pim: An R package for fitting probabilistic index
models

Jan De Neve, Nick Sabbe
February 17, 2016

Contents

1 IMPORTANT] 1

2_Introduction

[\

[3 pim parameters and their influence
[3.1 Standard parameters|
[3.2 Design parameters|

.................................
[0.2.2 leftsuffix,rightsuffix|

[3.2.4 interpretation and interactions.differencel
[3.3 Fitting parameters|
[3.4 Make-up parameters]
[3.5 Utility parameters|

© 00O U T U A W

©

[4 Childhood respiratory disease study|

[> Mental health study] 12

[6 Food expenditure study| 14

[Categorical predictors| 15

8 Conclusions and remarksl 16

1 IMPORTANT

The package pimold is a legacy version of the pim package only maintained as an illus-
tration for the publications referenced in this document. For real analysis, we strongly

1

advise to install the new pim package (version 1.9 and higher). That one contains a
completely new formula interface that works more intuitively and R-like.

2 Introduction

This document explains and illustrates how the pimold-package can be employed to fit a
Probabilistic Index Model (PIM). We refer to Thas et al. (2012) for a detailed overview
on PIMs. If (Y, X) and (Y, X’) are i.i.d. then a PIM is defined as

P{Y xVY'IX, X'} =m(X,X":8) =g " (Z2"B8) for (X,X')e€X, (1)

with P{Y xY'} = P{Y <Y’} +iP{Y =Y"}. Here g(-) denotes a link function, Z is a
covariate vector that depends on the predictors X and X’ and X is the set of predictors
for which the model is defined.

The pimold-package allows fitting a nearly unlimited range of PIMs through exten-
sive customisations.

1. One can manually provide the set of pairs of observation indices for the pseudo-
observations (the ”"poset”), one can use any of the provided functions (onewayposet
which includes all unique oneway combinations ((1,2), (1,3) and (2, 3)), lexiposet
which does the same after ordering the data based on the predictors in the model
(the lexicographical order restriction) or the default fullposet which simply con-
tains all combinations), and one can even write a custom function for it.

For example, in the presence of 2 predictors, say X7 = (X1, X5), the lexicographi-
cal order restricted model is defined for X = {(X, X")|X; < X7 or if X; = X{ then X, < X/},
which can be selected straightforwardly by employing the lexiposet function.

2. The link function in the current implementation is restricted to "identity",
"logit" and "probit". However, through customisation of the estimators (in par-
ticular by providing custom implementations of scorefunctioncreator.default
and Uforposandwich.default), this can be easily overcome.

3. By default, the left hand side of the formula (e.g. y in y ~ x) is always used for
a true probabilistic index P {y < ¢/}, but P{y < ¢’} and P{y < '} can also be
attained through parameter lhs.

4. In the presence of categorical predictors transitivity is assumed.

The function pim allows fitting PIMs for different choices of Z. A natural choice is
the difference in predictors, i.e. Z = X’ — X. Unless its parameter interpretation
is set to "marginal", all predictors (e.g. X;) that occur in the model formula without
altering functions (see below) are indeed interpreted as X| — X;. For interactions to also
behave as the difference, an extra parameter interactions.difference is provided.
The defaults are chosen in such a way that the design matrix is created as the difference

between the left and right design matrix, but with an intercept added. If you want
to avoid the intercept, you have to exclude it from the model as you would in normal
formulas, by adding —1 to it.

As an example, model formula y ~ a * b will (by default) represent P{y < ¢/} =
Bo+ Bula’ — a) + Ba(b! — b) + By(a’tl — ab).

Note that the above interpretation (i.e. with parameter interpretation equal to
"regular") of the model formula will only interpret individual columns and interactions
as differences. If you want to completely enforce the design matrix to be the differ-
ence of the design matrices, you can use the default interpretation="difference",
which will indeed enforce this. The altering functions are not allowed in this case, and
interactions.difference is ignored.

Note that when the model satisfies m(X, X’; 8)+m(X’, X; 8) = 1 the lexicographical
order restriction corresponds to the NO order restriction and hence the model is defined
for all couples of predictors (X, X'), see Thas et al. (2012) for more details.

For expressing more complex models, 4 altering functions are provided: L(X), R(X),
O(X) and F(X). These expand to:

1. L(X): the X value of only the left part of the pseudo-observation (with the default
suffixes provided, this will be denoted further as X_L)

2. R(X): the X value of only the right part of the pseudo-observation (with the
default suffixes provided, this will be denoted further as X_R)

3. O(X): (can only be used on orderable predictors) I (L(X) < R(X))

4. F(X): (can only be used on factors) holds all interaction terms where the left
value is smaller than the right one.

Finally, when force.marginal is TRUF, terms X without altering functions are inter-
preted as R(X). This is typically only useful for marginal models, as specified in TODO
rankpaper. Note that some of the altering functions are not relevant in marginal models,
and the fit will fail if you try to do so.

In the following sections we illustrate the pim () function according to different choices
of Z. In Sections [4H6| case studies from Section 6 in |Thas et al. (2012) are analyzed, while
Section [7] considers categorical predictors. Section [§|gives some conclusions and remarks.

3 pim parameters and their influence

As can be observed in the help for the pim function (?pim), a lot of parameters have
been provided. Some of these require a function passed in themselves, so a large amount
of customisation is possible. This section describes in some more detail the effect of each
of the parameters.

3.1 Standard parameters

The pim function currently supports only the case where a data.frame-like object can
be passed through data, and the model can be expressed as a formula. If you want to
manually provide the design matrix, you need to create an object of class pimfitdata
yourself (see ?pim.fit.prep) and pass this to pim.fit.

The other more traditional parameters for a model fitting function are link (provid-
ing one of the link functions - note that although the provided options suggest otherwise,
currently only "logit", "identity" and "probit" are provided, where "logit" is the
default), and na.action (note again that no effort has been made to handle missing
data in the fitting code, so there will be little to no use in letting NA values pass. Also:
the na.action is applied to the original data, not to the design matrix, so it is typically
the strictest possible.)

We have opted to allow for blocking variables not through constructs in the formula,
but by simply providing a character vector blocking.variables. Note that these are
only used to filter the poset: only combinations of observations that share the same
values for the blocking variables are allowed.

Finally, we provide a parameter verbosity: most of the functions within this package
supprt it, and it is typically passed on down the stack of functions while diminishing
it. At some points, when this variable is above a threshold (typically, above zero), some
diagnostic or progress text is displayed. For long running fits, this can be interesting
to follow the progress (and then the overhead of the continuous logging will also be
relatively small). It can also be used to investigate unexpected results, as it may display
intermediate results, so the cause for the unexpected result can typically be pinpointed
more quickly. Please be aware that the verbosity comes at a performance cost, so for
typical use it is best to leave verbosity at its default of zero.

3.2 Design parameters

There are quite a few parameters that govern how the formula is interpreted to create
the design matrix.

3.2.1 poset

This parameter represents either a matrix (or similar structure, though experience shows
that matrix is indeed the fastest performing) with two columns holding the rownumbers
of the left and right observation in each pseudo-observation (in Thas et al. (2012]), this
is denoted with a calligraphic 1.), or a function that can create this based on the data.

We expect that the option to immediately pass in a matrix will be seldom used.

If you pass a function, it should have three parameters: data, formula and ver-
bosity. The values it will receive are always the ones that were passed along to pim.
The function should return a list with two items: data (which should hold either the
original data or some reordered or transformed version of it) and poset, which should

be the resulting matrix of rownumber combinations. Some functions have already been
provided for use in this way, which will be able to handle most cases:

e fullposet: the default option, which will simply create a matrix with all combi-
nations of rownumbers.

e onewayposet: this will contain only combinations where the left rownumber is
smaller than the right one

e lexiposet: will first try to order the data according to the variables in the model
(note: if more than one variables is present, the order of the variables is the
one in the dataset), and then again will return only combinations where the left
rownumber is smaller than the right one. In [Thas et al. (2012)), this is known as
the lexicographical order.

e forcedcolorderonewayposet (columnnames): here, the data is first ordered ac-
cording to the columnnames passed in, and then again returns only combinations
where the left rownumber is smaller than the right one.

3.2.2 1leftsuffix,rightsuffix

During the creation of the design matrix, it often happens that two versions of the
same variable have to be handled, pertaining to the left and right observation. Where
necessary, these will be referred to with their original variable names with the matching
suffixes appended. The defaults (_L and _R) will probably suffice for most circumstances
(and little to no testing has been done with other suffixes). These parameters are mostly
provided for the unlikely event where both columns X and X_L are already present in the
data. Some very basic safety checks are performed in pimformula to avoid issues here.

3.2.3 1hs

A regular PIM model will always have P{Y < Y’} as its pseudo-outcome, which will
be the interpretation of the left hand side of the formula if 1hs="P0", the default. For
other applications, we also provide P{Y <Y’} and P{Y < Y’}, by passing "<=" or "<"
as lhs. Note that in the future, this may be extended (see pimformula) to include even
more general functions.

3.2.4 interpretation and interactions.difference

These are probably the most influential parameters. interactions.difference is ig-
nored unless interpretation is "regular", so the existing combinations are:

e interpretation="difference": In this case, the formula is used to create a glm
style design matrix of all the original observations (see model.matrix). Then the
results for the left and right observations are subtracted (though if an intercept

5

was present, this is left out!). It is important to realise that specifying an intercept
or not in the formula will influence the way the original design matrix is created
for factor variables, so consider this carefully. We expect that you will want to
include the intercept in most cases, so that the first level of the factor is used as a
reference (and gets no dummy variable).

e interpretation="regular" and interactions.difference=TRUE In this case,
main effect terms that are variable names occurring in the data, and interaction
terms are interpreted as differences between the right and left values of that term,
where possible. If no calculated columns are present, this should have the same
effect as interpretation="difference", except that intercepts are not excluded.
Calculated main effect terms (e.g. I(X2)) are interpreted by replacing each column
name with the difference (in the example: (X’ — X)?), where variables are first
converted to numerical (note the impact for factors!!). In addition, the altering

functions L,R,F,0 can be used as shortcuts to some calculated terms (see the end
of Section

e interpretation="regular" and interactions.difference=FALSE This is the
same as the previous option, but interaction terms are now treated the same way
as calculated terms. The simplest example where the difference is clear, is in the
interpretation of Y ~ A x B: with interactions.difference=TRUE, the interac-
tion term is interpreted as I((A_R : B_R) — (A_L : B_L)), while with interac-
tions.difference=FALSE, it is interpreted as (A_R — A_L): (B_R — B_L).

e interpretation="symmetric": This is nearly the same as "regular", but it
adapts most dummies so that they are antisymmetric about 0, thus also ensuring
the symmetry condition on the "probability” of the model.

e interpretation="marginal": in this interpretation, only the right side value of
each variable is allowed in the model. As such, variable names are replaced with
their right side value. Some of the altering functions are still allowed, but have
slightly different forms (see again at the end of Section [2)).

3.3 Fitting parameters

Once the model matrix has been created and the link function is known, fitting the
PIM requires estimating the coefficients through solving a set of (potentially nonlinear)
equations and then estimating the variance.

For estimating the coefficients, several methods are readily provided, that can be
passed as the estimator parameter to pim:

e estimator.nleqslv (the default): will use nlegslv to solve the equations, and as
such, all parameters that tune its performance can be passed along. In addition,
treat.convergence.error can be set to "ignore", so nonconvergence will be

ignored (although we encourage users to solve this through the other parameters
to nlegslv). The function that calculates the lefthand side of the equations (i.e.
what has to be set to zero) based on the 1ink function has to be provided as the
scoreFunctionCreator. Its default, scorefunctioncreator.default provides
these for "logit", "identity" and "probit", but this can be easily extended
to other link functions by employing equation 8 of Thas et al. (2012) (see the
implementation of scorefunctioncreator.default for the requirements of this
type of function). Note also that the set of equations for a given link function is
uniquely defined, and the current implementation does not claim to hold the most
efficient set.

e estimator.BB: very similar to estimator.nleqslv, although this relies on BB-
solve from package BB, so the parameters reflect this.

e estimator.glm: the maximum likelihood estimating equations for the mathing
glm are of the form of equation 8 in Thas et al. (2012)), so any solution to these
will be a correct estimate of the PIM coefficients. This is what this estimator
provides. A slight disadvantage of this is that the glm (co)variance estimate is
also calculated although this is not actually usable in most cases (since it requires
independence of the pseudo-observations). This can be ignored, but might involve
a performance impact for sizeable data.

e estimator.trymultiple: this will try all reasonable parameter values for nle-
gslv, and after that BBSolve until one works (i.e. does not give an error). This
can obviously be very slow, so it is much better to figure out which set of param-
eters works for a given dataset. This is only intended for lazy people who have
plenty of time on their hands.

e estimator.glmnet: this estimator is still somewhat in the experimental phase,
but will apply elastic net penalization to the estimating equations by employing
glmnet in a similar manner as estimator.glm does with glm. The parameters are
the natural ones to glmnet.

When estimating the sample (co)variances of these parameter estimates, we also have
several options. It should be noted that a requirement for the (co)variance estimates to
be correct is that the same set of estimating equations is used. This is in no way enforced
by pim! Because the coefficient estimation occurs completely seperate, and custom
functions that represent the equations can be provided, there is no way to keep these
in check. This is the responsability of the user of these functions. Note, however that
for the provided link functions ("logit", "identity" and "probit") and the default
estimating functions, this is OK.

The (co)variance estimating options are:

e varianceestimator.sandwich (the default): provides a straightforward and highly
optimized implementation of the sandwich estimator (theorem 2 in Thas et al.

7

(2012))). Similarly as for estimator.nlegslv, a function Uforposandwich pro-
viding the estimating equations and their partial derivatives has to be procured.
Once again, the default for this parameter (Uforposandwich.default) provides
the matching results for the three provided link functions and scorefunction-
creator.default.

e NULL: by passing NULL, no attempt is made to estimate the (co)variances. This can
be useful in e.g. bootstrapping or crossvalidating settings, where these calculations
would cause unnecessary overhead.

e varianceestimator.HO: when the link function is "identity", a simpler and
more efficient estimate of the (co)variances exists when the null hypothesis that
all parameters are zero is true. This estimator provides just that estimate.

e varianceestimator.glm: can only be used if the coefficient estimation happened
through estimator.glm: in that case, this estimator returns glm’s (co)variance
estimate. The user should take care only to use this when the design implies
independence of the psuedo-observations.

e varianceestimator.bootstrap: the variance can also be estimated by a non-
parametric bootstrap (important notice: the bootstrap samples are taken on the
original dataset (not simply on the pseudo-observations) to ensure that the co-
variance pattern is preserved). Besides taking the number of bootstrap iterations
(D) as a parameter, you can also specify keep.posetbs=TRUE (the default being
FALSE) to also return a list of the resampled pseudo-observations (note: the im-
plementation assumes that all pseudo-observations that can be attained through
the poset mechanism on the bootstrap samples, were already present in the orginal
poset). You can look at the code of the nonexported function .basicbootstrap
(getAnywhere (".basicbootstrap")) to see how to use this to obtain a boot-
strapped pimfitdata object from the original one.

3.4 Make-up parameters

Especially with calculated variables, but even when using just the default settings, the
names of variables can become quite cluttered, since they now typically involve the
differences between the right and left values. Some attempts are taken to make the
variable names more readable:

nicenames: if this is TRUE (the default), the mechanism to make the names more
readable is activated. This includes automatic renaming of the differences (with the
default suffixes, X_R-X_L is then renamed to X_R-_L) as well as proper names for the
results of the altering functions. extra.nicenames: through this dataset, extra variable
names (or parts of them) and matching "nicer” names can be passed in to perform the
renaming. It is useful to know that the whitespace will be removed from names before

attempting a replace. An example on how to use this can be found in ?pim: see pimb
there, or also Section [6] below.

3.5 Utility parameters

One final parameter is keep.data, which chooses whether or not the design matrix is
kept in the final object. We expect that especially for big models, this might be rather
big, so the default is not to keep it.

4 Childhood respiratory disease study
For the childhood respiratory disease study we consider the PIM with interaction

logit (P{FEV < FEV'}) = B(AGE' — AGE) + B2(SMOKE' — SMOKE)
+B3(AGE' « SMOKE' — AGE *» SMOKE).

Because this PIM corresponds to a covariate vector Z of the form 7 = X’ — X, with

XT = (AGE,SMOKE,AGE * SMOKE), the formula statement of pim() is similar to
the formula statement of 1m() and glm(). We first read in the data

> library(pimold)
> data("FEVData")
> head (FEVData)

Age FEV Height Sex Smoke

1 91708 57.0 O 0
2 81.724 67.5 O 0
3 T71.720 54.5 O 0
4 9 1.568 53.0 1 0
5 91.895 57.0 1 0
6 8 2.336 61.0 O 0

Here FEV stands for the forced expiratory volume (FEV'), Age for the age of the child
(AGE) and Smoke whether a child smokes or not (SMOKE). We fit the PIM:

> library('pimold')

> pim.fitl <- pim(FEV ~ Age*Smoke-1, data = FEVData, link="logit",
+ poset=lexiposet, estimator=estimator.nleqslv(),

+ keep.data=TRUE, interpretation="regular")

> pim.fitl

Call:
pim(formula = FEV ~ Age * Smoke - 1, data = FEVData, link = "logit",

poset = lexiposet, interpretation = "regular", estimator = estimator.nleqgslv(),
keep.data = TRUE)

Coefficients:
Age_R-_L Smoke_R-_L Age:Smoke_L-_R
0.6076003 5.3068852 -0.4553885

The estimated model is given by

logit (f> (FEV < FEV’}) = 0.61(AGE' — AGE) + 5.31(SMOKE' — SMOKE)
—0.46(AGE' * SMOKE' — AGE x SMOKE).
Thus the 1m()-like formula
~ AgexSmoke = Age + Smoke + Age:Smoke,
is automatically converted to a pim()-like formula
~ (Age' - Age) + (Smoke' - Smoke) + (Age':Smoke' - Age:Smoke).

The summary () function gives the estimates and corresponding standard errors together
with the Z— and p-value corresponding to the null-hypothesis Hy : § = 0.

> summary (pim.fit1)

Call:

pim(formula = FEV ~ Age * Smoke - 1, data = FEVData, link = "logit",
poset = lexiposet, interpretation = "regular", estimator = estimator.nleqgslv(),
keep.data = TRUE)

Estimate Std. Error Z value Pr(>|zl)
Age_R-_L 0.607600 0.030124 20.1697 < 2.2e-16 *x**
Smoke_R-_L 5.306885 1.044227 5.0821 3.732e-07 *x*x*
Age:Smoke_L-_R -0.455388 0.078543 -5.7979 6.714e-09 *x*x*

Signif. codes: 0 “*xx’ 0.001 ‘*x> 0.01 ‘%’ 0.05 ‘.” 0.1 “ ’> 1

The plot () function provides a rudimentary goodness-of-fit plot.

> plot(pim.fit1)

10

Goodness—of-fit

1.0

0.9

0.8
|

Model PI

0.7

0.6

0.5

I I I I I
0.5 0.6 0.7 0.8 0.9 1.0

Empirical PI

The functions coef (), vcov() and fitted.values() provide the estimated coefficients,
variance-covariance matrix of 5 and the fitted values respectively.

> coef(pim.fit1)

Age_R-_L Smoke_R-_L Age:Smoke_L-_R
0.6076003 5.3068852 -0.4553885

> vcov(pim.fit1)
Age_R-_L Smoke_R-_L Age:Smoke_L-_R
Age_R-_L 0.0009074760 0.009485251 -0.0009254122

Smoke_R-_L 0.0094852506 1.090409267 -0.0802054923
Age:Smoke_L-_R -0.0009254122 -0.080205492 0.0061690504

> head(fitted.values(pim.fit1))

11

[,1]

26_222 0.5000000
26_23 0.6473932
26_59 0.6473932
26_64 0.6473932
26_104 0.6473932
26_173 0.6473932

We end this section with an illustration of the interpretation of the age effect. For 2
randomly selected children with the same smoking status and a year difference in age, the
probability that the eldest has a higher FEV is estimated by expit(0.61 —0.46SMOKE).
For non-smokers this probability is 0.65, while for smokers this becomes 0.54.

5 Mental health study

For the mental health study the following PIM was proposed
logit (P{MI x MI'}) = B(SES" — SES) + (o LI' — LI). (2)

> data("MHData")
> head (MHData)

mental ses life

1 1 1 1
2 1 1 9
3 1 1 4
4 1 1 3
5 1 0 2
6 1 1 0

Here mental stands for the mental impairment (M), ses for the socioeconomic status
(SES) and life for the life index (LI). Similar as in the previous example we can
specify a lm()-like formula.

> pim.fit2a <- pim(mental ~ ses + life -1, data = MHData, link="logit",
+ poset=lexiposet, estimator=estimator.nleqslv(),

+ keep.data=TRUE, interpretation="regular")

> summary(pim.fit2a)

Call:

pim(formula = mental ~ ses + life - 1, data = MHData, link = "logit",
poset = lexiposet, interpretation = "regular", estimator = estimator.nleqgslv(),
keep.data = TRUE)

12

Estimate Std. Error Z value Pr(>|zl|)
ses_R-_L -0.740163 0.343575 -2.1543 0.031217 =*
life_R-_L 0.201179 0.073371 2.7419 0.006108 =*x*

Signif. codes: 0 “**xx’ 0.001 ‘**x’ 0.01 ‘%’ 0.05 ‘.” 0.1 ¢ * 1
The model is estimated by
logit (P (MI < MJ’}) — —0.74(SES' — SES) + 0.2(LI' — LI).
Model can be extended as follows
logit (P{MI x MI'}) = B1(SES"— SES) + So(LI' — LI) + B3SES + B4LI.

If we want to fit this model, we need to specify the formula statement explicitly because
Z is no longer of the form Z = X’ — X. Some notation is needed to specify the predictors
corresponding to the left response in P {M 1 < M1I'}, thus (SES, LI) and the predictors
corresponding to the right response, thus (SES’, LI’). The altering functions can be
used for this: L() for the predictors corresponding to the left response and R() for the
predictors corresponding to the right response. Thus (SES, L) in R becomes (L(ses),
L(life) and (SES’, LI') becomes (R(ses), R(life). The I() statement is needed to
specify specific functions. The function

Bi(SES" — SES) + Bo(LI' — LI) + B3SES + 41,
in R becomes

~ ses + life + L(ses) + L(life) - 1

> pim.fit2b <- pim(mental ~ ses + life + L(ses) + L(life) - 1, data = MHData,
+ link="logit", poset=lexiposet,

+ estimator=estimator.nleqslv(),keep.data=TRUE,

+ interpretation="regular")

> summary (pim.fit2b)

Call:

pim(formula = mental ~ ses + life + L(ses) + L(life) - 1, data = MHData,
link = "logit", poset = lexiposet, interpretation = "regular",
estimator = estimator.nleqslv(), keep.data = TRUE)

Estimate Std. Error Z value Pr(>|zl)

ses_R-_L -0.670723 0.382665 -1.7528 0.079642 .
life_R-_L 0.205459 0.069989 2.9356 0.003329 *x

13

ses_L -0.034676 0.163157 -0.2125 0.831693
life_L -0.021601 0.039843 -0.5422 0.587711

Signif. codes: 0O “*xx’ 0.001 ‘**x’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1
The estimated model is given by
logit <f’ {MI = M[’}) = —0.67(SES" — SES) + 0.21(LI' — LI) — 0.03SES — 0.02LI.

6 Food expenditure study

Because of heteroscedasticity the following PIM is proposed to analyze the food expen-
diture data.
HI' —HI

> data("Engeldata")

Here income denotes the household income (H 1) while foodexp denotes the food ex-
penditure (F'E). The covariate vector Z is not of the form Z = X’ — X, hence we need
to specify the formula explicitly.

> pim.fit3 <- pim(foodexp ~ I((R(income)-L(income))/sqrt (R(income)+L (income)))-1,
+ data = Engeldata, link="logit", poset=lexiposet,
estimator=estimator.nleqslv(),
keep.data=TRUE, interpretation="regular",
extra.nicenames=data.frame(
org="I((R(income)-L(income))/sqrt (R(income)+L(income)))",
+ nice="weightedincomediff", stringsAsFactors=FALSE))
> summary (pim.fit3)

+ + + +

Call:
pim(formula = foodexp ~ I((R(income) - L(income))/sqrt(R(income) +
L(income))) - 1, data = Engeldata, link = "logit", poset = lexiposet,
interpretation = "regular", estimator = estimator.nleqgslv(),
keep.data = TRUE, extra.nicenames = data.frame(org = "I((R(income)-L(income))/sqrt(
nice = "weightedincomediff", stringsAsFactors = FALSE))

Estimate Std. Error Z value Pr(>|z|)
weightedincomediff 0.38971 0.02436 15.998 < 2.2e-16 *x*x*

Signif. codes: O “*%x’ 0.001 ‘**x’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1
The estimated model is given by
. HI' —HI
logit (P (FE < FE’}) — 039
HI'+ HI

14

7 Categorical predictors

In the presence of categorical predictors, a dummy coding is used together with the

covariate vector Z = X C’lummy — Xdummy , Where Xgymm, denotes the dummy coding of

the predictor X. This model is inspired by the relation between a linear models and
a PIM. As an example consider a predictor X with 3 levels A, B and C' with dummy
coding Xg = 1if X = B and Xp = 0 otherwise and X¢ = 1if X = C and X¢ =0
otherwise. The linear model

Y=o+ Xg+ aXe + ¢,
with € ~ N(0, 0?) embeds the PIM
P{Y Y'[X, X'} = @ {B:1(Xp — Xp) + Ba(X¢e — X))
where 8; = o;/v/202. Note that the PIM has only 2 parameters (3, and ;) to model 3
probabilities P{Y x V| X = A, X' = B},P{Y Y| X =4, X' =C}land P{Y xY'|X =B, X' =C}.

This is a consequence of the transitivity assumption which is implied by the linear model:

P{YSY|X=BX=C} = &{&'(P{Y xV'|X =4X =C})
—o ' (P{Y xY'|X =A, X =B})}.

In R this becomes

> n <- 100

> X <- ordered(sample(LETTERS[1:3], n, replace = TRUE))

> Y <- model.matrix(~ X)}*}c(1,2,3) + rnorm(n)

> data.tmp <- data.frame(Y, X)

> pim.fit4 <- pim(Y ~ X-1, data = data.tmp, link = "probit", poset=lexiposet,

+ estimator=estimator.nleqslv(), keep.data=TRUE,

+ interpretation="regular")

> summary (pim.fit4)

Call:

pim(formula = Y ~ X - 1, data = data.tmp, link = "probit", poset = lexiposet,
interpretation = "regular", estimator = estimator.nleqgslv(),

keep.data = TRUE)

Estimate Std. Error Z value Pr(>|z|)
X_R-_L_B -1.61474 0.22045 -7.3248 2.392e-13 *x*x
X_R-_L_C 1.95770 0.23276 8.4109 < 2.2e-16 **x

Signif. codes: O “*%x’ 0.001 ‘**x’ 0.01 ‘x’ 0.05 “.” 0.1 ¢ * 1

15

The estimated model is given by
o1 (r@ v < V)X, X’}) = 1.61(X} — Xp) + 1L.96(XL — Xe).

Note that PIMs are semiparametric, thus the normality assumption is not required to
obtain consistent and asymptotically normally distributed estimators. The linear model

merely serves as a guide on how Z can be constructed based on the predictors X and
X',

8 Conclusions and remarks

The pimold-package is illustrated on several examples and allows fitting a broad class
of PIMs. PIMs which are embedded by a linear model as well as less restrictive PIMs
are allowed. For categorical predictors however, only PIMs which are based on a linear
model can be constructed.

Note that for a sample size of n a total n(n — 1)/2 pseudo-observations are created.
Consequently for large sample sizes the function goes quite slow.

In one of the next versions the above mentioned shortcomings will be tackled. All
bugs/comments/suggestions are welcome at |[JanR.DeNeve@Ugent.be.

References

O. Thas, J. De Neve, L. Clement, and J-P. Ottoy. Probabilistic index models (with
discussion). Journal of the Royal Statistical Society - Series B, 74:1-29, 2012.

16

mailto:JanR.DeNeve@Ugent.be

	IMPORTANT
	Introduction
	pim parameters and their influence
	Standard parameters
	Design parameters
	poset
	leftsuffix,rightsuffix
	lhs
	interpretation and interactions.difference

	Fitting parameters
	Make-up parameters
	Utility parameters

	Childhood respiratory disease study
	Mental health study
	Food expenditure study
	Categorical predictors
	Conclusions and remarks

