rPlant

Barb Banbury, University of Tennessee, darwinthesun@gmail.com
Kurt Michels, University of Arizona, kamichels@math.arizona.edu

June 27, 2014

Contents
1__Introductionl 2
2 Getting Started| 3
2.1 ~Gaining Access to the APl 0. 3
[3 Uploading Files| 3
[3.1 UploadFile tunction|. 3
[3.2 Supported File Types|. o 4
[4 Manipulating directories on 1iPlant servers 4
[4.1 Listing directories| 4
4.2 Making directories| 5
(4.3 Sharing Directories|o)
4.4 Checking Permissions on Directories|. 6
4.5 Renaming Directories|. Lo 6
4.6 Moving Directories| 6
4.7 Deleting Directories| 7
[> Manipulating files on iPlant servers| 7
[b.1 Sharing Files| 7
[>.2 Checking Permissions on a File] 7
b.3 Moving Files|. 7
b.4 Renaming Files| 8
5.5 Deleting Files|o 8
(6 Applications| 8
[6.1 Listing Applications| 8
[6.2 Application Information|o 10
[7 Submitting Jobs in the rPlant package| 11
(7.1 Submitting Job| 11
(7.2 Submitting a job with a shared file| 13

[8 Checking Job Status and Retrieving Job output] 13

[8.1 Checking job status|. 13
8.2 Killing Jobl. 14
[8.3 Listing job status| 14
[8.4 Looking at Job History|. 14
[8.5 Retrieve job files| 14
[8.6 Delete jobl 15
[9 Submitting Jobs With Wrappers| 15
DI Muscle 15
D2 DMafftl. 17
9.3 ClustalWl 17
9.4 FastTreel 19
[9.5 RAxML (Randomized Accelerated Maximum Likelihood)[. 20
9.6 PHYLIP-Parsimony 3.69| 21
[9.7 Genome Wide Association Study models| 21
9.8 PLINK Conversion| 22
9.9 PLINKI. e 22
[9.10 FaST-LMM (Factored Spectrally Transformed Linear Mixed Models)| 22
(10 Creating workflows| 23
I0.1T Workflow Omnel o 23
10.2 Workflow T'walo 24
10.3 Workflow Threel 25
10.4 Workflow Fourl 26

1 Introduction

The iPlant Collaborative has developed many resources to deal with the emerging compu-
tational challenges facing biology. The project was initially designed to support the plant
sciences, but thanks to a generic approach, can be equally used by other disciplines. Users
have access to many different applications for data analysis, including clustering/network
analyses, QTL mapping, sequence alignments, phylogenetic tree building, and comparative
methods.

The main interface is its user-friendly Discovery Environment (http://www.iplantcollaborative.
org/discover/discovery-environment). A command-line interface, the agave API (http:
//agaveapi.co/, (Dooley et al|2012)), is linked to the Discovery environment. The Agave
API is used for computationally intensive applications. The API is a RESTful application
programming interface that allows direct interaction with all of iPlant re-
sources. The only way to access the API is to use cURL statements (Stenberg |(1996), an
example of a cURL statement will be detailed in one of the sections. The API provides
access to authentication, data manipulation and storage, and job submittal via HT'TPS- and
command-line functions. The benefit of using the API is having programmatic access that
allows advantages to power users (e.g. submitting jobs via batch files). The rPlant package
provides a direct link between high performance resources located at the Texas Advanced
Computing Center (http://www.tacc.utexas.edu) that the API can access and the R en-
vironment, by essentially creating wrappers around the cURL statements, using the RCurl

(Lang|2007) package.

http://www.iplantcollaborative.org/discover/discovery-environment
http://www.iplantcollaborative.org/discover/discovery-environment
http://agaveapi.co/
http://agaveapi.co/
http://www.tacc.utexas.edu

2 Getting Started

This vignette assumes you have the current version of R (R Core Team [2012)). First, in-
stall and load the package. A stable release is available through CRAN (http://cran.
r-project.org/web/packages/rPlant/)) or a working repository can also be used through
R-Forge (https://r-forge.r-project.org/projects/rplant/).

You can register as an iPlant user on their website (http://user.iplantcollaborative.
org/) generating a unique username and password combination.

2.1 Gaining Access to the API

Validate(username, password, api="agave")

The username/password combination will be used in the Validate function. The Validate
function is required for every rPlant session and needs to be the first thing executed or the
session will fail. In addition, it has a four-hour expiration. rPlant functions will auto renew
a session, thereby extending the expiration. If a session sits idle and expires, the user will
not have to re-validate a session as the functions will do this automatically. The only time
a user will need to use the Validate function is at the start of a new session.

> require(rPlant)

> username <- "enter your username"

> password <- "enter your secret password"
> Validate(username, password, api="agave')

The function checks if the username and password are valid iPlant credentials. If they aren’t
the above error is displayed. If the function is successful then nothing is printed. On rPlant’s
backend, a new R environment (rPlant.env) was created that stores all of the validation ob-
jects, including the user key and secret, user name and password, and token expiration.
These items can be examined by using the 1s(rPlant.env) and using the $ operator to
display individual objects.

Every rPlant function has the option print.curl=TRUE or FALSE. This refers to cURL a com-
puter software project providing a way to transfer data using various protocols, for detail
on cURL see http://en.wikipedia.org/wiki/CURL. These statements (w/o the outside
quotes) can be copied and pasted into a terminal in linux or unix. And if cURL is installed
on the computer then the statements can be executed. You will see that these statements
do the exact same thing as the rPlant functions. This is one of the big advantages of rPlant,
it can be used on any computer (including windows) and there is no need for the user to
install cURL on that computer, because rPlant uses the package RCurl.

Note: This package abides by the unix rule, “silence is golden”. If a function is successful
then no output will be displayed. If an error is attained then the error will be printed.

3 Uploading Files

3.1 UploadFile function

UploadFile(local.file.name, local.file.path="", filetype=NULL, print.curl=FALSE,
suppress.Warnings=FALSE)

http://cran.r-project.org/web/packages/rPlant/
http://cran.r-project.org/web/packages/rPlant/
https://r-forge.r-project.org/projects/rplant/
http://user.iplantcollaborative.org/
http://user.iplantcollaborative.org/
http://en.wikipedia.org/wiki/CURL

The first step is to upload files onto iPlants. UploadFile takes a file from your computer
and uploads it onto iPlants servers, it does NOT take a file from the R workspace. Objects
in the workspace will need to be saved to the computer in a supported file format before
uploading them.

> data(DNA.fasta)
> write.fasta(sequences = DNA.fasta, names = names (DNA.fasta), file.out = "DNA.fasta")
> UploadFile(local.file.name="DNA.fasta")

In the event that the file already exists on the iPlant server, an error will report and the file
will not upload. For details on how to check contents of iPlant directories, see Section 4, and
for manipulating files (like deleting, moving, sharing) see Section 5 below.

The file format for the uploaded file can be defined using filetype, some programs will
only accept certain types of files. This can also be left as NULL, if the iPlant application
doesn’t require it. For the fasta file the file type is FASTA-0. See the following section for
the various file types supported by the API.

3.2 Supported File Types

SupportFile(print.curl=FALSE)

There are 33 other file types supported by iPlant, use the SupportFile function to see all
of the available file types (i.e. PHYLIP file type is “PHYLIP-0” and ClustalW is “Clustal W-
1.8").

> SupportFile()

[1] "2bit-0O" "ASN-O" "BAM-0.1.2" "Barcode-0"
[5] "BED-0O" "BlastN-2.0" "Bowtie-O" "BZIP2-0"
[9] "CEL-3" "ClustalW-1.8" "CSv-0" "DOT-0"
[13] "EMBL-0O" "EXPR-0" "FAI-O" "FASTA-O"
[17] "FASTQ-Illumina-0" "FASTQ-Int-0O" "FASTQ-Solexa-0" "FASTQ-0"
[21] "Genbank-0" "GFF-2.0" "GFF-3.0" "GFF-3.0"
[25] "GraphML-0" "GTF-2.2" "HTML-4" "HTML-5"
[29] "Newick-0" "NEXUS-0" "PAIR-O" "PDB-3.2"
[33] "Phylip-0O" "PhyloXML-1.10" "Pileup-0" "SAI-0.1.2"
[37] "SAM-0.1.2" "SBML-1.2" "SBML-2.4.1" "SBML-3.1"
[41] "Soap-PE-1" "Soap-SE-1" "Stockholm-1.0" "TAB-QO"
[45] "TAR-O" "Text—-0" "VCF-3.3" "VCF-4.0"
[49] "WIG-O"

4 Manipulating directories on iPlant servers

Now that the file DNA fasta has been uploaded onto the iPlant servers we can look at the
file (or at least see which directory the file is in) by using the ListDir function. There are a
few other directory manipulation functions, they are: MakeDir, ShareDir, PermissionsDir,
RenameDir, MoveDir and DeleteDir.

4.1 Listing directories

ListDir(dir.name, dir.path="", print.curl=FALSE, shared.username=NULL,
suppress.Warnings=FALSE)

Looking in the home directory you can see the “DNA .fasta” file.

> ListDir(dir.name="", suppress.Warnings=TRUE)
name type
[1,] "analyses" "dir"

[2,] "DNA.fasta" "file"

Note: Some functions contain an option, suppress.Warnings. If you are absolutely sure
that the commands you are entering are correct then to speed up the process have sup-
press.Warnings=TRUE. But be careful, if used inappropriately then files could get overwrit-
ten or the files might not even exist and you will get no warning about it.

4.2 Making directories

MakeDir (dir.name, dir.path="", print.curl=FALSE, suppress.Warnings=FALSE)

The following function will make a directory hello in the home directory.

> MakeDir(dir.name="hello")

Again making the directoy “all” in the “hello” directory.

> MakeDir(dir.name="all", dir.path="hello")

Here we make another directory “robots” in the “all” directory. Note how the dir.path needs
to be constructed, and how the dir.name and dir.path are related. All of the functions
have this same format.

> MakeDir(dir.name="robots", dir.path="hello/all")

We can look inside the “hello/all/robots” directory and see that there is nothing in there.
> ListDir(dir.name="robots", dir.path="hello/all", show.hidden=TRUE)

name type

4.3 Sharing Directories

ShareDir(dir.name, dir.path="", shared.username, read=TRUE, execute=TRUE,
print.curl=FALSE, suppress.Warnings=FALSE)

A really nice feature of iPlant is the file sharing feature. As was said in the introduction
one of iPlant’s goals was to work with very large data sets. And when data sets are too
large to send via email then a sharing feature is absolutely necessary. There are in fact
two share functions, one for sharing a single file (ShareFile) and the other (ShareDir) for
sharing an entire directory. When sharing a directory, all files contained within will be shared.

In this sample we share the “all” directory.

> ShareDir(dir.name="all", dir.path="hello", shared.username="kamichels")

In the above example I share something with user “henryl”. I can also view files and directories
that have been shared with me.

> ListDir(dir.name="data", dir.path="", shared.username="phyllisl")

name type
[1,] "muscle3.fasta" "file"

Several other functions use the shared.username option. For example, the SubmitJob func-
tion and the wrapper functions. A job can be run on files that are shared with you (see
Section 7).

4.4 Checking Permissions on Directories
PermissionsDir(dir.name, dir.path="", print.curl=FALSE, suppress.Warnings=FALSE)
When using the sharing feature of rPlant, a user needs a function which will check the per-

missions of a directory. This includes the users with whom the directory is shared and what
the permissions are included. Below confirms the sharing performed earlier with “kamichels”.

> PermissionsDir(dir.name="all", dir.path="hello")

Name Username Permissions
[1,] "all" "kamichels" "A11"
4.5 Renaming Directories

RenameDir(dir.name, new.dir.name, dir.path="", print.curl=FALSE,
suppress.Warnings=FALSE)

This function renames a directory.

> RenameDir ("robots", "tools", "hello/all")

And you can see that it has been changed.

> ListDir("all", "hello")

name type
[1,] "tools" "dir"

Note: When the directory is renamed, permissions on sharing will have to be redone.

4.6 Moving Directories

MoveDir(dir.name, dir.path="", end.path="", print.curl=FALSE,
suppress.Warnings=FALSE)

This function moves a directory. The following code will move the directory ’tools’ from
'hello/all’ to the home directory. Verified below.

> MoveDir("tools", "hello/all", end.path="")
> ListDir("")

name type
[1,] "analyses" "dir"
[2,] "hello" "dir"
[3,] "tools" "dir"

[4,] "DNA.fasta" "file"

Note: When the directory is moved, permissions on sharing will have to be redone.

4.7 Deleting Directories

DeleteDir(dir.name, dir.path="", print.curl=FALSE, suppress.Warnings=FALSE)

This function deletes a directory and all of the subdirectories.

> DeleteDir("tools")
> ListDir("")

name type
[1,] "analyses" "dir"
[2’] "hello" "dir"

[3,] "DNA.fasta" "file"

5 Manipulating files on iPlant servers

The file manipulation tools available in this package are very similar to directory manipula-
tion tools. The file manipulation functions are: ShareFile, PermissionsFile, RenameFile,
MoveFile and DeleteFile.

5.1 Sharing Files

ShareFile(file.name, file.path="", shared.username, read=TRUE, execute=TRUE,
print.curl=FALSE, suppress.Warnings=FALSE)

As described in the ShareDir function, a really nice feature of iPlant is the file sharing
feature. This function shares one file at a time.
The following code will share the file DNA fasta with phyllisl.

> ShareFile(file.name="DNA.fasta", shared.username="phyllisl")

5.2 Checking Permissions on a File

PermissionsFile(file.name, file.path="", print.curl=FALSE, suppress.Warnings=FALSE)

When using the sharing feature of rPlant, a user needs a function which will check the
permissions of a file. This includes the users with whom the file is shared and what the
permissions are included. Below confirms the sharing performed earlier with “phyllis]”.

> PermissionsFile(file.name="DNA.fasta")

Name Username Permissions
[1,] "DNA.fasta" "phyllisl" "AIl"

5.3 Moving Files

MoveFile(file.name, file.path="", end.path="", print.curl=FALSE,
suppress.Warnings=FALSE)

This function moves the file from one directory to another.

> MoveFile("DNA.fasta", end.path="hello/all")
> ListDir("all", "hello")

name type
[1,] "DNA.fasta" "file"

The move took the file DNA. fasta from the home directory into the “hello/all” directory.

Note: When the file is moved, permissions on sharing will have to be redone.

5.4 Renaming Files

RenameFile(file.name, new.file.name, file.path="", print.curl=FALSE,
suppress.Warnings=FALSE)

This function renames a single file.

> RenameFile("DNA.fasta", "lp.fasta", "hello/all")
> ListDir("all", "hello")

name type
[1,] "1p.fasta" "file"

Note: When the file is renamed, permissions on sharing will have to be redone.

5.5 Deleting Files

DeleteFile(file.name, file.path="", print.curl=FALSE, suppress.Warnings=FALSE)

This function deletes a single file in the specified directory.

> DeleteFile("lp.fasta", "hello/all")
> ListDir("all", "hello")

name type

The file Ip.fasta is no longer in the “hello/all” directory.

6 Applications

The real power in the rPlant package is to have the programmatic access to the phylogenetic
tools/applications that are available in the API. rPlant can be used to interact with any of
the API applications.

6.1 Listing Applications
ListApps(description=FALSE, print.curl=FALSE)
This function returns a sorted list of the newest versions of the public applications that are

available via the Foundation API. These applications are ones that can be used with the
SubmitJob function (see Section 7).

> ListApps (description=FALSE)

[1]

[2]

[3]

[4]

(5]

(6]

[7]

(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[271]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[471]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]

"Adjustp-0.0.1ul"
"AllpathsLG_lonestar-44837ul"
"bismark-0.7.4ul"
"bismark_genome_preparation-0.7.4ul"
"bismark_methylation_extractor-0.7.4ul"
"blastx-stampede-ncbi-db-2.2.26u3"
"buildicm-1.0.0ul"
"bwa-lonestar-0.5.9u3"
"ClustalW2-2.1ul"
"clustalw2Dispatcher-1.0.13100ul"
"clustalw2-lonestar-2.1u2"
"diginorm-1.0.0ul"
"dnalc-cuffdiff-lonestar-2.1.1u3"
"dnalc-cuffdiff-stampede-2.1.1u3"
"dnalc-cuffdiff-test-2.1.1ul"
"dnalc-cufflinks-lonestar-2.1.1u2"
"dnalc-cufflinks-stampede-2.1.1.1ul"
"dnalc-cufflinks-stampede-2.1.1u2"
"dnalc-cuffmerge-lonestar-2.1.1ul"
"dnalc-cuffmerge-stampede-2.1.1ul"
"dnalc-fastqc-lonestar-0.10.1ul"
"dnalc-fastqc-stampede-0.10.1ul"
"dnalc-fastx-lonestar-0.0.13.2ul"
"dnalc-fastx-stampede-0.0.13.2u2"
"dnalc-fxtrim-lonestar-0.0.13.2ul"
"dnalc-fxtrim-lonestar-0.0.13.3ul"
"dnalc-fxtrim-stampede-0.0.13.2ul"
"dnalc-fxtrim-stampede-0.0.13.3ul"
"dnalc-tophat-lonestar-2.0.8u2"
"dnalc-tophat-stampede-2.0.11.1ul"
"dnalc-tophat-stampede-2.0.11ul"
"dnalc-tophat-stampede-2.0.8.4ul"
"dnalc-tophat-stampede-2.0.8u2"
"EMMAX-0.0.1ul"

"EMMAX2-0.0.1ul"

"FaST-LMM-1.09u1l"
"fasttreeDispatcher-1.0.0ul"
"forward-regression-0.0.1ul"
"gapcloser-1.12ul"
"gatk-1000bulls-geno-lonestar—-1.00ul"
"GeneSeqger-5.0u2"
"GenomeSelection-0.0.1u2"
"glimmer-1.0.0ul"
"GMAP_stampede-121212ul"
"GSNAP_lonestar-121212ul"
"GSNAP_stampede-121212u2"
"gth-lonestar-1.0ul"
"head-stampede-5.97u2"
"idbaUD-1.0.0u2"
"interproscan-5.44.0ul"
"macs-ranger-1.4-1.4ul"
"mafft-7.113ul"
"mafftDispatcher-1.0.13100ul"
"mafft-lonestar-6.864ul"
"MergeG2P-0.0.1ul"
"metagenemark-1.00u3"
"metaphlan-lonestar-1.6.0u4"
"metavelvet-1.0.0ul"

"mga-1.0.0ul"

[60] "MLMM-0.0.1ul"

[61] "MrBayesmpi_basic-3.2.1ul"

[62] "Muscle-3.8.31"

[63] "Muscle-3.8.32u4"

[64] "muscle-lonestar-3.8.31u2"

[65] "newbler-2.6.0ul"

[66] "NPUTE-0.0.2ul"

[67] "NumericalTransform-0.0.1ul"
[68] "oases-0.2.08ul"

[69] "phylip-dna-parsimony-lonestar-3.69u2"
[70] "phylip-protein-parsimony-lonestar-3.69u2"
[71] "plink-1.07ul"

[72] "prodigal-1.0.0ul"

[73] "quicktree-dm-lonestar-1.1u2"
[74] "quicktree-tree-lonestar-1.1u2"
[75] "raxml-lonestar-7.2.8ul"

[76] "ray-2.2.0ul"

[77] "scarf-1.00ul"

[78] "soapdenovo-1.05ul"

[79] "soapdenovo-2.04ul"

[80] "soapdenovo_trans-1.0ul"

[81] "spa-1.0.0ul"

[82] "STRUCTURE-2.3.4u3"

[83] "STRUCTURE-2.3.5ul"

[84] "STRUCTURE2TASSEL-0.0.1ul"

[85] "TASSEL4-GLM-0.0.1ul"

[86] "tasselDispatcher-1.0.13350ul"
[87] "TASSEL(GLM)-0.0.1ul"

[88] "TASSEL(MLM)-0.0.1uil"

[89] "TNRS4GWAS-0.0.2ul"

Note: As said above, these applications are PUBLIC applications. Applications in the API
are split into two categories, public and private. Private applications are ones that are
developed and tested and changed. Only the user who created the private application can
use it. The other category is public applications. After a private application has gone
through extensive testing, then the application can be published and it becomes a public
application which is available to all iPlant users. In the API a public application is labeled
by adding the suffix 'ul’ to it. The ’1’ is referred to as the version number, so if a public
application is fixed and republished the suffix becomes u2’.

6.2 Application Information

GetAppInfo(application, return.json=FALSE, print.curl=FALSE)

The GetAppInfo function returns the application with a short description and the in-
put/output filetypes.

> GetAppInfo("velveth-1.2.07ul")

$Description
[1] "Genome assembler for short sequencing reads, first stage."

$Application
[1] "velveth-1.2.07ul" "Public App" "Newest Version"
$Information

kind id fileType/value

10

[1,] "input" '"reads6" "fasta-0"

[2,] "input" '"reads3" "fasta-0"
[3,] "input" "readsb5" "fasta-0"
[4,] "input" "reads2" "fasta-0"
[5,] "input" '"reads4" "fasta-0"
[6,] "input" "reads1l" "fasta-0"
[7,] "output" "formatl" "string"
[8,] "output" "format5" "string"
[9,] "output" "format2" "string"
[10,] "output" "strandSpecific" "string"
[11,] "output" "kmer" "string"
(12,1 "output" "Output" "string"
[13,] "output" "format4" "string"
[14,] "output" "format3" "string"
details

[1,] "Sequences:"
[2,] "Sequences:"
[3,] "Sequences:"
[4,] "Sequences:
[5,] "Sequences:
[6,] "Sequences:"
[7,] "sequence file format, library 1"
[8,] "sequence file format, library 5"
[9,] "sequence file format, library 2"

[10,] "strand specific"

[11,] "kmer size"

[12,] "Name for output directory"

[13,] "sequence file format, library 4"

[14,] "sequence file format, library 3"

The GetAppInfo function returns a list of information about the application that is needed for
the SubmitJob function. The first element gives a short description of the application. The
second element in the list gives information on the application including its use permissions
(public vs. private) and whether it is the newest version. The third element in the list is
a matrix with four columns of information: kind, id, file type or value, and any details. In
the example above, first column (’kind’) states there are six inputs for this app, the ’id’
column names those inputs as readsb’; 'reads3d’, etc. There are also eight parameters for the
app, such as ’format2’, ’kmer’, etc. The third column ("Type/value’) returns the type of file
the application is expecting if it is input or it returns the type of input necessary for the
application parameters, common ones are string, boolean, etc. The last column gives brief
details on each input.

7 Submitting Jobs in the rPlant package

7.1 Submitting Job

SubmitJob(application, file.path="", file.list=NULL, input.list, args.list=NULL,
job.name, nprocs=1, private.APP=FALSE, suppress.Warnings=FALSE, shared.username=NULL,
print.curl=FALSE, email=TRUE)

An important benefit of using rPlant is the ability to create batch-scripted files that auto-
mate job submittal and retrieval. For example, a user could submit parallel alignment jobs
of different gene regions or multiple jobs with the same data and different parameter values.
The results could then be automatically downloaded upon completion.

11

The following function is the main way to submit a job to the iPlant server, and can be used
for any iPlant application. You can also submit jobs via the wrapper functions (for example,
Muscle(), see Section 9), which call upon the SubmitJob function internally.

> UploadFile(local.file.name="DNA.fasta", filetype="FASTA-0")

> ListDir("")

> myJobM <- SubmitJob(application="Muscle-3.8.32u4", file.list=1ist("DNA.fasta"),
+ input.list=list("stdin"), args.list=list(c("arguments",

+ "-phyiout -center -clusterl upgma'")), job.name="Muscle")

name type
[1,] "analyses" "dir"
[2,] "hello" "dir"

[3,] "DNA.fasta" "file"

Job submitted.
You can check your job using CheckJobStatus(55041)

Several important argument definitions are listed below, but can also be found in the help
files: input.list: This argument defines what kind of input you are passing the application.
You can get application information from the GetAppInfo function (GetAppInfo("Muscle-
3.8.32u4")$Information). In this example, the 'kind’ column states there is one input for
this app, and the 'id” column names that input as ’stdin’. Input types change from applica-
tion to application.

file.list: Similar to input.list, the file.list argument defines which files are being

passed to the application. The named file must be on the DE within the file.path and be
formatted to the correct specification (for example, GetAppInfo("Muscle-3.8.32u4")$Information).
If it the file types don’t match then the application will fail.

args.list: The args.list is where application flagging options can be entered. These
typically change default options. Using information from the GetAppInfo function, the
’kind” column states there is one parameter for this app, the ’id’ column gives the name
of that parameter is “arguments”, and the “fileType/value” column tells me it is a string.
This is where the fourth column ’details’ comes in handy; it tells me that the parameter
input is “program arguments and options”, which means it can accept a string. For example:
args.list=list(c(arguments, "-phyiout -center -clusterl upgma"))

The args.list is a list that is as long as the number of parameters (so length 1 in the
Muscle example), that means there as many vectors as there are parameters. All vectors are
of the same length, two in this example. In the first position, is the name of the parameter,
“arguments”, and in the second position is the value of that parameter, “-phyiout -center
-clusterl upgma”. In this example, it is a string of command line flags.

The function SubmitJob will return a list of two objects (in this example, myJobM). The first
object, is the job number and the second is the job name, both are important information
for retrieving results.

If job submittal is successful, then the function automatically creates the folder “analyses”
within a user’s cloud (if it did not previously exist). If the job finishes, then a folder is
created within the analyses folder that is named the job name.

12

7.2 Submitting a job with a shared file

Jobs can also be submitted from files stored in other user’s cloudspace that are shared. In
the below example, a file that had been previously shared (Section 3), a job can be submitted
using that file.

> myJobS <- SubmitJob(application="Muscle-3.8.32u4", file.list=list("muscle3.fasta"),

+ file.path="data", shared.username="phyllisl",
+ args.list=1ist(c("arguments", "-fastaout")),
+ input.list=list("stdin"), job.name="MuscleShare")

Job submitted.
You can check your job using CheckJobStatus(55042)

8 Checking Job Status and Retrieving Job output

Once the job is submitted, it is assigned a job identification number (job.id) that we can
use to check the status and download any results files. The job.id is returned with the
SubmitJob function, so if you create an object when you submit a job then you can use
that object as an identifier as well. Otherwise, you can copy/paste a job ID into any of the
functions as a character string. The job number is used in a few rPlant functions including,
CheckJobStatus, KillJob, ListJobOutput, RetrieveJob and DeleteJob. If you need to
get job IDs from older jobs, you can use the function GetJobHistory().

8.1 Checking job status
CheckJobStatus(job.id, print.curl=FALSE)

This function checks the status of a job on the iPlant servers.

Table 1: Possible Outputs for CheckJobStatus()
Stages

PENDING
STAGING_INPUTS
CLEANING_UP
ARCHIVING
STAGING_JOB
FINISHED

KILLED

FAILED

STOPPED

RUNNING

PAUSED

QUEUED

SUBMITTING

STAGED
PROCESSING_INPUTS
ARCHIVING_FINISHED
ARCHIVING_FAILED

13

> CheckJobStatus (myJobS[[1]])

[1] "PENDING"

8.2 Killing Job

If you don’t want a job to run any more, then simply stop it by using the KillJob function.
Generally this is used if a job is QUEUED, it must be stopped first to delete it.

> KillJob(myJobM[[1]])

8.3 Listing job status

ListJobOutput (job.id, print.curl=FALSE, print.total=TRUE)

This function lists the output files from a finished job. For example, these files are the output
from our MUSCLE example above.

> ListJobOutput (myJobS[[1]])

[1] "fasta.aln"

[2] "muscle3.fasta"

[3] "muscleshare_2014-06-27_17-04-45955-55042.err"
[4] "muscleshare_2014-06-27_17-04-45955-55042.out"

8.4 Looking at Job History
GetJobHistory(return. json=FALSE, print.curl=FALSE)
This function displays the entire job history for the user. This is an easy way to grab old

job IDs in order to retrieve files or check the status of a set of jobs. You can see that one
finished and one was stopped.

> GetJobHistory ()

job.id job.name application
job "55042" "MuscleShare_2014-06-27_17-04-45.955" "Muscle-3.8.32u4"
job "55041" "Muscle_2014-06-27_17-04-38.045" "Muscle-3.8.32u4"
status

job "ARCHIVING_FINISHED"
job "STOPPED"
8.5 Retrieve job files

RetrieveJob(job.id, file.vec=NULL, print.curl=FALSE, verbose=FALSE)

One very handy thing about the rPlant package is the ability to download the files directly
from the iPlant servers to your computer. The following downloads all of the output files.

> RetrieveJob (myJobS[[1]1])

The files have been downloaded into a new directory within your working directory. If you
want to download select files at a time, then these will need to be defined within the file.vec
argument (for example: RetrieveJob(myJobM, file.vec=c("fasta.aln")))

14

8.6 Delete job

DeleteJob(job.id, print.curl=FALSE, ALL=FALSE)

After the job has been submitted, the results downloaded, and you have no need for the job
anymore, you can use the DeleteJob function to delete the job. The nice thing about this
function is that not only will it delete the job number from the job history but it will also
delete the job folder and all contents in the analyses folder in the user’s cloudspace.

> DeleteJob(myJobS[[1]])

You also have the option to erase ALL job history from a user’s past. This may be useful
after a round of testing.

> DeleteJob (ALL=TRUE)

9 Submitting Jobs With Wrappers

We have ten dedicated wrapper functions for iPlant applications that will ease submitting
jobs. These wrappers will use many application defaults and/or change flags into wrapper
function arguments. Of course, if a user needs more flexibility in flagging options, then they
can still submit jobs using the SubmitJob function.

Of the iPlant applications that have dedicated wrappers, there is a clear bias towards phylo-
genetic applications because the authors are evolutionary biologists and regularly use these
programs. Writing wrapper functions is not programmatically difficult, but it does require
familiarity with the individual programs and their associated data sets. We would like to
encourage any users who are using programs without wrappers to submit patches adding
wrapper functions or request to be a developer. You can make these feature requests at the
R-Forge site: https://r-forge.r-project.org/tracker/?group_id=1328.

Among the wrappers there are three which do alignments: Muscle, Mafft and ClustalW.
The alignments will do both protein and nucleotide. Also make sure that the taxon names
in the sequence files do not contain tabulators, carriage returns, spaces, ”:”, .7, 7)" 7(", 7}

c ’ Y) ’)
)7]77 7)[’7’7
9 .

> data (PROTEIN.fasta)
> write.fasta(sequences=PROTEIN.fasta, names=names (PROTEIN.fasta), file.out="PROTEIN.fasta")
> UploadFile(local.file.name="PROTEIN.fasta", filetype="FASTA-0")

9.1 Muscle

Muscle(file.name, file.path="", job.name=NULL, args=NULL, version="Muscle-3.8.32u4",
p J g

print.curl=FALSE, aln.filetype="PHYLIP_INT", shared.username=NULL,

suppress.Warnings=FALSE)

MUSCLE is a program for creating multiple alignments of amino acid or nucleotide sequences.
A range of options is provided that give you the choice of optimizing accuracy, speed, or some
compromise between the two. The manual is also available here: http://www.driveb.com/
muscle/muscle_userguide3.8.html

> myJobMuDP <- Muscle("DNA.fasta", aln.filetype="PHYLIP_INT", job.name="muscleDNAphyINT")

15

https://r-forge.r-project.org/tracker/?group_id=1328
http://www.drive5.com/muscle/muscle_userguide3.8.html
http://www.drive5.com/muscle/muscle_userguide3.8.html

Job submitted.
You can check your job using CheckJobStatus(55043)
Result file: phylip_interleaved.aln

> myJobMuDF <- Muscle("DNA.fasta", aln.filetype="FASTA", job.name="muscleDNAfasta")

Job submitted.
You can check your job using CheckJobStatus(55044)
Result file: fasta.aln

> myJobMuDPP <- Muscle("DNA.fasta", aln.filetype="PHYLIP_PARS", job.name="muscleDNAphyPARS")

Job submitted.
You can check your job using CheckJobStatus(55045)
Result file: phylip_pars.aln

> myJobMuDPS <- Muscle("DNA.fasta", aln.filetype="PHYLIP_SEQ", job.name="muscleDNAphySEQ")

Job submitted.
You can check your job using CheckJobStatus(55046)
Result file: phylip_sequential.aln

> myJobMuDC <- Muscle("DNA.fasta", aln.filetype="CLUSTALW", job.name="muscleDNAclustalw")

Job submitted.
You can check your job using CheckJobStatus(55047)
Result file: clustalw.aln

> myJobMuDM <- Muscle("DNA.fasta", aln.filetype="MSF", job.name="muscleDNAmst")

Job submitted.
You can check your job using CheckJobStatus(55048)
Result file: msf.aln

> myJobMuPP <- Muscle("PROTEIN.fasta", aln.filetype="PHYLIP_INT", job.name="musclePROTEINphyINT")

Job submitted.
You can check your job using CheckJobStatus(55049)
Result file: phylip_interleaved.aln

> myJobMuPF <- Muscle("PROTEIN.fasta", aln.filetype="FASTA", job.name="musclePROTEINfasta")

Job submitted.
You can check your job using CheckJobStatus(55050)
Result file: fasta.aln

> myJobMuPPP <- Muscle("PROTEIN.fasta", aln.filetype="PHYLIP_PARS", job.name="musclePROTEINphyPARS")

Job submitted.
You can check your job using CheckJobStatus(55051)
Result file: phylip_pars.aln

> myJobMuPPS <- Muscle("PROTEIN.fasta", aln.filetype="PHYLIP_SEQ", job.name="musclePROTEINphySEQ")

Job submitted.
You can check your job using CheckJobStatus(55052)
Result file: phylip_sequential.aln

> myJobMuPC <- Muscle("PROTEIN.fasta", aln.filetype="CLUSTALW", job.name="musclePROTEINclustalw")

Job submitted.
You can check your job using CheckJobStatus(55053)
Result file: clustalw.aln

> myJobMuPM <- Muscle("PROTEIN.fasta", aln.filetype="MSF", job.name="muscleDNAmst")

16

Job submitted.
You can check your job using CheckJobStatus(55054)
Result file: msf.aln

MUSCLE outputs six alignments: fasta.aln (http://en.wikipedia.org/wiki/FASTA_format),
phylip_sequential.aln, phylip_interleaved.aln, phylip_pars.aln (http://www.bioperl.org/wiki/
PHYLIP_multiple_alignment_format), clustalw.aln (http://meme.nbcr.net/meme/doc/clustalw-format
html) and msf.aln (http://en.wikipedia.org/wiki/MSF).

9.2 Malfft

Mafft(file.name, file.path="", type="DNA", print.curl=FALSE, version="mafftDispatcher-
1.0.13100ul", args=NULL, job.name=NULL, aln.filetype="FASTA", shared.username=NULL,
suppress.Warnings=FALSE)

MAFFT is a multiple sequence alignment program for unix-like operating systems. It of-
fers a range of multiple alignment methods, L-INS-i (accurate; for alignment of about 200
sequences), FFT-NS-2 (fast; for alignment of about 10,000 sequences), etc. See http:
//mafft.cbrc.jp/alignment/software/. The manual is also available here: http://
mafft.cbrc. jp/alignment/software/manual/manual.html.

> myJobMaDF <- Mafft("DNA.fasta", job.name="mafftDNAfasta")

Job submitted.
You can check your job using CheckJobStatus(55055)
Result file: mafft.fa

> myJobMaDC <- Mafft("DNA.fasta", aln.filetype="CLUSTALW", job.name="mafftDNAclustalw")

Job submitted.
You can check your job using CheckJobStatus(55056)
Result file: mafft.fa

> myJobMaPF <- Mafft("PROTEIN.fasta", type="PROTEIN", job.name="mafftPROTEINfasta")

Job submitted.
You can check your job using CheckJobStatus(55057)
Result file: mafft.fa

> myJobMaPC <- Mafft("PROTEIN.fasta", type="PROTEIN", aln.filetype="CLUSTALW",
+ job.name="mafftPROTEINclustalw")

Job submitted.
You can check your job using CheckJobStatus(55058)
Result file: mafft.fa

MAFFT outputs two alignments (both named: mafft.fa): FASTA (http://en.wikipedia.
org/wiki/FASTA_format) and CLUSTALW (http://meme.nbcr.net/meme/doc/clustalw-format.
html).

9.3 ClustalW

ClustalW(file.name, file.path="", type="DNA", job.name=NULL, version="ClustalW2-
2.1ul", print.curl=FALSE, args=NULL, aln.filetype="PHYLIP", shared.username=NULL,
suppress.Warnings=FALSE)

17

http://en.wikipedia.org/wiki/FASTA_format
http://www.bioperl.org/wiki/PHYLIP_multiple_alignment_format
http://www.bioperl.org/wiki/PHYLIP_multiple_alignment_format
http://meme.nbcr.net/meme/doc/clustalw-format.html
http://meme.nbcr.net/meme/doc/clustalw-format.html
http://en.wikipedia.org/wiki/MSF
http://mafft.cbrc.jp/alignment/software/
http://mafft.cbrc.jp/alignment/software/
http://mafft.cbrc.jp/alignment/software/manual/manual.html
http://mafft.cbrc.jp/alignment/software/manual/manual.html
http://en.wikipedia.org/wiki/FASTA_format
http://en.wikipedia.org/wiki/FASTA_format
http://meme.nbcr.net/meme/doc/clustalw-format.html
http://meme.nbcr.net/meme/doc/clustalw-format.html

An approach for performing multiple alignments of large numbers of amino acid or nucleotide
sequences is described. The method is based on first deriving a phylogenetic tree from a
matrix of all pairwise sequence similarity scores, obtained using a fast pairwise alignment
algorithm. See details on http://www.clustal.org/clustal2/.

> myJobCWDP <- ClustalW("DNA.fasta", job.name="clustalwDNAphylip")

Job submitted.
You can check your job using CheckJobStatus(55059)
Result file: clustalw2.fa

> myJo <- usta .fasta", aln.filetype= , job.name="clustalw clustalw
yJobCWDC Cl IW("DNA.f " In.filetype="CLUSTALW", job "cl 1wDNAcl 1w")

Job submitted.
You can check your job using CheckJobStatus(55061)
Result file: clustalw2.fa

> myJobCWDN <- ClustalW("DNA.fasta", aln.filetype="NEXUS", job.name="clustalwDNAnexus")

Job submitted.
You can check your job using CheckJobStatus(55062)
Result file: clustalw2.fa

> myJobCWDGCG <- ClustalW("DNA.fasta", aln.filetype="GCG", job.name="clustalwDNAgcg")

Job submitted.
You can check your job using CheckJobStatus(55063)
Result file: clustalw2.fa

> myJobCWDGDE <- ClustalW("DNA.fasta", aln.filetype="GDE", job.name="clustalwDNAgde")

Job submitted.
You can check your job using CheckJobStatus(55064)
Result file: clustalw2.fa

> myJobCWDPIR <- ClustalW("DNA.fasta", aln.filetype="PIR", job.name="clustalwDNApir")

Job submitted.
You can check your job using CheckJobStatus(55065)
Result file: clustalw2.fa

> myJobCWPP <- ClustalW("PROTEIN.fasta", type="PROTEIN", job.name="clustalwPROTEINphylip")

Job submitted.
You can check your job using CheckJobStatus(55066)
Result file: clustalw2.fa

> myJobCWPC <- ClustalW("PROTEIN.fasta", type="PROTEIN", aln.filetype="CLUSTALW",
+ job.name="clustalwPROTEINclustalw")

Job submitted.
You can check your job using CheckJobStatus(55067)
Result file: clustalw2.fa

> myJobCWPN <- ClustalW("PROTEIN.fasta", type="PROTEIN", aln.filetype="NEXUS",
+ job.name="clustalwPROTEINnexus")

Job submitted.
You can check your job using CheckJobStatus(55068)
Result file: clustalw2.fa

> myJobCWPGCG <- ClustalW("PROTEIN.fasta", type="PROTEIN", aln.filetype="GCG",
+ job.name="clustalwPROTEINgcg")

18

http://www.clustal.org/clustal2/

Job submitted.
You can check your job using CheckJobStatus(55069)
Result file: clustalw2.fa

> myJobCWPGDE <- ClustalW("PROTEIN.fasta", type="PROTEIN", aln.filetype="GDE",
+ job.name="clustalwPROTEINgde")

Job submitted.
You can check your job using CheckJobStatus(55070)
Result file: clustalw2.fa

> myJobCWPPIR <- ClustalW("PROTEIN.fasta", type="PROTEIN", aln.filetype="PIR",
+ job.name="clustalwPROTEINpir")

Job submitted.
You can check your job using CheckJobStatus(55071)
Result file: clustalw2.fa

ClustalW outputs six alignments (all named: clustalw.fa): CLUSTALW http://meme.nbcr.
net/meme/doc/clustalw-format.html, PHYLIP_INT http://www.bioperl.org/wiki/PHYLIP_
multiple_alignment_format, NEXUShttp://en.wikipedia.org/wiki/Nexus_file, GCG
http://www.genomatix.de/online_help/help/sequence_formats.html#GCG, GDE http:
//www.cse.unsw.edu.au/ "binftools/birch/GDE/overview/GDE.file_formats.html, and
PIR http://www.bioinformatics.nl/tools/crab_pir.htmll

9.4 FastTree

Fasttree <- function(file.name, file.path="", job.name=NULL, args=NULL, type="DNA",
model=NULL, gamma=FALSE, stat=FALSE, print.curl=FALSE, version="fasttreeDispatcher-
1.0.0ul", shared.username=NULL, suppress.Warnings=FALSE)

FastTree infers approximately-maximum-likelihood phylogenetic trees from alignments of
nucleotide or protein sequences. See http://meta.microbesonline.org/fasttree/

> myJobFaDMuP <- Fasttree("phylip_interleaved.aln", file.path=paste("analyses/",myJobMuDP[[2]],
+ sep=""), job.name="fasttreeMUSCLEdnaPHY")

Job submitted.
You can check your job using CheckJobStatus(55072)

> myJobFaDCWP <- Fasttree("clustalw2.fa", file.path=paste("analyses/",myJobCWDP[[2]], sep=""),
+ job.name="fasttreeCLUSTALWdnaPHY")

Job submitted.
You can check your job using CheckJobStatus(55073)

> myJobFaDMuF <- Fasttree("fasta.aln", file.path=paste("analyses/",myJobMuDF[[2]], sep=""),
+ job.name="fasttreeMUSCLEdnaFASTA")

Job submitted.
You can check your job using CheckJobStatus(55074)

> myJobFaDCWF <- Fasttree("mafft.fa", file.path=paste("analyses/",myJobMaDF[[2]], sep=""),
+ job.name="fasttreeMAFFTdnaFASTA")

Job submitted.
You can check your job using CheckJobStatus(55075)

> myJobFaPMuP <- Fasttree("phylip_interleaved.aln", file.path=paste("analyses/",myJobMuPP[[2]],
+ sep=""), type="PROTEIN",
+ job.name="fasttreeMUSCLEproteinPHY")

19

http://meme.nbcr.net/meme/doc/clustalw-format.html
http://meme.nbcr.net/meme/doc/clustalw-format.html
http://www.bioperl.org/wiki/PHYLIP_multiple_alignment_format
http://www.bioperl.org/wiki/PHYLIP_multiple_alignment_format
http://en.wikipedia.org/wiki/Nexus_file
http://www.genomatix.de/online_help/help/sequence_formats.html#GCG
http://www.cse.unsw.edu.au/~binftools/birch/GDE/overview/GDE.file_formats.html
http://www.cse.unsw.edu.au/~binftools/birch/GDE/overview/GDE.file_formats.html
http://www.bioinformatics.nl/tools/crab_pir.html
http://meta.microbesonline.org/fasttree/

Job submitted.
You can check your job using CheckJobStatus(55076)

> myJobFaPCWP <- Fasttree("clustalw2.fa", type="PROTEIN", file.path=paste("analyses/",myJobCWPP[[2]],
+ sep=""), job.name="fasttreeCLUSTALWproteinPHY")

Job submitted.
You can check your job using CheckJobStatus(55077)

> myJobFaPMuF <- Fasttree("fasta.aln", file.path=paste("analyses/",myJobMuPF[[2]], sep=""),
+ type="PROTEIN", job.name="fasttreeMUSCLEproteinFASTA")

Job submitted.
You can check your job using CheckJobStatus(55078)

> myJobFaPCWF <- Fasttree("mafft.fa", file.path=paste("analyses/",myJobMaPF[[2]], sep=""),
+ type="PROTEIN", job.name="fasttreeMAFFTproteinFASTA")

Job submitted.
You can check your job using CheckJobStatus(55079)

Fasttree outputs trees in Newick format http://en.wikipedia.org/wiki/Newick_format.
The placement of the root is not biologically meaningful. The local support values are given
as names for the internal nodes, and range from 0 to 1, not from 0 to 100 or 0 to 1,000. If all
sequences are unique, then the tree will be fully resolved (the root will have three children
and other internal nodes will have two children). If there are multiple sequences that are
identical to each other, then there will be a multifurcation. Also, there are no support values
for the parent nodes of redundant sequences.

9.5 RAxML (Randomized Accelerated Maximum Likelihood)

RAxML(file.name, file.path="", job.name=NULL, type="DNA", model=NULL, bootstrap=NULL,
algorithm="d", multipleModelFileName=NULL, args=NULL, numcat=25, nprocs=12,
version="raxml-lonestar-7.2.8ul", print.curl=FALSE, shared.username=NULL,
substitution_matrix=NULL, empirical.frequencies=FALSE, suppress.Warnings=FALSE)

RAxML is a program for sequential and parallel Maximum Likelihood based inference of large
phylogenetic tress. It has originall been derived from from fastDNAml which in turn was
derived from Joe Felsentein’s dnaml which is part of the PHYLIP package. See http:
//sco.h-its.org/exelixis/oldPage/RAxML-Manual.7.0.4.pdf for details.

> myJobRDMuP <- RAxML("phylip_interleaved.aln", file.path=paste("analyses/",myJobMuDP[[2]],
+ sep=""), job.name="raxmlMUSCLEdnaPHY")

Job submitted.
You can check your job using CheckJobStatus(55080)

> myJobRDCWP <- RAxML("clustalw2.fa", file.path=paste("analyses/",myJobCWDP[[2]], sep=""),
+ job.name="raxmlCLUSTALWdnaPHY")

Job submitted.
You can check your job using CheckJobStatus(55081)

> myJobRPMuP <- RAxML("phylip_interleaved.aln", file.path=paste("analyses/",myJobMuPP[[2]],
+ sep=""), type="PROTEIN", job.name="raxmlMUSCLEproteinPHY")

Job submitted.
You can check your job using CheckJobStatus(55082)

20

http://en.wikipedia.org/wiki/Newick_format
http://sco.h-its.org/exelixis/oldPage/RAxML-Manual.7.0.4.pdf
http://sco.h-its.org/exelixis/oldPage/RAxML-Manual.7.0.4.pdf

> myJobRPCWP <- RAxML("clustalw2.fa", file.path=paste("analyses/",myJobCWPP[[2]], sep=""),
+ type="PROTEIN", job.name="raxmlCLUSTALWproteinPHY")

Job submitted.
You can check your job using CheckJobStatus(55083)

For this application there are numerous output files. See pg 16-17 of the manual for complete
details. RAxML outputs trees in Newick format http://en.wikipedia.org/wiki/Newick_
formatl

9.6 PHYLIP-Parsimony 3.69

PHYLIP_Pars(file.name, file.path="", job.name=NULL, type="DNA", print.curl=FALSE,
shared.username=NULL, suppress.Warnings=FALSE)

PHYLIP is a free package of programs for inferring phylogenies. It is distributed as source code,
documentation files, and a number of different types of executables. The web page: http:
//evolution.genetics.washington.edu/phylip/doc/main.html, by Joe Felsenstein of
the Department of Genome Sciences and the Department of Biology at the University of
Washington, contain information on PHYLIP. PHYLIP (the PHYLogeny Inference Pack-
age) is a package of programs for inferring phylogenies (evolutionary trees). Methods that
are available in the package include parsimony, distance matrix, and likelihood methods,
including bootstrapping and consensus trees.

> myJobPDMuPP <- PHYLIP_ Pars("phylip_pars.aln", file.path=paste("analyses/",myJobMuDPP[[2]],
+ sep=""), job.name="phylipMUSCLEdnaPHYpars")

Job submitted.
You can check your job using CheckJobStatus(55084)

> myJobPPMuPP <- PHYLIP_ Pars("phylip_pars.aln", file.path=paste("analyses/",myJobMuPPP[[2]],
+ sep=""), type="PROTEIN", job.name="phylipMUSCLEproteinPHYpars")

Job submitted.
You can check your job using CheckJobStatus(55085)

PHYLIP Parsimony outputs trees in Newick format http://en.wikipedia.org/wiki/Newick_
formatl

9.7 Genome Wide Association Study models

Upload the sample files. They are in the transposed PLINK format http://pngu.mgh.
harvard.edu/ purcell/plink/data.shtml#tr.

data(geno_test.tfam)

write.table(geno_test.tfam, file = "geno_test.tfam", row.names=FALSE,
col.names=FALSE, quote=FALSE, sep="\t")

UploadFile(local.file.name="geno_test.tfam")

data(geno_test. tped)

write.table(geno_test.tped, file = "geno_test.tped", row.names=FALSE,
col.names=FALSE, quote=FALSE, sep="\t")

UploadFile(local.file.name="geno_test.tped")

V + VvV VV + VYV

21

http://en.wikipedia.org/wiki/Newick_format
http://en.wikipedia.org/wiki/Newick_format
http://evolution.genetics.washington.edu/phylip/doc/main.html
http://evolution.genetics.washington.edu/phylip/doc/main.html
http://en.wikipedia.org/wiki/Newick_format
http://en.wikipedia.org/wiki/Newick_format
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#tr
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#tr

9.8 PLINK Conversion

PLINKConversion(file.list="", file.path="", output.type="-recode", job.name=NULL,
shared.username=NULL, print.curl=FALSE, version="plink-1.07ul", suppress.Warnings=FALSE)

This function converts the standard PLINK file formats (Regular (ped/map), Transposed
(tped/tfam), and Binary (bed/bim/fam)) to various other PLINK file formats.

> myJobPLINKCT <- PLINKConversion(file.list=1ist("geno_test.tfam", "geno_test.tped"), job.name="PCT",
+ out.basename="plinkout")

Job submitted.
You can check your job using CheckJobStatus(55086)

> myJobPLINKCR <- PLINKConversion(file.list=1ist("plinkout.map","plinkout.ped"),
+ file.path=paste("analyses/", myJobPLINKCT[[2]], sep=""),
+ output.type="--recode --transpose", job.name="PCR")

Job submitted.
You can check your job using CheckJobStatus(55087)

There are many output files possible, http://pngu.mgh.harvard.edu/ purcell/plink/
reference.shtml#output

9.9 PLINK

PLINK(file.list="", file.path="", job.name=NULL, association.method="-assoc",
no.sex=TRUE, args=NULL, print.curl=FALSE, multi.adjust=TRUE, version="plink-1.07ul",
shared.username=NULL, suppress.Warnings=FALSE)

PLINK is an open-source whole genome association analysis toolset, designed to perform
a range of basic, large-scale analyses in a computationally efficient manner, check http:
//pngu.mgh.harvard.edu/ purcell/plink/ for details.

> myJobPLINKT <- PLINK(file.list=list("geno_test.tfam","geno_test.tped"), job.name="PLINKT")

Job submitted.
You can check your job using CheckJobStatus(55088)

> myJobPLINKR <- PLINK(file.list=list("plinkout.map", "plinkout.ped"),
+ file.path=paste("analyses/", myJobPLINKCT[[2]], sep=""), job.name="PLINKR")

Job submitted.
You can check your job using CheckJobStatus(55089)

There are many output files possible, http://pngu.mgh.harvard.edu/ purcell/plink/
reference.shtml#output

9.10 FaST-LMM (Factored Spectrally Transformed Linear Mixed
Models)

FaST_LMM(input.file.list="", ALL.file.path="", print.curl=FALSE, sim.file.list=NULL,
pheno.file.name=NULL, mpheno=1, args=NULL, covar.file.name=NULL, job.name=NULL,
version="FaST-LMM-1.09ul", shared.username=NULL, suppress.Warnings=FALSE)

22

http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml#output
http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml#output
http://pngu.mgh.harvard.edu/~purcell/plink/
http://pngu.mgh.harvard.edu/~purcell/plink/
http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml#output
http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml#output

FaST-LMM (Factored Spectrally Transformed Linear Mixed Models) is a program for
performing genome-wide association studies (GWAS) on large data sets. FaST-LMM is de-
scribed more fully at http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.
html, and also at http://fastlmm.codeplex.com/

> myJobFaST_LMMT <- FaST_LMM(input.file.list=1ist("geno_test.tfam", "geno_test.tped"),
+ job.name="FaST_LMMT")

Job submitted.
You can check your job using CheckJobStatus(55090)

> myJobFaST_LMMR <- FaST_LMM(input.file.list=1ist("plinkout.map","plinkout.ped"),
+ ALL.file.path=paste("analyses/", myJobPLINKCT[[2]], sep=""),
+ job.name="FaST_LMMR")

Job submitted.
You can check your job using CheckJobStatus(55091)

Not all information on the FaST-LMM model is here, see the FaST-LMM website http:
//fastlmm.codeplex.com/, or the FaST-LMM manual for more information.

10 Creating workflows

Finally, each of these steps can be combined to generate multi-step analyses. This has the
benefit of reducing errors that can occur when manually running each application and, more
importantly, ensures that results are reproducible. In the following example, a user starts
with unaligned sequences on her or his local computer and ends with aligned sequences and
a phylogenetic tree with all applications running on the iPlant servers.

10.1 Workflow One

This first workflow takes an amino acid fasta file, uses MUSCLE to get a PHYLIP_PARS alignment
type. A couple things about this alignment; it is only available from MUSCLE and this
alignment is very specific to the PHYLIP 3.69 model. The PHYLIP model then produces
a tree. Note: this is the only way to do this workflow.

> myJobW1MP <- Muscle("PROTEIN.fasta", aln.filetype="PHYLIP_PARS", job.name="muscleWORKFLOWlprotein")

Job submitted.
You can check your job using CheckJobStatus(55092)
Result file: phylip_pars.aln

> Wait (myJobWiMP[[1]], minWait, maxWait)
> myJobW1PPP <- PHYLIP_Pars("phylip_pars.aln", file.path=paste("analyses/",myJobWi1MP[[2]],
+ sep=""), type="PROTEIN", job.name="phylipWORKFLOWlprotein")

Job submitted.
You can check your job using CheckJobStatus(55093)

> Wait(myJobW1PPP[[1]], minWait, maxWait)
> RetrieveJob(myJobW1PPP[[1]], c("outtree.nwk"))
> read.tree(paste(getwd(), myJobWiPPP[[2]], "outtree.nwk", sep="/")) -> Tree

23

http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.html
http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.html
http://fastlmm.codeplex.com/
http://fastlmm.codeplex.com/
http://fastlmm.codeplex.com/

Corsinia ¢

Greenwayod

-Aristoloch

Asplenium

Leiocolea

Colysis lo

Sloanea la

Uvaria ano

Heliconia

10.2 Workflow Two

The second workflow takes the same amino acid fasta file and this time it uses Mafft to get
a FASTA alignment type. MUSCLE also can output a fasta alignment. The FastTree model is
then used to make the tree.

> myJobW2CWD <- Mafft ("PROTEIN.fasta", type="PROTEIN", job.name="mafftPROTEINfasta")

Job submitted.
You can check your job using CheckJobStatus(55094)
Result file: mafft.fa

> Wait(myJobW2CWD[[1]], minWait, maxWait)
> myJobW2FaD <- Fasttree("mafft.fa", type="PROTEIN", file.path=paste("analyses/",myJobW2CWD[[2]],
+ sep=""), job.name="fasttreeCLUSTALWfasta")

Job submitted.
You can check your job using CheckJobStatus(55095)

> Wait(myJobW2FaD[[1]], minWait, maxWait)
> RetrieveJob(myJobW2FaD[[1]], c("fasttree.nwk"))
> read.tree(paste(getwd(), myJobW2FaD[[2]], "fasttree.nwk", sep="/")) -> Tree

24

Heliconia irrasa

Uvaria anonoides

|—Greenwayodendron suaveolens

|Corsinia coriandra
Aristolochia maxima

Asplenium shuttleworthianum

Leiocolea heterocolpos

ISloanea latifolia

IColysis longipes

10.3 Workflow Three

The third workflow is again dealing with FastTree. FastTree can take either a FASTA
alignment or a phylip interleaved alignment as inputs. Now ClustalW takes a nucleotide fasta
file to get a PHYLIP INTERLEAVED alignment type. MUSCLE also can output that alignment.
The FastTree model is then used to make the tree.

> myJobW3MuP <- ClustalW("DNA.fasta", job.name="clustalwDNAfasta")

Job submitted.
You can check your job using CheckJobStatus(55096)
Result file: clustalw2.fa

> Wait(myJobW3MuP[[1]], minWait, maxWait)
> myJobW3FaP <- Fasttree("clustalw2.fa", file.path=paste("analyses/",myJobW3MuP[[2]], sep=""),
+ job.name="fasttreeMUSCLEdna")

Job submitted.
You can check your job using CheckJobStatus(55097)

> Wait(myJobW3FaP[[1]], minWait, maxWait)
> RetrieveJob(myJobW3FaP[[1]], c("fasttree.nwk"))
> read.tree(paste(getwd(), myJobW3FaP[[2]], "fasttree.nwk", sep="/")) -> Tree

25

Heliconia

Leiocolea

Corsinia ¢

———— Gollania s

—— Colysis lo

Asplenium
Uvaria ano
reenwayod

Sloanea la

-Aristoloch

10.4 Workflow Four

The fourth workflow is using RAXML. MUSCLE takes a nucleotide fasta file to get a PHYLIP
INTERLEAVED alignment type. ClustalW also can output that alignment. The RAXML model
is then used to make the tree.

> myJobW4MuP <- Muscle("DNA.fasta", aln.filetype="PHYLIP_INT", job.name="muscleWORKFLOW4dna")

Job submitted.
You can check your job using CheckJobStatus(55098)
Result file: phylip_interleaved.aln

> Wait(myJobW4MuP[[1]], minWait, maxWait)
> myJobW4RP <- RAxML("phylip_interleaved.aln", file.path=paste("analyses/",myJobW4MuP[[2]], sep=""),
+ job.name="raxmlWORKFLOW4dna")

Job submitted.
You can check your job using CheckJobStatus(55099)

> Wait(myJobW4RP[[1]], minWait, maxWait)
> RetrieveJob(myJobW4RP[[1]], c("RAxML_bestTree.nwk"))
> read.tree(paste(getwd(), myJobW4RP[[2]], "RAxML_bestTree.nwk", sep="/")) -> Tree

26

Asplenium shuttleworthianum
Uvaria anonoides
Greenwayodendron suaveolens

Sloanea latifolia

Aristolochia maxima

—Heliconia irrasa

—Corsinia coriandra

Leiocolea heterocolpos

———Gollania splenden

L Colysis longipes

27

References

Dooley, R., Vaughn, M., Stanzione, D., Terry, S., and Skidmore, E. “Software-as-a-Service:
The iPlant Foundation APL.” In 5th IEEE Workshop on Many-Task Computing on Grids
and Supercomputers (2012).

URL http://datasys.cs.iit.edu/events/MTAGS12/p07.pdf

Fielding, R. T. “Architectural styles and the design of network-based software architectures.”
Ph.D. thesis, University of California (2000).

Lang, D. T. “R as a Web Client—the RCurl package.” Journal of Statistical Software,
http://www. jstatsoft. org (2007).

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria (2012). ISBN 3-900051-07-0.
URL http://www.R-project.org/

Stenberg, D. “1.47. 1 Available under license.” Open Source Used In Cisco Unified Commu-
nications Manager 8.6. 2a, 5:395 (1996).

28

http://datasys.cs.iit.edu/events/MTAGS12/p07.pdf
http://www.R-project.org/

	Introduction
	Getting Started
	Gaining Access to the API

	Uploading Files
	UploadFile function
	Supported File Types

	Manipulating directories on iPlant servers
	Listing directories
	Making directories
	Sharing Directories
	Checking Permissions on Directories
	Renaming Directories
	Moving Directories
	Deleting Directories

	Manipulating files on iPlant servers
	Sharing Files
	Checking Permissions on a File
	Moving Files
	Renaming Files
	Deleting Files

	Applications
	Listing Applications
	Application Information

	Submitting Jobs in the rPlant package
	Submitting Job
	Submitting a job with a shared file

	Checking Job Status and Retrieving Job output
	Checking job status
	Killing Job
	Listing job status
	Looking at Job History
	Retrieve job files
	Delete job

	Submitting Jobs With Wrappers
	Muscle
	Mafft
	ClustalW
	FastTree
	RAxML (Randomized Accelerated Maximum Likelihood)
	PHYLIP-Parsimony 3.69
	Genome Wide Association Study models
	PLINK Conversion
	PLINK
	FaST-LMM (Factored Spectrally Transformed Linear Mixed Models)

	Creating workflows
	Workflow One
	Workflow Two
	Workflow Three
	Workflow Four

