1 do not work with waveslim::shift.2d!

Inclusion zone class: circularPlotIZ

Surface variance = 20.949876

Wavelet variance = 10.346457 (MODWT)

Surf/Wave var ratio = 2.0248358

Check: surface var matrix = 4.7650647 = E[X^2] - E[X]^2

Surface mean = 2.7655902

Wavelet mean = 1.4377403 (MODWT)

Wavelet mean = 2.7655902 (MRA)

The first decomposition where no shifting (§ 4.5) is done is fine, the results are comparable both
in variance and in means for sampSurf, MODWT, and MODWT+MRA. Unfortunately, this is
not the case for the second example where shifting has been applied. We see that the sampSurf

and MODWT+MRA means agree, but the MODWT mean is off by a factor less than two; given
that the resolution is half the original in both directions, this odd factor suggests no simple clear
correction. However, the fact that the MODWT+MRA results agree with those of sampSurf,
and that all agree in the first example without shifting, pinpoints the problem. In addition, the
variances are off by a factor greater than two (even with sample/population correction for the
divisor, § 4.3.2) so that the two errors are not commensurate. This points quite clearly to a
problem with waveslim::shift.2d.

Due to the above problem, I have added a check that throws a warning (see above) in the ssMODWT
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constructor method if shifting is requested for sampSurf objects with a resolution different from
∆xy = 1 m (ft). This is kind of a shame really because it restricts the full use of sampSurf, but in
practice, it should not present much of a constraint.

8 Smith’s “Law” Decomposed

The following is a simple example of how we could compare different sampling methods at different
scales (distances) in the sense of ‘plot size’ using the Smith plot (Smith, 1938). In this example,
three different plot sizes for circular plot sampling plus three different BAF’s for horizontal point
sampling are compared in the plot.

R> hfsplt = hfsPlot(cp.hfs, hps.hfs, sampMeth = c('cps','hps'), scales = 'free',

+ conditionOn = 'tau.j', theme = 'ggplot')

units = metric

Note that the isotropic variance (iso.var) is used in the display in Figure 12. Therefore, the smooth
component is included at level J0. This inflates the y-scale—the variance—on this one panel and
also changes the shape of the curves in the tail on this panel since the LL.var is different, not only
for each sampling method, but for each plot size or BAF.

We can look at the overall sampSurf variance in a similar fashion as something to compare these
against using the wide format results from hfsMODWT. . .

R> #reuse the wide format data frames from the variance plot section...

R> hps.hfsw$sm = 'hps'

R> cp.hfsw$sm = 'cps'

R> hfs = rbind(cp.hfsw, hps.hfsw)

R> xyplot(waveSampVar ~ izArea, hfs, groups=sm, type = 'b',

+ ylab = 'Total surface variance',

+ xlab = 'Average Inclusion Zone Area',

+ auto.key = list(x = .8, y = .9, corner = c(0, 0)),

+ par.settings = ggplot2like(),

+ lattice.options = ggplot2like.opts())

Figure 13 displays the results, showing that, at least for this very small population, the same trend
in variance agreement is preserved with the full sample variance.
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Figure 12: H. F. Smith plot comparing circular plot and horizontal point sampling by distance, τj ,
for volume on a 3-tree population.

8.1 Bartlett Example

The following is a slightly more involved example. It uses circular plot sampling (CPS), critical
height sampling and horizontal point sampling on the BEF data (§ 3.2), each with different sampling
efforts. For circular plot sampling, plot sizes of 1/10th, 1/20th, and 1/50th acre are used. With both
HPS and CHS, BAFs of 10, 20 and 30 are used. For reference, an example sampling surface for the
BEF using circular 1/50th acre (approximately 16ft radius) is shown in Figure 2.

The H. F. Smith plot comparison based on the full sampling surfaces for these methods is presented
in Figure 14.18

R> bef.hfs = hfsBEF(J = 6, showPlot = FALSE, runQuiet = TRUE)

R> plot(bef.hfs$plt.pop)

18The hfsBEF function is available from the author on request—it simply facilitates generating this example.
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Figure 13: H. F. Smith plot comparing circular plot and horizontal point sampling using the total
sampSurf variance for volume on a 3-tree population.

Note that the results conform to our expectations, that overall, HPS is more efficient that CHS,
which is more efficient that CPS.

These methods can also be applied to the MODWT decomposition of the respective sampling
surfaces to see how the methods compare at differing spatial scales. The results for the BEF are
presented in Figure 15.

R> plot(bef.hfs$modwt$plt)

Note that on first glance, something perhaps anomolous is happening the smaller scales. Here,
the variance is smaller for CHS for scales up to (and perhaps including at smaller BAFs) τ ′ = 4ft.
However, if we consider the shape of a CHS surface verses a HPS surface, coupled with what we now
know about MODWT decompositions at smaller scales, this begins to make some sense. Consider
a sampling surface for one tree under both these methods. The sampling surface for CHS will be
approximated by a parabolic shape, while that for HPS is a cylinder. When the wavelet filter hits
the wall of the HPS cylinder, it registers a large difference, but then advancing across the cylinder
top, the difference is zero until it again hits the other edge, which records a negative difference. The
sum total in terms of energy results in large variation going from zero to cylinder height and back
again. Conversely, the parabolic surface of CHS takes a small jump at the edge of the inclusion
zone (smaller than that of the HPS jump) then gradually increases and decreases over the sampling
surface height. Thus, the surface variance at small scales is less than that for HPS given the same
tree and sampling characteristics. The CPS interpretation is similar to that of HPS since it is also
a cylinder.
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Figure 14: H. F. Smith plot comparing circular plot, critical height and horizontal point sampling
at different sampling efforts on the BEF population (see text for details).

The above is a reasonable explanation for a single tree. However, the BEF is a plot with over 70
trees. It is not at all clear why the above explanation should carry over to a more complex surface.
It must be that the larger sharp jumps of HPS are still preserved within this sampling surface,
as are the smoother, smaller jumps of CHS. Also, CPS keeps its ranking as the least efficient for
volume in this case, though midlevel scales with smaller plot sizes are similar to CHS. This is an
interesting and perhaps unintuitive result for a larger population. Whether it really means much
in terms of sampling is uncertain until further simulations can be made.

One potentially useful extension of the above results to the field would be that small shifts (i.e., a
few feet) in point placement are less likely to cause any significant change in the volume estimate
under CHS. On the other hand, while not all such small shifts will cause a change under HPS or
CPS, there is the capacity for a large change in volume when a tree is either added or missed based
on a small change in the sample point position. This is also fairly intuitive when one considers it,
but without an analysis such as the wavelet decomposition, the reason for considering it, and the
tools for quantitative interpretation rather than intuition are lacking.
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Figure 15: H. F. Smith plot comparing circular plot, critical height and horizontal point sampling
at different sampling efforts on the MODWT decomposition of the BEF population (see text for
details).
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