An introduction to qRNASeq

Qiang Hu, Li Yan, Dan Wang, Song Liu

May 10, 2012
Contents
1 Introduction 1
2 Work flow 1
2.1 Load genomic annotation data 2
2.2 Quantification Lo 2
2.3 SUMMATY o e e e e e e e 6
3 Differential expression 6
4 Session information 6

1 Introduction

qRNASeq is an R package to quantify RNA-seq data in different level, such as gene, exon, intron,
UTR and exon junction. Given genomic annotation file and aligned sequence result, the package
can produce the expression values with user-specified quantification method and genomic regions.
The package read aligned sequence data of BAM format directly. The genomic annotation can be
GTF, bed and GenePred format, which is available at most of the genomic databases, such as UCSC
genome and Ensembl database.

Two quantification methods are developed in the package. The reads counts define the expression
levels with the total number of reads mapped in the given region. The RPKM value normalizes
the counts by the region width, which can also be calculated in the package. The maximum depth
(maxdepth) method estimate the expression level with maximum depth of the given region.

R packages, such as, edgeR, DESeq and beySeq, are well developed to analyze differential ex-
pressed genes for the RNA-seq platform. All of these packages require read counts as input data.
Our package can be used to prepare the expression values for the subsequent analysis. In the future
version, differential test functions will be developed and integrated in the package.

2 Work flow

The package is easy to use. Only three steps are needed to quantify RNA-seq data. First, we need
to prepare the gene regions from the genomic annotation data. Then an aligned bam file is used to
quantify expression levels in interested genomic regions. At last, the results can be summerized in
gene level with different methods.

2.1 Load genomic annotation data

The package use GRanges class from the R package GenomicRanges to store the genome annotation
data. The GTF, bed and GenePred formats are supported in our package. In the following example,
a small GTF file built in the package will be used to define the gene regions.

> library("qRNASeq")
> gtffile <- system.file("extdata", "gene2.GTF", package="qRNASeq")
> gtfGRL <- read.GTF(file=gtffile, feature=c("exon", "CDS", "intromn", "utr"))

load GTF file ...
parse attributes ...
extract exon ...
extract CDS ...
extract intron/utr ...

> names (gtfGRL)
[1] "exon" "CDS" "intron" "utr3" "utr5"
> head (gtfGRL$CDS)

GRanges with 6 ranges and 1 elementMetadata col:

segnames ranges strand | transcript_id
<Rle> <IRanges> <Rle> | <character>
[1] 1 [36748165, 36748301] + | ENST00000354618
[2] 1 [36751969, 36752871] + | ENST00000354618
[3] 1 [36754661, 36755365] + | ENST00000354618
[4] 1 [36756975, 36757147] + | ENST00000354618
(5] 1 [36758199, 36758310] + | ENST00000354618
(6] 1 [36759452, 36759536] + | ENST00000354618
seqlengths:
1
NA

The ”gene2.GTF” contains two human gene annotation from Ensembl database. The function
read.GTF can read GTF format file into a list of GRanges objects as required in the feature option.

2.2 Quantification

To quantify gene expression levels, the mapped bam file and defined genomic regions are used in the
function QuanBam. The genomic regions should be a GRanges object from the last step. Gene_id is
necessary in the annotation columns of elementMetadata for each range, because Reads mapped in
an exon can come from different transcripts. If the input ranges are annotated in transcript level,
some of the regions from different transcripts but from the same gene can be overlapped. The read
mapped in the overlapped regions can’t be decided which transcript it belongs to. Therefore, we
usually quantify abundance in gene level.

For example, we want to quantify the CDS regions of gtfGRL. First the gene_id annotation
should be added to these regions.

> tidx <- match(gtfGRL$CDS@elementMetadata$transcript_id,
gtfGRL$exonCelementMetadata$transcript_id)

+

> gtfGRL$CDS@elementMetadata$gene_id <- gtfGRL$exon@elementMetadata$gene_id[tidx]

> head (gtfGRL$CDS)

GRanges with 6 ranges and 2 elementMetadata cols:

seqnames ranges strand | transcript_id gene_id
<Rle> <IRanges> <Rle> | <character> <factor>
[1] 1 [36748165, 36748301] + | ENST00000354618 ENSG0O0000054118
[2] 1 [36751969, 36752871] + | ENST00000354618 ENSG00000054118
[3] 1 [36754661, 36755365] + | ENST00000354618 ENSG0O0000054118
[4] 1 [36756975, 36757147] + | ENST00000354618 ENSG00000054118
(5] 1 [36758199, 36758310] + | ENST00000354618 ENSG00000054118
(6] 1 [36759452, 36759536] + | ENST00000354618 ENSG00000054118
seqlengths:
1
NA

Then the function QuanBam can be used to quantify the expression values based on aligned bam
file. There are two ways to handle the overlapped regions in the function. The first straightforward
method is to unite all overlapped regions that are from different transcripts in the same genes. In
this way, the regions of different transcripts will be reduced into new ranges in their gene levels.

Reads from different transcripts but in the same ranges will be counted together.

> bamfile <- system.file("extdata", "gene2.bam", package="qRNASeq")
> cdsGR1 <- QuanBam(bam=bamfile, GR=gtfGRL$CDS, method="both",
Reduce="union", ovtype="within")

+

466 reads are lo

aded

22 ranges left after reduced

Filtering:

95 reads are not 'within' mapped

371 reads are le

ft

Summarize counts ...
Summarize maximum depths ...

> cdsGR1

GRanges with 22

ranges and

3 elementMetadata cols:

segnames ranges strand | gene_id counts
<Rle> <IRanges> <Rle> | <character> <integer>

[1] 1 [36748165, 36748301] + | ENSG00000054118 6
[2] 1 [36751969, 36752871] + | ENSG00000054118 75
[3] 1 [36754661, 36755365] + | ENSG00000054118 53
[4] 1 [36756975, 36757147] + | ENSG00000054118 18
(5] 1 [36758199, 36758310] + | ENSG00000054118 7
(6] 1 [36759452, 36759536] + | ENSG00000054118 8
(7] 1 [36762184, 36762371] + | ENSG00000054118 19

(8]

(9]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

1 [36766487,

N N R

[y

mdepths
<integer>
3

11

Q O > © 0

=
=

WP OO W oo O -

seqlengths:

1
NA

Two methods can be used to quantify the data with the option "method”, counts and maxdepth.
The counts method calculates the total numbers of the reads that start in the region. The maxdepth
method calculate the maximum of the depths in the interested regions. The two methods can be
used a if "both” is selected in the option. The option “ovtype” is used to define the reads that
correctly align to certain regions. The option with ”"within” means that the reads only mapped
within the certain region are used in the quantification.

Another way to reduce the overlapped regions is the intersection of the regions, which is defined
as the most shared regions among the transcripts of a gene. For example, a gene has two transcripts,

[36767154,

[17739569,
[17740033,
[17742976,
[17747210,
[17748699,
[17749201,
[17752037,
[17755602,
[17764726,

36766685]
367672971

17739674]
17740213]
17743142]
17747324]
17748787]
17749332]
17752180]
17755695]
17765010]

ENSG0O0000054118
ENSG00000054118

ENSG00000179051
ENSG00000179051
ENSG00000179051
ENSG00000179051
ENSG00000179051
ENSG00000179051
ENSG00000179051
ENSG00000179051
ENSG00000179051

30
20

10

12
11

10

o

then the intersection ranges are the common regions that shared by the two transcripts.

> c¢dsGR2 <- QuanBam(bam=bamfile, GR=gtfGRL$CDS, method="both",

466 reads are lo

Reduce="intersection", ovtype="any")

aded

13 ranges left after reduced

Filtering:

371 reads are not 'any' mapped

95 reads are lef

t

Summarize counts ...
Summarize maximum depths ...

> cdsGR2

GRanges with 13
seqnames
<Rle>

[1]
[2]
(3]
[4]
(5]
(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]

N e T T = I =

[y

mdepths
<integer>

[1]
(2]
(3]
[4]
(5]
(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]

WP OO WO O O N PN

seqlengths:
1
NA

ranges and 3 elementMetadata cols:

[36748165,
[17735586,
[17736470,
[17738618,
[17739569,
[17740033,
[17742976,
[17747210,
[17748699,
[17749201,
[17752037,
[17755602,
[17764726,

ranges strand
<IRanges> <Rle>
36748285] +
17735690] -
17736547] -
17738690] -
17739674] -
17740213] -
17743142] -
17747324] -
17748787] -
17749332] -
17752180] -
17755695] -
17765010] -

gene_id
<character>
ENSGO0000054118
ENSG0O0000179051
ENSG0O0000179051
ENSG0O0000179051
ENSG0O0000179051
ENSG0O0000179051
ENSG0O0000179051
ENSG0O0000179051
ENSG0O0000179051
ENSG0O0000179051
ENSG0O0000179051
ENSG0O0000179051
ENSG00000179051

counts
<integer>
7

6

6

7

10

12

11

3

~

12

O o1 ©

2.3 Summary

The counts and mdepths results in exon or CDS level can be summarized to gene level by different
methods, such as sum, mean, median, max, min and so on. RPKM is reads per kilobase of exon
model per million mapped reads, which is also supported in the function QuanGR.

> cdsResl <- QuanGR(cdsGR1, method="mean", Quan="mdepths", by="gene_id")
> cdsRes1

mean_mdepths
ENSG0O0000054118 9.200000
ENSG0O0000179051 4.916667

> cdsRes2 <- QuanGR(cdsGR1, method="sum", Quan="counts", by="gene_id")
> cdsRes2

sum_counts
ENSG00000054118 290
ENSG00000179051 81

> cdsRes3 <- QuanGR(cdsGR1, method="RPKM", Quan="counts", by="gene_id")
> cdsRes3

RPKM_counts
ENSG00000054118 272549.2
ENSG00000179051 139151.6

The results can be used as input data in the downstream differential expression analysis. Also the
results with the abundance in different level can be used in the isoform analysis.

3 Differential expression

4 Session information
> sessionInfo()

R version 2.15.0 (2012-03-30)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
[1] C

attached base packages:
[1] stats graphics grDevices utils datasets methods Dbase

other attached packages:
[1] gRNASeq_0.0.1 ShortRead_1.14.3 latticeExtra_0.6-19
[4] RColorBrewer_1.0-5 Rsamtools_1.8.4 lattice_0.20-6
[7] Biostrings_2.24.1 GenomicRanges_1.8.5 IRanges_1.14.2

[10] BiocGenerics_0.2.0

loaded via a namespace (and not attached):
[1] Biobase_2.16.0 bitops_1.0-4.1 grid_2.15.0 hwriter_1.3 stats4_2.15.0
[6] tools_2.15.0 zlibbioc_1.2.0

