
Phenopix

G. Filippa, E. Cremonese, M. Migliavacca, A. Richardson,

M. Galvagno, M. Forkel

January 4, 2016

This vignette aims at illustrating the main features of the package phenopix.

This package was designed for processing digital images of the vegetation cover

in order to compute vegetation indexes that can be in turn used to track the

seasonal development of the vegetation. The analysis can be run on one or

more portions of the image (so called regions of interest, ROIs). Regions of

interest can be of any polygonal shape. For data processing, two approaches

are available: ROI-averaged analysis or pixel based analysis. ROI-averaged

analysis is based on the computation of vegetation indexes as the average of the

entire ROI, whereas pixel based analysis allows to treat separately each pixel

of the image. Data used to show phenopix package are from imagery archive of

Torgnon Grassland site, belonging to the PHENOCAM network. The rationale

and the objectives that motivate the processing chain that will be described here

are established in the scientific literature since a quite long time. See References

for a sample of the most relevant publications. Many functions of the package are

a partial modification of the package greenbrown (infos: http://greenbrown.r-

forge.r-project.org/).

1 System requirements

phenopix requires R (>= 2.15.3) and imports one or more functions from the

following packages:

zoo, plyr, SDMTools, jpeg, stringr (>= 1.0.0), bcp, strucchange,

parallel, foreach, doParallel, iterators, gtools, raster

This vignette was run on:

> library(phenopix)

> sessionInfo()

1

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.3 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=it_IT.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=it_IT.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=it_IT.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] tools stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] zoo_1.7-12 phenopix_2.1

loaded via a namespace (and not attached):

[1] Rcpp_0.11.6 lattice_0.20-29 codetools_0.2-14 gtools_3.4.1

[5] foreach_1.4.2 R.methodsS3_1.6.1 grid_3.2.2 plyr_1.8.1

[9] magrittr_1.5 stringi_0.4-1 sp_1.0-16 raster_2.3-40

[13] doParallel_1.0.8 strucchange_1.5-0 R.oo_1.18.0 R.utils_1.33.0

[17] sandwich_2.3-2 iterators_1.0.7 stringr_1.0.0 jpeg_0.1-8

[21] bcp_3.0.1 parallel_3.2.2 SDMTools_1.1-221

From the output of sessionInfo you will also notice the phenopix version

I am using.

2 Topics covered

This vignette covers the preliminary and main steps of the processing chain (see

section Steps for details). Specific vignettes are available for pixel based spatial

analysis and Camera NDVI computation (coming soon).

2

3 Install the package

The package phenopix is hosted in the r-forge repository and can be installed

via the following command:

> install.packages("phenopix", repos="http://R-Forge.R-project.org")

Note that by running this command you will likely be asked to install the

dependencies, which are available via the usual command:

> install.packages('package.name')

Once the package is properly installed you will be able to open this vignette

by running:

> vignette('phenopix')

4 The steps

The first step is to give a well defined structure to a folder with the function

structureFolder().

The second step of the analysis is to choose a region of interest in an image.

The functions useful for this step include:

- DrawROI() to draw a region of interest in your pictures

- PrintROI() to plot your ROI into an image

- updateROI() to apply ROI coordinates to an image of different size

Once the ROI is chosen, drawn and the underlying coordinates properly

saved, color digital numbers are extracted and vegetation indexes (VIs) are

calculated, using one main function extractVIs().

Afterwards, raw VIs must be filtered out to get a reliable seasonal trajectory.

This is the job of the function autoFilter().

Then, several options are available to process the resulting data, ranging

from fitting a curve to extracting break points on a seasonal trajectory, including

several methods to extract relevant moments in the season (aka phenophases).

Functions useful for this step include:

- greenProcess() to fit a curve to the data (ROI-averaged approach)

- greenExplore() to fit all curves and phenophases with no uncertainty

estimation, this function is coupled with

- plotExplore(), which plots all fittings and phenophases in the object in

output from greenExplore()

3

- spatialGreen() to fit a curve to the data (pixel-based approach)

- PhenoBP() to extract break points on a seasonal trajectory of data

A number of facilities are then built to plot, summarize, post process and

render the results. These include:

- generic plot(), print(), update() and summary() functions with dedi-

cated methods

- plotSpatial() to plot results from the pixel-based analysis

- extractParameters() to extract phenophases and curve parameters after

the pixel-based analysis.

In the following paragraphs each step will be discussed and illustrated in

detail.

5 Structuring a folder tree useful for the analy-

sis

Giving a good structure to your analysis can make all subsequent steps simple

and straightforward. If you are running a site that records images you will be

dealing with quite heavy folders (with likely multiple years of data, hence some

thousand files of images) that you need to handle with care. We suggest separate

folders for each site (of course) but also year of analysis. Each year folder should

contain a sub-folder with all images to be processed (/IMG), one folder containing

the reference image, i.e. the image you will use to draw your ROI (/REF), one

folder containing data for the region of interest (/ROI) and one folder containing

extracted vegetation indexes (/VI). The function structureFolder() provides

a facility to create appropriate sub-folders:

> library(phenopix)

> my.path <- structureFolder(path = getwd(), showWarnings = FALSE)

Put all your images in /home/gian/sweave/IMG/

Put your reference image in /home/gian/sweave/REF/

Draw your ROI with DrawROI():

set path_img_ref to /home/gian/sweave/REF/

set path_ROIs to /home/gian/sweave/ROI/

Then you can extractVIs():

set img.path as /home/gian/sweave/IMG/

set roi.path as /home/gian/sweave/ROI/

set vi.path to /home/gian/sweave/VI/

4

Alternatively, assign this function to an object and use named elements of the returned list

> str(my.path)

List of 4

$ img: chr "/home/gian/sweave/IMG/"

$ ref: chr "/home/gian/sweave/REF/"

$ roi: chr "/home/gian/sweave/ROI/"

$ VI : chr "/home/gian/sweave/VI/"

structureFolder() creates sub-folder at a given path (in this example, the

working directory) and stores all path in a named list. You can easily access

all needed paths by simply pointing to the right object in your path object.

Note that if one folder already exists the function does not overwrite existing

folders, but gives a warning. Note that the suggested structure is absolutely not

mandatory. It is just a suggestion that can make easier the next steps. Once

the folder structure is done, you have to:

- manually put your series of images to be processed into the /IMG folder

- manually put one of such images in the /REF folder, this is the image that

will be printed on screen to draw your ROI.

6 Drawing a region of interest (ROI)

Apart from structuring folders, drawing a ROI is the first, hence most important

step of the analysis. The procedure is based on two steps: first, a reference image

(chosen by the user) is plotted by calling function readJPEG() from package

jpeg and rasterImage(). In Fig. 1 is the reference image from one of our

sites, Torgnon (NW Italy, 2100 m of elevation) and the code used to plot the

image. We first define an easy plotting function to print on screen images.

> .plotImage <- function(image, ...) {

+ ncols <- ncol(image)

+ nrows <- nrow(image)

+ suppressWarnings(plot(0,

+ type='n', xlim=c(0, ncols),

+ ylim=c(0, nrows), ...))

+ suppressWarnings(rasterImage(image,

+ xleft=0, ybottom=0, xright=ncols,

+ ytop=nrows, ...))

+ }

5

> img <- jpeg::readJPEG('REF/20130630T1000.jpg')

> .plotImage(img)

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0

Index

0

Figure 1: A jpeg image printed on a graphic device using readJPEG() and

rasterImage() embedded in the .plotImage() function

This chunk of code is automatically included in the DrawROI() function.

The usage is:

> args(DrawROI)

function (path_img_ref, path_ROIs, nroi = 1, roi.names = NULL,

file.type = ".jpg")

NULL

where path_img_ref is the folder of your reference image, path ROIs is the

path in your computer where to store RData with ROI properties, number of

ROIs and their names. A call to the function opens a graphic device and allows

the use of locator() to define your ROI(s). Note that the use of locator is

somewhat system specific. Check out the help file ?locator for more details.

Locator allows to draw a polygon by left-clicking vertices and then right-clicking

(or press ESC on MacOS) to close the polygon. If you have chosen more than

6

one ROI, after closing your first polygon, the image will appear again unmodified

to draw the second ROI, and so on. Note that the plot title recalls you which

of your ROIs you are actually drawing. When you are done, in your path_ROIs

an RData called roi.data.RData will be stored. This is actually a list with the

following structure:

> load('ROI/roi.data.Rdata')

> str(roi.data)

List of 2

$ fg:List of 2

..$ pixels.in.roi:'data.frame': 273920 obs. of 3 variables:

.. ..$ rowpos: num [1:273920] 0.00156 0.00313 0.00469 0.00625 0.00781 ...

.. ..$ colpos: num [1:273920] 0.00156 0.00156 0.00156 0.00156 0.00156 ...

.. ..$ pip : int [1:273920] 0 0 0 0 0 0 0 0 0 0 ...

..$ vertices :List of 2

.. ..$ x: num [1:9] 0.0176 0.0193 0.2443 0.5051 0.6551 ...

.. ..$ y: num [1:9] 0.2666 0.0288 0.0194 0.0138 0.0232 ...

$ bg:List of 2

..$ pixels.in.roi:'data.frame': 273920 obs. of 3 variables:

.. ..$ rowpos: num [1:273920] 0.00156 0.00313 0.00469 0.00625 0.00781 ...

.. ..$ colpos: num [1:273920] 0.00156 0.00156 0.00156 0.00156 0.00156 ...

.. ..$ pip : int [1:273920] 0 0 0 0 0 0 0 0 0 0 ...

..$ vertices :List of 2

.. ..$ x: num [1:8] 0.0278 0.0244 0.3346 0.5699 0.633 ...

.. ..$ y: num [1:8] 0.416 0.364 0.332 0.327 0.388 ...

A two elements list (one for each ROI) with ROI names. Each element is

again a list containing two elements. One is a data.frame containing coordinates

of all image pixels, together with a code indicating whether the given pixel

belongs to the ROI or not. The second is a list with the coordinates of ROI

margins as in output from locator().

Additionally, in path_ROIs separate jpeg files for each of your regions of

interest are stored. A call to the function printROI() allows to plot in the

same graph all existing ROIs for a picture. In the example from Torgnon, two

ROIs were drawn, one corresponding to the foreground of the image and one to

the background (fg and bg respectively. Here is the code to generate the plot

in fig. 2:

7

> PrintROI(path_img_ref = 'REF/20130630T1000.jpg',

+ path_ROIs = 'ROI/',

+ which = 'all',

+ col = palette())

fg
bg

Figure 2: A plot of your regions of interest (ROIs), in output from PrintROI()

When you draw a ROI on your best quality image (say 640 x 428 pixels, as

the REF image for Torgnon) you will probably need to identify the same ROI in

smaller size images. This will be the case, for example, if you want to conduct a

pixel-based analysis, illustrated later on. Pixel based analysis is computationally

intense and therefore it is suggested to run it on rather small size images. The

function updateROI() allows to recalculate pixels falling within a given ROI in

images of different size compared to the one where the ROI was first drawn.

Usage is:

> args(updateROI)

function (old.roi, new.img)

NULL

8

old.roi is the original roi.data object, new.img is the re-sized image. A

new object with same structure as the original roi.data is returned.

7 Extraction of vegetation indexes

At this point, you have an r object stored as roi.data.Rdata in your ROI path

that defines which pixels fall into one or more ROIs. The next step will be to

extract information on those pixels from each of your images. The function that

performs this task is extractVIs() and the usage is as follows:

> args(extractVIs)

function (img.path, roi.path, vi.path = NULL, roi.name = NULL,

plot = TRUE, begin = NULL, spatial = FALSE, date.code, npixels = 1,

file.type = ".jpg", bind = FALSE)

NULL

img.path is the path where one year of images are stored. It is not manda-

tory to have only one year of images in your folder. However it is suggested

to structure your data into separate folders for each year because nearly all

the functions we will see later are designed to work an a single season of data.

roi.path is the path to your roi.data.Rdata, vi.path is the path where ex-

tracted vegetation indexes will be saved. Hence, this function can be assigned

to an object to have your vegetation indexes returned into R, or alternatively

loaded later if not assigned. The argument begin allows to set a beginning date

to update an existing time series without reprocessing the whole year of data.

For example, if you run extractVIs in mid June to have a first look at your

time series, once your season will be completed you do not want to re-run the

analysis on the already processed images. Hence, you set the argument begin

to the first unprocessed date. A new VI.data.Rdata will be saved in your path,

with the beginning date incorporated in the filename if argument bind is set to

FALSE. Conversely, the VI.data object already existing in your VI folder will

be updated with new records and overwritten.

The argument npixels defines if a pixel aggregation is performed prior to

the analysis (i.e. image degradation). Default 1 means no aggregation. If npixels

== 2 than 4 pixels are aggregated in a 2x2 square. Similarly if npixels is 3,

9 pixels are aggregated in 3x3 squares and so on. The argument file.type

is used to specify how the extension of your jpeg files are written (e.g. jpg,

jpeg, JPG, JPEG). More than one argument is also allowed to account for

9

different extensions in the same folder. However, remember that only jpeg files

are allowed.

The argument spatial allows to perform pixel-based analysis. This is a

topic discussed in a dedicated vignette.

The construction of the time series implies that R recognizes a time vector,

typically retrieved from the file name of each picture. The function responsible

for this conversion is extractDateFilename(). It is a rather internal function

but it is worth to look how it works to properly set the filenames of your imagery

archive. Arguments to the function are filename and date.code. Filename

must be a character string with an underscore ’ ’ that separates site name and

date (e.g. ’torgnon 20140728.jpg’). The format of your date must be provided

in date.code. In the example above, date.code will be: ’yyyymmdd’. Let’s

look at some examples, but before doing so, it is worth to remember the the file

naming system is under your responsibility when you set up the storage process

for your images, or by some renaming routines set up later.

> filename <- 'torgnon_20140728.jpg' ## correct, with no hour

> ## if hour is missing it is defaulted to 12 pm

> extractDateFilename(filename, date.code='yyyymmdd')

[1] "2014-07-28 12:00:00 CEST"

> filename <- 'torgnon_201407281100.jpg' ## correct, with hour

> ## hours and minutes to upper letters, in R POSIX style

> extractDateFilename(filename, date.code='yyyymmddHHMM')

[1] "2014-07-28 11:00:00 CEST"

> filename <- 'torgnon_ND_201407281100.jpg' ## wrong, with two

> ## underscores before date, the function returns NA

> extractDateFilename(filename, date.code='yyyymmddHHMM')

[1] "2014-07-28 11:00:00 CEST"

> filename <- 'torgnon_1407281100.jpg' ## correct, with 2 numbers for the year

> extractDateFilename(filename, date.code='yymmddHHMM')

[1] "2014-07-28 11:00:00 CEST"

> ## any separator for date elements is allowed

> ## including underscore

> filename <- 'torgnon_2014.07_28-11.00.jpg'

> extractDateFilename(filename, date.code='yyyy.mm_dd-HH.MM')

10

[1] "2014-07-28 11:00:00 CEST"

> ## Since phenopix version 2.0.2 underscores are also allowed before the date

> filename <- 'torgnon_grassland_2014.07_28-11.00.jpg'

> extractDateFilename(filename, date.code='yyyy.mm_dd-HH.MM')

[1] "2014-07-28 11:00:00 CEST"

Now let’s look from closer at the structure of the object VI.data saved in

your /VI directory.

> load('VI/VI.data.Rdata')

> summary(VI.data) ## a list with two data.frames, one for each ROI

Length Class Mode

fg 18 data.frame list

bg 18 data.frame list

> names(VI.data[[1]]) ## check which vegetation indexes are extracted

[1] "date" "doy" "r.av" "g.av" "b.av" "r.sd" "g.sd" "b.sd"

[9] "bri.av" "bri.sd" "gi.av" "gi.sd" "gei.av" "gei.sd" "ri.av" "ri.sd"

[17] "bi.av" "bi.sd"

The processing of each ROI produces a data.frame object with date in POSIX

format, numeric day of year (doy), and the vegetation indexes. Green, red and

blue digital numbers (range [0,255]) averaged over the ROI (g.av, r.av and b.av,

respectively), their standard deviations (g.sd, r.sd and b.sd). bri.av is the ROI

averaged brightness, calculated as the sum of red green and blue digital numbers

for each pixel and then averaged. From the digital numbers (dn) of each color,

relative indexes (rel.i) are calculated as follows:

rel.i = dn color / (dn red + dn green + dn blue)

These values are calculated for each pixel and then averaged over the entire

ROI (columns gi.av, ri.av, bi.av), and the standard deviation is calculated as

well. In fig.3 you can see how a seasonal course of raw color digital numbers of

a subalpine grassland site looks like:

11

> with(VI.data$fg, plot(date, r.av, pch=20, col='red',

+ ylim=c(0,255), ylab='DN [0,255]'))

> with(VI.data$fg, points(date, g.av, col='green', pch=20))

> with(VI.data$fg, points(date, b.av, col='blue', pch=20))

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●
●
●
●

●

●

●

●

●●

●

●●

●

●
●

●●
●●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●●

●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●
●●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●
●●

●
●
●
●

●

●
●

●
●

●

●
●

●●

●
●

●
●
●
●

●
●

●

●●

●

●
●
●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●●●

●
●●

●

●

●
●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●●
●●

●

●●

●

●

●

●●
●

●

●●

●●
●●

●

●

●

●
●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●●●

●

●

●●
●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●
●●

●

●●
●

●●●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●
●

●

●

●

●●
●●

●
●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●
●
●

●

●

●

●

●
●

●
●

●
●●●●●

●

●

●

●

●

●
●●

●●

●

●

●●

●●

●

●

●
●
●

●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●●

●

●

●

●

●
●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●●

●●●

●
●

●

●

●

●
●

●

●

●

●●●
●●
●

●

●

●●●●●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●
●●
●●
●
●

●

●●
●●
●
●
●

●

●

●

●
●
●

●
●

●

●●
●
●●

●
●

●

●●

●

●

●
●●

●

●
●●

●
●
●

●
●

●
●●

●●●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●●●

●

●●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●●
●

●●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●●
●

●
●
●
●●

●

●
●
●●

●●

●

●

●

●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●
●
●

●
●●
●

●●
●
●
●

●

●

●

●
●
●
●
●
●

●
●

●
●

●

●
●●

●

●
●

●
●●
●
●
●●

●

●
●
●
●

●
●●
●

●●
●
●

●
●
●●

●●●

●
●●
●
●
●

●

●

●
●●

●●

●

●

●

●

●

●
●●

●

●●
●●

●
●
●

●
●

●

●

●

●●
●●

●

●
●
●

●

●
●

●

●

●

●
●
●

●
●●
●●●
●

●
●●
●

●
●

●

●

●

●

●●
●

●

●
●●

●

●

●
●●

●

●●

●●
●

●

●

●

●

●

●●

●
●

●

●
●●●
●

●

●
●

●
●●●●
●
●

●

●
●

●

●

●●

●
●

●

●

●

●●

●
●●

●

●

●●

●

●●●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●
●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●
●●
●●

●
●●
●

●
●
●

●
●

●

●

●●●
●
●

●●●

●

●

●

●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●●

●●●
●

●
●
●

●
●●
●

●

●
●●
●●●●

●●
●
●

●

●

●
●●

●

●
●

●

●

●

●
●

●●

●

●●

●
●●

●

●

●

●●
●

●
●

●
●●●

●●

●

●●

●

●
●
●
●

●●

●

●
●

●
●

●
●

●
●

●
●

●●●
●●

●
●
●

●●
●
●
●
●●●

●

●
●

●

●

●

●●●●●

●●

●
●
●●
●
●

●
●

●
●

●●●
●
●

●

●

●

●

●●

●

●
●

●
●

●
●
●
●●
●
●
●

●

●

●●●
●

●●●
●

●
●

●●

●

●●

●●
●
●
●●

●

●

●

●●
●

●●●●

●●
●
●
●●

●●

●
●

●

●

●
●

●

●
●●

●●●
●

●

●

●●●

●

●

●

●
●●

●
●

●

●

●●

●
●

●

●

●
●
●

●●
●
●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●
●●

●

●●
●
●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●
●

●

●
●

●

●●

●●

●
●
●

●
●●●

●
●

●

●●

●
●

●

●
●

●

●

●

●
●●
●●

●

●

●

●

●
●
●●

●

●

●

●
●
●●

●●

●
●

●●●
●

●●●
●
●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●
●
●

●●
●
●

●●●

●
●●●

●
●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●●
●●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●
●
●
●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●●
●

●

●

●

●●
●●
●

●

●

●

●
●●●
●

●

●

●

●
●●
●●

●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●
●

Jan Mar May Jul Sep Nov

0
50

10
0

15
0

20
0

25
0

date

D
N

 [0
,2

55
]

●
●

●
●

●●

●

●

●

●

●
●●
●

●

●

●

●
●●
●●

●

●

●

●

●
●

●

●
●●●

●

●●
●●

●

●
●

●
●

●

●●

●

●
●
●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●
●
●

●●

●

●

●

●

●
●●●●

●●

●●
●

●
●

●

●
●

●
●●
●

●

●

●

●
●●
●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●●●●

●
●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●
●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●
●
●

●

●
●
●●

●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●
●
●

●

●
●
●

●

●●

●
●

●

●
●

●

●

●●

●
●
●

●

●

●●

●●

●
●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●●
●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●
●
●

●

●
●

●
●

●

●●
●

●

●●

●●
●●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●●
●
●
●

●
●

●●

●●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●●
●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●
●

●

●

●

●

●
●

●
●

●
●●●
●●

●

●

●

●

●

●
●●

●●

●

●

●●

●●

●

●

●
●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●
●●

●

●

●

●

●
●●●
●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●●●

●●●

●
●

●

●

●

●
●

●

●

●

●●●
●●
●

●

●

●●●●●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●
●

●

●
●●
●●
●
●

●

●●
●●
●
●
●

●

●

●

●
●●

●
●

●

●●
●
●●

●
●

●

●●

●

●

●
●●

●

●
●●

●
●
●

●

●

●
●●
●●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●●●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●
●
●●

●

●●

●●

●●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●
●

●●

●

●
●●

●●●●
●

●
●
●

●●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●
●
●

●●

●

●

●●
●

●
●●

●
●

●

●●

●

●●
●
●
●
●
●●

●

●
●
●●

●
●

●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●
●

●●●

●

●

●
●
●●
●
●

●

●●●

●●
●
●●

●

●

●●●
●
●
●
●

●

●

●●

●

●
●●

●

●●

●●●●●●●
●

●
●
●
●
●
●●●

●●●●

●
●
●●

●●
●

●●●
●
●●

●

●

●●●

●
●

●
●
●

●

●

●
●●

●

●●

●●
●

●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●●
●

●
●●
●●
●
●

●●
●
●

●

●●

●

●

●

●
●●

●

●●
●

●

●
●
●

●

●

●●

●
●
●

●

●

●

●●●
●●
●

●

●

●●●●

●●●

●●●●●●
●
●

●

●

●

●

●
●●
●

●

●

●

●●

●●
●

●

●

●
●
●
●●●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●●

●
●

●●

●●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●●

●
●

●

●
●

●

●●

●
●

●

●
●

●

●
●

●●

●
●●●●

●●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●●

●●

●
●
●

●

●●

●

●

●

●
●

●●

●
●
●

●●●

●

●
●
●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●
●
●

●
●●

●
●●
●

●●
●

●
●●
●●●●
●

●
●●●
●●●●
●●

●●●●
●●

●

●

●

●●
●

●

●

●

●

●
●●
●

●

●

●
●●
●
●

●

●
●●

●
●

●

●●

●

●
●

●●

●
●

●

●●

●
●

●
●

●
●
●
●

●
●●●
●
●
●●

●●
●●●
●●●

●

●●

●

●

●

●
●●●●●

●

●

●

●●●
●

●
●

●●

●●●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●●●

●
●
●
●
●●●●
●●
●
●●

●

●

●

●●●

●●
●
●●
●

●

●

●
●●

●
●
●●●

●●
●●
●

●●

●
●●

●

●

●

●

●

●●

●

●
●●
●

●

●

●●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●
●●

●●
●●

●

●
●

●

●

●●
●
●
●

●

●

●

●

●
●
●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●●

●●

●
●●

●
●
●
●●

●
●●
●●

●●

●●

●
●●
●
●●●

●●●

●
●

●
●

●

●●
●

●

●

●
●●
●●

●

●

●

●

●
●
●
●

●

●

●

●●●●
●●
●●

●●●
●
●●●
●
●●
●●

●
●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●
●
●
●●●

●
●●●

●
●
●●

●
●●

●●●

●

●

●

●

●

●

●●

●

●

●●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●
●

●

●

●

●●
●●
●
●
●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●●
●
●●●

●
●
●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●
●●●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●
●
●

●

●●

●●

●

●

●

●

●

●●
●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●
●
●

●
●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●
●
●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●
●
●

●

●

●●

●●
●

●

●
●

●●
●

●
●●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●
●
●
●
●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●●●

●

●●

●

●

●

●

●

●

●

●●
●

●
●●

●
●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●
●
●
●

●

●
●

●

●

●●

●
●

●

●

●

●●

●●

●●
●

●

●

●
●●●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●
●
●

●

●
●

●
●

●

●●
●

●

●●

●●
●●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●●●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●●
●
●●

●
●

●
●

●●
●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●
●●
●●

●

●

●

●

●

●●●

●●

●

●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●
●●

●

●

●
●●

●

●

●

●

●
●●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●●

●●●

●●●

●
●

●

●

●

●
●

●

●

●

●●●●●
●

●

●

●●●●●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●
●

●

●
●●●●
●
●

●

●
●
●●
●
●
●

●

●

●

●
●
●

●
●

●

●●
●
●●

●
●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●●
●
●
●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●●
●
●●

●

●

●

●

●

●
●

●●
●

●
●
●●

●

●
●

●
●
●

●

●●●

●●

●●
●
●
●●

●

●
●

●
●

●●
●

●

●
●

●

●
●

●●●●

●
●

●

●
●

●

●●

●●

●

●
●
●●
●

●

●
●

●
●
●

●

●
●
●
●
●

●

●●
●

●

●
●
●●●

●

●

●
●

●

●

●

●●●

●
●
●
●
●

●

●
●
●●●
●
●
●

●

●
●●●
●
●

●

●
●

●●

●

●●

●
●

●
●
●

●

●●

●

●
●
●
●
●

●

●

●

●
●●
●
●
●

●

●●●
●
●
●
●●
●
●●

●●
●

●
●
●

●

●

●

●

●

●
●
●

●

●●

●●

●
●

●●●●

●
●●●●
●
●
●
●●●
●

●
●
●●

●●
●

●●●
●

●●

●

●

●●●

●●

●●

●

●

●

●

●●

●

●
●

●●
●

●

●
●●

●

●
●

●
●

●●

●

●

●
●●

●●
●

●●

●●●
●

●●●●
●
●

●

●
●
●
●
●
●

●●●●
●
●

●

●●●

●
●●

●

●

●

●●
●●
●
●

●

●
●

●

●

●

●●

●●

●

●●

●

●

●●

●●●
●
●●
●
●

●

●

●
●

●
●
●
●

●

●
●●●

●●
●

●●●
●
●●●●

●
●

●

●

●

●
●

●
●

●●

●●
●
●
●●
●

●
●●●
●

●●

●
●●

●

●

●●
●

●

●
●
●

●

●
●

●●●
●
●

●●
●

●

●●
●●

●
●

●
●
●

●
●
●

●●●●
●

●●●

●
●

●
●●●

●
●●
●●●●
●

●
●

●

●●
●

●●
●

●

●

●●
●

●●

●

●
●
●●
●

●
●●
●●

●
●●●
●●

●

●

●●
●

●
●

●●

●
●
●
●

●
●

●

●

●
●
●●●●

●●●●

●
●●
●
●
●
●

●

●
●●

●

●
●●
●

●●●

●●
●●●●

●

●●

●

●

●
●
●

●

●

●

●

●●●
●

●

●

●

●●

●●●

●
●
●●

●

●

●●●
●
●

●●
●
●

●

●
●

●
●
●●

●
●

●
●●●●●
●●●●●
●●●

●

●
●
●●●●
●
●

●

●
●●●●

●

●
●

●
●●
●
●
●●

●

●
●●●●

●
●

●
●

●
●
●

●●

●

●●

●
●●●
●
●
●
●●●●
●●

●●
●
●

●

●

●

●

●

●

●
●

●
●●●
●
●●
●
●●●

●

●●
●
●
●●
●

●
●●
●

●●●●
●

●

●

●
●●

●

●●●

●

●

●

●●
●

●●

●
●
●
●

●

●
●
●
●
●●
●
●

●
●
●●●●

●
●●●
●●
●●●

●
●

●

●

●

●
●

●●●●
●●

●●●●●

●

●
●

●

●

●

●
●
●
●

●●●
●●

●

●●●
●
●
●

●

●

●●

●●

●●
●
●
●●●
●●●

●●

●●

●

●●

●
●●

●
●
●
●●

●

●
●

●●
●●
●

●

●

●

●
●

●●●

●●●

●●●
●
●●●
●●●
●●

●
●●
●

●
●
●

●
●

●

●

●●
●
●

●●●●
●●
●●

●

●

●●
●
●

●
●●
●
●

●
●

●
●●

●
●
●●
●●●

●●
●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●●

●

●

●●

●●

●

●

●

●

●●●

●●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●

●

●●

●●

●
●

●

●●

●
●
●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●
●●
●●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●
●●
●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●
●●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●●
●
●

●

●●

●
●

●

●

●

●

●

●
●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

Figure 3: Seasonal course of raw digital numbers, Torgnon, year 2012

More interesting is the plot of relative indexes (fig. 4):

12

> with(VI.data$fg, plot(date, ri.av, pch=20, col='red',

+ ylim=c(0.1,0.6), ylab='Relative indexes'))

> with(VI.data$fg, points(date, gi.av, col='green', pch=20))

> with(VI.data$fg, points(date, bi.av, col='blue', pch=20))

●●●●●
●
●

●

●
●●●

●

●●

●

●●●●●

●

●

●

●●●
●●●●

●

●●
●●●

●
●

●

●●●●●
●

●

●

●

●

●

●

●
●

●

●

●●●●●
●●

●

●
●
●●●
●●

●

●●●●

●

●●

●

●●
●●●
●●

●

●●●●●
●
●

●

●●●
●●
●
●

●

●●●●●

●●

●

●●

●
●●
●●

●

●●
●
●
●

●

●●●●
●
●

●

●

●●●●●
●●

●

●
●
●●●●
●

●

●

●●●●
●●

●

●

●●

●

●

●●

●

●●●●●
●

●

●

●
●●●
●
●

●

●●
●

●

●●
●●

●

●●●●●
●●

●

●●●●●
●●

●

●

●●

●

●●
●

●

●●●●●
●●

●

●

●
●●
●●●

●

●●
●●●
●●

●

●

●

●●●

●

●

●

●●●●●
●
●
●●●●
●●●
●●

●●●●●
●
●

●

●●●●●●
●
●
●
●●●●
●
●

●
●●
●
●●●●●
●●
●●
●●●

●
●●
●●
●●●

●

●●
●●
●●

●
●
●
●●●●●●●
●●

●

●●

●●

●
●●●●●
●●

●

●●●●●
●

●

●
●●●●●●
●
●

●
●●●●
●
●
●
●●●●
●
●
●●

●●●

●

●

●
●●●●●●●
●●
●●●●●●●●●●●●●●
●
●
●
●●
●
●●
●●●●●●●●●
●●●●●●●
●●
●●●●●●
●

●

●●●●
●●●●
●
●●●
●●●

●

●

●
●●

●

●
●
●
●●●
●●●
●
●
●●●●●●

●

●●●●●
●

●

●

●●●●●●●
●
●●
●

●

●●
●
●
●●●●●●
●
●
●●●

●●

●

●

●●●●●●●
●
●●●
●
●●●●●●●●●●●

●
●●●●●
●
●●●●●●●●●●●
●
●●●●
●
●●
●
●
●
●●
●
●
●
●●●

●
●
●●●●
●●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●
●●●
●●
●●●●●●●●
●●●●
●
●●●
●
●
●●●
●●●●
●
●●●
●●●
●●
●●●●●●
●
●
●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●

●

●●

●

●
●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●

●

●●●
●

●●●●●●
●
●●
●●●
●
●
●●

●●
●●
●
●●●●
●
●
●●
●●

●

●●
●
●●
●●●●●

●●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●

●●
●●●

●
●●

●
●●●●●
●
●

●

●

●

●

●

●

●
●
●

●
●

●●
●
●
●●

●
●

●
●

●

●

●

●●●

●

●

●
●

●
●●●●●●
●●
●

●
●●●

●●

●
●●

●
●

●

●

●

●
●
●
●

●●

●

●

●
●
●

●
●

●
●

●●●

●●
●
●●

●
●
●
●●

●

●

●●

●●
●
●●
●
●
●

●●

●●

●
●●
●●

●●

●

●
●●●
●●

●●●●
●●●●●
●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●●●●

●●●

●
●
●
●●●

●●
●

●

●

●

●
●●●●●●
●●

●
●●●●●

●●

●
●

●
●

●
●●
●

●●●●
●●
●

●●
●●
●

●●
●●●
●

●

●●
●●
●●
●
●

●
●●
●●

●
●

●

●
●●
●●●

●●

●●
●

●

●
●●●
●●
●●

●●

●

●

●●

●

●●●

●

●●
●●

●

●
●
●
●

●●

●

●
●
●
●

●

●
●

●

●

●
●

●
●

●
●
●●

●

●

●

●
●●●
●●●●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●
●
●
●●●●
●

●

●

●

●

●

●
●
●

●

●

●●
●
●
●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●

●●
●

●

●
●

●
●●

●●

●

●

●
●●

●●●

●

●

●

●
●
●

●
●

●●●
●

●
●
●

●

●

●

●●●
●

●●
●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●●●

●

●●

●●
●

●●

●

●
●

●

●
●●
●●

●

●

●
●●●
●
●

●

●

●

●

●
●●

●

●

●
●●
●●
●

●
●●●

●

●●

●
●
●

●

●

●

●●

●

●●
●●

●
●
●

●

●●●
●

●

●

●

●●

●

●●

●

●

●

●

●
●
●●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●
●●
●

●
●

●●

●
●
●
●

●
●●

●
●
●●

●

●

●
●
●
●

●
●

●
●

●

●
●
●
●●

●

●
●

●

●
●
●
●●
●

●

●●
●

●●

●
●
●

●
●

●
●

●
●

●

●
●

●

●●●●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●●●
●
●

●

●
●
●
●●●●

●●

●

●

●
●●
●●

●

●
●
●

●

●

●
●
●

●●
●

●●
●

●

●

●

●
●

●

●

●

●

●●

●
●
●●

●

●●
●

●●

●

●

●

●

●

●●

●
●

●●

●

●
●
●

●

●
●

●

●

●●

●●
●●●

●

●●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
●
●
●●●

●

●
●●●
●●●

●●
●
●●

●

●

●

●

●

●●●●●●

●●●
●●●

●●
●●

●

●

●●
●

●
●
●

●●●●●●●●
●●
●●
●
●
●

●●
●

●
●●

●

●

●●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●
●●●
●
●

●

●

●
●●
●
●
●●●●
●

●●
●

●●
●

●

●

●
●
●●

●

●

●
●

●

●
●●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●
●

●
●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●●
●

●

●●
●
●

●
●

●

●

●

●●

●

●●●

●

●

●
●
●●
●

●

●
●●●
●●
●

●

●●●
●●

●

●

●

●
●
●
●●●
●

●

●

●●●
●
●
●

●

●
●
●

●●

●
●

●

●

●●●

●

●●●
●

●
●

●

●
●●●
●
●

●

●

●
●●●
●
●

●

●

●
●●●
●
●

●●
●

●●

●
●
●

●

●
●●●

●

●●●
●●●

●

●●

●

●●

●

●●●●●

●

●

●●●●●●

●●

●●●●●●●

●

●●●●●●●

Jan Mar May Jul Sep Nov

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

date

R
el

at
iv

e
in

de
xe

s

●●●●●●●●●●●●●●●
●
●●●●●●

●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●

●

●●●●●●●
●●●●●●●●●●●
●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●

●

●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●
●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●
●●●●●●●●
●●●
●●●●●
●●●●
●●●●●●●

●

●●
●
●

●

●●●
●
●●
●●●●●●●
●●
●
●●●●
●●●●●●●
●
●
●●●●●●●●●
●●
●●
●●
●●
●●●
●●●
●●●●●●●●●

●
●●●●●●●●
●●●●●●●
●●●●
●
●●
●●●●●●
●●●●
●●●●
●
●●

●

●
●
●

●

●

●●
●

●

●
●●
●●●
●
●
●●
●●●●

●
●

●

●●●●●
●
●●●
●●●●●●
●●
●●●
●
●●●●

●●
●●

●

●●●

●●●●
●●●●
●●
●●●●
●
●

●●●
●●●●●
●
●

●
●●
●●●
●●
●●●●●●●
●
●

●
●●●
●●●●
●●●●●●●
●
●●●
●●●

●
●
●●
●
●●
●
●
●●●●

●

●

●●
●

●

●

●●●

●

●●●
●●●

●

●
●●
●●
●●●●
●●●

●

●
●●●
●
●●●●

●

●●●●●
●
●
●
●●
●
●
●
●
●
●●●●●●
●

●

●
●●
●
●●

●

●

●

●●
●●
●●●●
●●●
●●●●
●
●●●●●●●
●●
●
●
●
●●●●●
●●●
●●●●
●●●
●●●●
●
●●●
●
●
●

●●

●●●●●●●●
●●
●●●

●

●●●
●●●
●

●●

●
●●●●●●
●
●●●●●
●
●
●●●●●
●●
●

●
●●●●●●

●

●
●●
●●●

●

●●
●●
●●●●
●
●●●●●
●●
●●●●●●
●●

●
●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●
●●●●●●
●

●●●●●●●●●●●●●
●●●●●●●●●
●
●
●●●●●●●●●●●●●●●
●
●●●
●
●●●●
●
●●●●●●●
●
●
●●●●
●●●●●
●●●●
●
●●●●●●●●●●●●●
●●
●●●●●●●●●●●
●●●●●
●●●●●●●●
●
●●●●●
●●
●●
●
●●●●●●
●●●●●●●●
●●●●●●●●

●●●
●
●●●
●

●●
●●●●●

●

●
●●
●●●●

●● ●
●
●●●●●●
●
●
●

●●●●●●
●●●
●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●
●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●

●●●●●
●
●

●

●
●●●

●

●●

●

●●●
●●

●

●●

●●
●
●●●
●

●

●●
●
●●

●

●

●

●●●●●
●

●

●

●

●

●

●

●
●

●

●

●●●●●
●●

●

●
●
●●●
●●

●

●●●●

●

●
●

●

●●
●●●
●●

●

●●●
●●
●
●

●

●●●
●●●●

●

●
●●
●●
●●

●

●●
●
●●
●●

●

●●●
●●

●

●●●
●●●

●

●

●●●●●●●

●

●
●
●●●●●

●

●

●●●●●●

●

●

●●

●

●

●●

●

●●●●●
●

●

●

●
●●●
●
●

●

●●
●

●

●●
●●

●

●●●●●●●

●

●●●
●●
●
●

●

●

●●

●

●●●

●

●●●●●●●

●

●

●
●●
●●●

●

●●
●●●●●

●

●

●

●●●

●

●

●

●●●●●●

●●●●●●●
●
●●
●●●●●
●

●
●

●●●●●●
●
●
●
●●●●●
●

●

●●

●
●●●●
●
●●
●●●●●

●
●●
●●●●●

●

●●
●●
●●

●
●
●
●●●
●●●●●●

●

●
●

●●

●

●●●
●●●●

●

●●●●
●●

●

●
●●●●●●●
●

●
●●
●●●
●
●●●●●●●
●●

●●●

●

●

●
●●●●●●●●●
●●●●●●●●
●●●●●●●

●●
●●●
●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●

●

●●●●●●●●●
●●
●
●●●

●

●

●
●●

●

●
●
●
●●●●●●●●
●●●●●●

●

●●●●●●

●

●

●●●
●●●●
●
●●●

●

●●●
●
●●●●●●●
●
●●●

●●

●

●

●●●●●●●

●

●●●●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●
●●●
●
●●●●
●
●●
●
●
●
●●
●
●
●
●●●

●
●
●●●●●●●
●

●

●●●●●●●●●●

●

●●●●●●●
●●

●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●
●●●●●●
●●
●●●
●●
●●●●●●
●
●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●
●●●●
●●
●●●

●

●●

●

●
●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●

●

●●●●●●

●

●●

●●●●●●●
●●●●●
●●●●

●●●●●
●●●
●
●
●
●
●●●

●

●●●
●●
●●●●●

●●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●

●
●●●
●

●●●
●
●●●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●●●
●

●
●

●
●

●

●

●

●●
●

●

●

●
●

●
●●●●●●
●●
●

●
●●●

●●
●
●●

●●

●

●

●

●
●
●
●

●●

●

●

●●
●

●

●

●
●
●●
●

●●
●
●●

●
●
●

●●

●

●

●
●

●●●

●
●
●
●●

●
●

●●

●
●●

●●

●●

●

●
●●●
●●

●●●●●●●
●●
●

●
●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●●

●●●
●

●

●●●●
●

●●●

●
●
●
●●
●

●●●

●

●

●

●

●
●
●●●●

●
●

●
●●
●
●●

●●
●
●

●
●

●
●●
●

●●●●
●
●

●

●●
●●
●

●●●●●
●

●
●●●●
●
●
●●

●●●●●

●

●

●

●
●●
●●
●

●
●

●●●

●

●●●●

●●
●
●

●●

●

●

●●

●

●●●

●

●
●
●●

●

●
●
●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●
●
●
●
●

●

●●●●●●
●●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●●
●

●●●●
●

●

●

●

●

●

●
●
●

●

●

●●

●●
●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●●
●
●

●
●

●

●
●●

●
●

●

●

●●

●

●
●●

●

●

●

●
●
●

●●

●

●

●

●●

●●●

●

●

●●
●

●

●
●

●●●
●

●
●
●

●

●

●
●●
●●

●●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●
●
●●
●●●
●

●

●

●

●
●●

●

●

●
●●

●
●
●

●●
●●

●

●●

●
●

●

●

●

●

●
●

●

●

●●●

●●●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●
●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●
●
●

●

●

●

●●

●●●●

●●
●

●
●
●●
●

●

●

●

●

●

●●

●

●

●

●
●●●
●

●

●
●

●
●●

●
●●
●

●

●●
●
●●

●●●

●

●

●

●

●

●

●

●●

●

●●
●
●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●●
●
●
●

●

●●
●
●
●●
●

●●●

●

●●●
●●
●

●
●
●
●

●

●●
●

●●
●

●●
●

●

●
●

●●
●
●

●

●

●
●

●

●
●●

●

●●
●

●●

●

●

●

●

●

●
●

●
●

●●

●

●
●
●

●

●●

●

●

●●

●●
●
●
●
●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●●
●
●●
●

●

●
●●●●●●

●●●

●●

●

●

●

●

●

●●
●●●
●

●●●
●●●
●●
●
●

●

●

●●
●

●

●●
●●
●●●●●●●●●●
●
●
●

●●
●

●

●●

●

●

●
●●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●●●
●
●

●
●

●
●●
●
●●●
●
●●

●●
●

●●●

●

●

●
●
●
●

●

●

●
●

●

●
●●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●
●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●●

●
●

●●●

●
●

●

●

●

●●

●

●●●

●

●

●
●
●●
●

●

●●
●●
●●
●

●

●●●
●●

●

●

●

●
●
●
●
●●

●

●

●
●●●
●
●
●

●

●
●
●
●●

●

●

●

●

●●●

●

●●●
●
●
●

●

●
●●●
●●

●

●

●
●●●
●
●

●

●

●
●●●
●
●

●●●

●●

●

●

●

●

●
●●●

●

●●
●
●●●

●

●●
●

●
●

●

●●●●
●

●

●

●●●●●
●

●●

●●●●●●
●

●

●●●●●●●

Figure 4: Seasonal course of relative green red and blue indexes, Torgnon grass-

land, year 2012

Several patterns are interesting in the seasonal course of fig.4:

- Snow disappearance (mid May) leads to an increase in relative red and a

sharp decrease in relative blue

- The green signal follows a bell shaped pattern throughout the growing

season, with a maximum in late July. This signal is somewhat mirrored by

an inverse behavior of relative blue, whereas relative red gradually increases

throughout the season.

8 Filter out data

Data retrieved from images often need robust methods for polishing the time

series. Bad weather conditions, low illumination, dirty lenses are among the

13

most common issues that determine noise in the time series of vegetation in-

dexes. Accordingly we designed a function autoFilter() based on 4 different

approaches, see the examples in ?autoFilter for details in the filtering pro-

cedure. The function is designed to receive in input a data.frame structured

as in output from extractVIs, hence its default expression may appear rather

complicate:

> args(autoFilter)

function (data, dn = c("ri.av", "gi.av", "bi.av"), raw.dn = FALSE,

brt = "bri.av", na.fill = TRUE, filter = c("night", "spline",

"max"), filter.options = NULL, plot = TRUE, ...)

NULL

But when applied to the VI.data object generated before it is quite straight-

forward as you see in the code below. Note also that autoFilter() returns by

default a diagnostic plot shown in fig.5:

14

> filtered.data <- autoFilter(VI.data$fg)

> str(filtered.data)

âĂŸzooâĂŹ series from 2014-01-01 to 2014-11-10

Data: num [1:277, 1:7] 0.323 0.324 0.318 0.324 0.316 ...

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:7] "rcc" "gcc" "bcc" "brt" ...

Index: POSIXct[1:277], format: "2014-01-01" "2014-01-02" "2014-01-03" "2014-01-04" ...

> names(filtered.data)

[1] "rcc" "gcc" "bcc" "brt"

[5] "night.filtered" "spline.filtered" "max.filtered"

●●
●●●●●●
●●●●●●●

●

●
●●

●●●

●

●
●
●●●●●●
●
●●●
●●
●
●

●

●●●
●
●●
●
●
●●●
●
●●
●
●
●●●●●
●●●●●
●●
●●
●

●

●
●●●●●●

●

●●●●●●●●
●●●●●
●
●

●
●●●●●●
●

●

●●●●
●
●
●

●

●●
●●●●
●

●
●●
●
●●●●●
●●
●
●●

●

●●●
●●●
●

●

●●
●●●●
●

●

●●
●●
●
●●

●

●●●●●
●●

●

●●●●●●

●●

●
●●
●●●●●●●
●●●
●●

●

●●●●●●●●●●●
●●●●
●●●●●
●●
●
●
●●
●●●
●●

●

●●●●●●●●●●●
●●●●●●
●●●●●●

●

●●
●●●●●
●●●
●●●●●●
●●●●●●●
●
●●
●●●●●●●
●●●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●
●●
●●●

●

●●●●
●
●
●●
●●●●
●
●
●●
●●●●●●●●●
●●●●●●●
●●●●
●●
●●●
●●
●●
●
●
●●●●●●●●●
●●●●●●●●●●
●●●●

●
●●●
●●●●●
●●●
●
●●●
●
●●●●●●●
●

●●●●●●●●
●●●●●●●●●●
●●●●
●●●
●●●●●●
●
●●●●●
●●
●●●●●●
●
●
●●●●
●
●
●

●

●●●●●●●●●
●●●●●●●●●●●●
●
●●●
●●●●

●

●
●●●●●●●
●
●●●●●●●
●●●●●●●
●

●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●
●●●
●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●
●
●●●●
●●●
●●●
●●
●●●●●●●●●●
●
●●●●●●
●●●●●●
●
●●●●●●●●●●
●●●●●
●
●●●●●●
●
●●
●●●●●●●●
●
●
●
●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●
●●●●●●●●
●●●●
●●
●●●●●
●
●
●●●●●●
●●
●
●●●●●
●●●●●●

●●●●
●●
●●
●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●●●

●

●
●
●●●
●
●
●

●
●●
●●●
●
●●
●●●●
●●
●
●●●●●
●●

●
●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●
●
●
●●

●
●●●●●
●●●●●●●●●
●●
●●
●●
●
●
●

●

●
●
●●
●●●●
●●
●●●●●●●●
●●●
●
●
●●●●
●
●
●●●
●●
●
●●
●●●●●
●
●●●
●●●
●
●●●
●●●●
●●●●●●
●●●●
●●●●●●●●●
●●
●●●●●●●
●●●
●●●●●●●
●●

●●●●

●●●
●
●●●●●●
●
●●●●●
●●●
●
●●●●
●●
●●
●●●
●
●
●●●●

●

●●●
●●
●●
●
●●
●●
●
●●●
●
●●●
●●●

●
●●●
●
●

●●
●

●
●●●●●
●

●

●●

●

●

●

●
●●

●

●
●
●●
●
●●

●●
●
●

●

●●
●
●

●
●●
●●●
●●

●

●
●●●
●
●●
●●

●
●

●
●

●
●

●
●
●
●●
●
●
●
●

●

●
●
●
●
●

●
●

●

●
●
●
●●●
●
●
●
●

●●●
●
●

●
●●

●

●

●
●

●
●●
●
●

●

●●
●
●

●
●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●
●
●●

●

●

●

●
●

●●●

●

●

●
●

●●●●
●
●

●●

●
●

●

●

●●●●

●
●

●

●

●

●
●
●

●
●
●
●

●●

●●

●●

●
●●●
●

●

●
●●

●
●●
●
●

●

●

●

●●

●●●

●●

●
●
●
●
●
●●

●

●

●

●●

●

●
●
●
●

●
●●
●●●●
●

●●●

●●
●

●

●

●
●
●

●●

●

●

●●
●●

●

●

●
●

●

●

●

●
●

●

●

●●
●
●
●●

●

●

●
●

●
●
●●
●
●

●
●●

●

●

●●

●

●

●●
●
●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●●
●

●●●●

●

●●●
●●
●

●

●●

●

●

●

●
●
●
●

●

●●●

●
●
●●

●

●
●

●
●

●

●
●

●●●

●

●

●

●●

●●
●●●●
●
●

●●

●●●

●

●
●

●

●●●

●

●●

●

●●
●●●●

●

●●●

●●

●

●

●

●●●
●●

●

●

●

●
●
●

●●

●

●

●

●
●

●●●

●

●
●

●●

●
●
●●

●

●
●
●

●●

●
●

●
●●●
●

●

●
●

●

●
●●
●●
●

●
●●
●
●
●
●●
●
●
●
●

●●●

●●
●●
●

●
●
●

●

●
●
●
●
●●●

●●
●●●
●●●●

●
●

●●
●●●
●

●

●●
●●●●●

●●●●●
●
●
●
●●
●

●●●●

●

●

●
●●●●●●●●
●●●●
●●

●

●
●
●
●

●
●

●
●

●

●●●
●
●
●
●
●

●

●●

●●

●●
●●●
●
●
●
●

●

●●●●●●●
●

●●●●●
●●

●
●

●

●
●
●
●
●
●
●●

●
●
●
●●
●
●●●●●
●
●

●

●●●
●
●
●
●

●
●
●

●●●●
●●

●●
●●

●●●●

●●
●
●●●
●
●

●
●●
●

●
●
●

●

●
●

●
●
●
●●

●

●

●●

●●●

●

●
●●

●

●
●
●
●

●
●

●

●

●

●●●●●●

●●●

●
●

●●

●
●●
●

●●●●●

●●●●●●
●●●●●●●●
●●●●●●
●
●●●●●●●
●

●
●●●●●●●●
●●●●●●
●
●
●●●●●●●●●●●

●

●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●
●
●
●●
●
●●●

●

●●●●●●

●

●●
●
●
●
●
●●
●●●

●

●
●●●●●●
●

●

●●●●●●●
●
●●●●●●●

Jan Mar May Jul Sep Nov

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

time

gc
c

●●
●●●●●●
●●●●●●●

●

●
●●

●●●

●

●
●
●●●●●●
●
●●●
●●
●
●

●

●●●
●
●●
●
●
●●●
●
●●
●
●
●●●●●
●●●●●
●●
●●
●

●

●
●●●●●●

●

●●●●●●●●
●●●●●
●
●

●
●●●●●●
●

●

●●●●
●
●
●

●

●●
●●●●
●

●
●●
●
●●●●●
●●
●
●●

●

●●●
●●●
●

●

●●
●●●●
●

●

●●
●●
●
●●

●

●●●●●
●●

●

●●●●●●

●●

●
●●
●●●●●●●
●●●
●●

●

●●●●●●●●●●●
●●●●
●●●●●
●●
●
●
●●
●●●
●●

●

●●●●●●●●●●●
●●●●●●
●●●●●●

●

●●
●●●●●
●●●
●●●●●●
●●●●●●●
●
●●
●●●●●●●
●●●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●
●●
●●●

●

●●●●
●
●
●●
●●●●
●
●
●●
●●●●●●●●●
●●●●●●●
●●●●
●●
●●●
●●
●●
●
●
●●●●●●●●●
●●●●●●●●●●
●●●●

●
●●●
●●●●●
●●●
●
●●●
●
●●●●●●●
●

●●●●●●●●
●●●●●●●●●●
●●●●
●●●
●●●●●●
●
●●●●●
●●
●●●●●●
●
●
●●●●
●
●
●

●

●●●●●●●●●
●●●●●●●●●●●●
●
●●●
●●●●

●

●
●●●●●●●
●
●●●●●●●
●●●●●●●
●

●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●
●●●
●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●
●
●●●●
●●●
●●●
●●
●●●●●●●●●●
●
●●●●●●
●●●●●●
●
●●●●●●●●●●
●●●●●
●
●●●●●●
●
●●
●●●●●●●●
●
●
●
●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●
●●●●●●●●
●●●●
●●
●●●●●
●
●
●●●●●●
●●
●
●●●●●
●●●●●●

●●●●
●●
●●
●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●●●

●

●
●
●●●
●
●
●

●
●●
●●●
●
●●
●●●●
●●
●
●●●●●
●●

●
●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●
●
●
●●

●
●●●●●
●●●●●●●●●
●●
●●
●●
●
●
●

●

●
●
●●
●●●●
●●
●●●●●●●●
●●●
●
●
●●●●
●
●
●●●
●●
●
●●
●●●●●
●
●●●
●●●
●
●●●
●●●●
●●●●●●
●●●●
●●●●●●●●●
●●
●●●●●●●
●●●
●●●●●●●
●●

●●●●

●●●
●
●●●●●●
●
●●●●●
●●●
●
●●●●
●●
●●
●●●
●
●
●●●●

●

●●●
●●
●●
●
●●
●●
●
●●●
●
●●●
●●●

●
●●●
●
●

●●
●

●
●●●●●
●

●

●●

●

●

●

●
●●

●

●
●
●●
●
●●

●●
●
●

●

●●
●
●

●
●●
●●●
●●

●

●
●●●
●
●●
●●

●
●

●
●

●
●

●
●
●
●●
●
●
●
●

●

●
●
●
●
●

●
●

●

●
●
●
●●●
●
●
●
●

●●●
●
●

●
●●

●

●

●
●

●
●●
●
●

●

●●
●
●

●
●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●
●
●●

●

●

●

●
●

●●●

●

●

●
●

●●●●
●
●

●●

●
●

●

●

●●●●

●
●

●

●

●

●
●
●

●
●
●
●

●●

●●

●●

●
●●●
●

●

●
●●

●
●●
●
●

●

●

●

●●

●●●

●●

●
●
●
●
●
●●

●

●

●

●●

●

●
●
●
●

●
●●
●●●●
●

●●●

●●
●

●

●

●
●
●

●●

●

●

●●
●●

●

●

●
●

●

●

●

●
●

●

●

●●
●
●
●●

●

●

●
●

●
●
●●
●
●

●
●●

●

●

●●

●

●

●●
●
●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●●

●●
●

●●●●

●

●●●
●●
●

●

●●

●

●

●

●
●
●
●

●

●●●

●
●
●●

●

●
●

●
●

●

●
●

●●●

●

●

●

●●

●●
●●●●
●
●

●●

●●●

●

●
●

●

●●●

●

●●

●

●●
●●●●

●

●●●

●●

●

●

●

●●●
●●

●

●

●

●
●
●

●●

●

●

●

●
●

●●●

●

●
●

●●

●
●
●●

●

●
●
●

●●

●
●

●
●●●
●

●

●
●

●

●
●●
●●
●

●
●●
●
●
●
●●
●
●
●
●

●●●

●●
●●
●

●
●
●

●

●
●
●
●
●●●

●●
●●●
●●●●

●
●

●●
●●●
●

●

●●
●●●●●

●●●●●
●
●
●
●●
●

●●●●

●

●

●
●●●●●●●●
●●●●
●●

●

●
●
●
●

●
●

●
●

●

●●●
●
●
●
●
●

●

●●

●●

●●
●●●
●
●
●
●

●

●●●●●●●
●

●●●●●
●●

●
●

●

●
●
●
●
●
●
●●

●
●
●
●●
●
●●●●●
●
●

●

●●●
●
●
●
●

●
●
●

●●●●
●●

●●
●●

●●●●

●●
●
●●●
●
●

●
●●
●

●
●
●

●

●
●

●
●
●
●●

●

●

●●

●●●

●

●
●●

●

●
●
●
●

●
●

●

●

●

●●●●●●

●●●

●
●

●●

●
●●
●

●●●●●

●●●●●●
●●●●●●●●
●●●●●●
●
●●●●●●●
●

●
●●●●●●●●
●●●●●●
●
●
●●●●●●●●●●●

●

●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●
●
●
●●
●
●●●

●

●●●●●●

●

●●
●
●
●
●
●●
●●●

●

●
●●●●●●
●

●

●●●●●●●
●
●●●●●●●●●

●●●●●●
●●●●●●●

●

●
●●

●●●
●
●
●●●●●●
●
●●●
●●
●
●

●

●●●
●
●●
●
●
●●●
●
●●
●
●
●●●●●
●●●●●
●●
●●
●

●

●
●●●●●●

●

●●●●●●●●
●●●●●
●
●

●
●●●●●●
●

●

●●●●
●
●
●

●

●●
●●●●
●

●
●●
●
●●●●●
●●
●
●●

●

●●●
●●●
●

●

●●
●●●●
●

●

●●
●●
●
●●

●

●●●●●
●●

●

●●●●●●

●●

●
●●
●●●●●●●
●●●
●●

●

●●●●●●●●●●●
●●●●
●●●●●
●●
●
●
●●
●●●
●●

●

●●●●●●●●●●●
●●●●●●
●●●●●●

●

●●
●●●●●
●●●
●●●●●●
●●●●●●●
●
●●
●●●●●●●
●●●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●
●●
●●●

●

●●●●
●
●
●●
●●●●
●
●
●●
●●●●●●●●●
●●●●●●●
●●●●
●●
●●●
●●
●●
●
●
●●●●●●●●●
●●●●●●●●●●
●●●●

●
●●●
●●●●●
●●●
●
●●●
●
●●●●●●●
●

●●●●●●●●
●●●●●●●●●●
●●●●
●●●
●●●●●●
●
●●●●●
●●
●●●●●●
●
●
●●●●
●
●
●

●

●●●●●●●●●
●●●●●●●●●●●●
●
●●●
●●●●

●

●
●●●●●●●
●
●●●●●●●
●●●●●●●
●

●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●
●
●●●
●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●
●
●●●●
●●●
●●●
●●
●●●●●●●●●●
●
●●●●●●
●●●●●●
●
●●●●●●●●●●
●●●●●
●
●●●●●●
●
●●
●●●●●●●●
●
●
●
●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●
●●●●●●●●
●●●●
●●
●●●●●
●
●
●●●●●●
●●
●
●●●●●
●●●●●●

●●●●
●●
●●
●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●●●

●

●
●
●●●
●
●
●

●
●●
●●●
●
●●
●●●●
●●
●
●●●●●
●●

●
●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●
●
●
●●

●
●●●●●
●●●●●●●●●
●●
●●
●●
●
●
●

●

●
●
●●
●●●●
●●
●●●●●●●●
●●●
●
●
●●●●
●
●
●●●
●●
●
●●
●●●●●
●
●●●
●●●
●
●●●
●●●●
●●●●●●
●●●●
●●●●●●●●●
●●
●●●●●●●
●●●
●●●●●●●
●●

●●●●

●●●
●
●●●●●●
●
●●●●●
●●●
●
●●●●
●●
●●
●●●
●
●
●●●●

●

●●●
●●
●●
●
●●
●●
●
●●●
●
●●●
●●●

●
●●●
●
●

●●
●

●
●●●●●
●

●●

●

●

●

●
●●

●

●
●
●●
●
●●

●●
●
●

●

●●
●
●

●
●●
●●●
●●

●

●
●●●
●
●●
●●

●
●

●
●

●
●

●
●
●
●●
●
●
●
●

●

●
●
●
●
●

●
●

●

●
●
●
●●●
●
●
●
●

●●●
●
●

●
●●

●

●

●
●

●
●●
●
●

●

●●
●
●

●
●●
●

●

●●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●
●
●●

●

●
●

●●●

●

●

●
●

●●●●
●
●

●●

●
●

●

●

●●●●

●
●

●

●

●
●
●
●

●●

●●

●●

●
●●●
●

●

●
●●

●
●●
●
●

●

●

●

●●

●●●

●●

●
●
●
●
●
●●

●

●

●●

●

●
●
●
●

●
●●
●●●●
●

●●●

●●
●
●
●

●●

●

●

●●
●●

●

●
●

●

●
●

●
●●
●
●
●●

●

●
●

●
●
●●
●
●

●
●●

●

●●

●

●

●●
●
●●
●
●●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●
●●

●●
●

●●●●

●

●●●
●●
●

●

●●

●

●

●

●
●
●
●

●

●●●

●
●
●●

●

●
●

●
●

●

●
●

●●●

●

●

●

●●

●●
●●●●
●
●

●●

●●●

●

●
●

●

●●●

●●

●●
●●●●

●

●●●

●●

●

●

●

●●●
●●

●

●

●

●
●
●

●●

●●

●
●

●●●

●

●
●

●●

●
●
●●

●

●
●
●

●●

●
●

●
●●●
●

●

●
●

●

●
●●
●●
●

●
●●
●
●
●
●●
●
●
●
●

●●●

●●
●●
●

●
●
●

●

●
●
●
●
●●●

●●
●●●
●●●●

●
●

●●
●●●
●

●

●●
●●●●●

●●●●●
●
●
●
●●
●

●●●●

●

●

●
●●●●●●●●
●●●●
●●

●

●
●
●
●

●
●

●
●

●

●●●
●
●
●
●
●

●

●●

●●

●●
●●●
●
●
●
●

●

●●●●●●●
●

●●●●●
●●

●
●

●

●
●
●
●
●
●
●●

●
●
●
●●
●
●●●●●
●
●

●

●●●
●
●
●
●

●
●
●

●●●●
●●

●●
●●

●●●●

●●
●
●●●
●
●

●
●●
●

●
●
●

●
●

●
●
●
●●

●

●

●●

●●●

●

●
●●

●

●
●
●
●

●
●

●

●

●

●●●●●●

●●●

●
●

●●

●
●●
●

●●●●●

●●●●●●
●●●●●●●●
●●●●●●
●
●●●●●●●
●

●
●●●●●●●●
●●●●●●
●
●
●●●●●●●●●●●

●

●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●
●
●
●●
●
●●●

●

●●●●●●

●

●●
●
●
●
●
●●
●●●

●

●
●●●●●●
●

●

●●●●●●●
●
●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●
●●●●●
●●●
●●●●
●●●●●●●●●●
●●●
●●●●●●
●●
●●●
●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●
●●●
●●●●●
●●●●●●
●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●
●●●
●●●●●●●●
●●●●●
●●●
●●●●●●●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●

●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●

●

raw
night
spline
max

Figure 5: Raw and filtered relative greenness index, default plot of function

autoFilter()

In the structure of the output data.frame there are three important points:

- We introduce here a new class of R objects (zoo). From here on all further

analyses are based on zoo (or, to a lesser extent ts) time series. The time index

of the data is numeric day of year (doy). As a consequence, the attribute year

15

is lost at this step of the analysis (i.e. we suggest to include it in the object

name);

- The function autoFilter aggregates the data at a daily time step by

default. The returned data.frame contains unfiltered (but still daily aggregated)

color indexes (here called gcc, rcc and bcc, cc standing for chromatic coordinate)

and a column of data for each filtering step. The name of the filter applied is

reported in the column name.

- The argument na.fill defaults to TRUE, meaning that NA already exist-

ing in the VI.data (unlikely) or data discarded by the filtering procedure (much

more likely) are filled by linear approximation (using na.approx from zoo pack-

age. This is done because the subsequent fitting step requires no NA appearing

in the time series. If a user wants to have control on the discarded data and e.g.

customize the gap-filling we recommend setting na.fill to FALSE.

For those unfamiliar with the zoo structure we created a function convert

to convert from zoo to a normal data.frame

> dataframed <- convert(filtered.data, year='2012')

> str(dataframed)

'data.frame': 277 obs. of 9 variables:

$ rcc : num 0.323 0.324 0.318 0.324 0.316 ...

$ gcc : num 0.331 0.332 0.334 0.331 0.332 ...

$ bcc : num 0.346 0.344 0.35 0.343 0.354 ...

$ brt : num 442 409 447 409 435 ...

$ night.filtered : num 0.331 0.332 0.334 0.331 0.332 ...

$ spline.filtered: num 0.331 0.332 0.333 0.331 0.332 ...

$ max.filtered : num 0.334 0.334 0.334 0.334 0.334 ...

$ doy : POSIXct, format: "2014-01-01" "2014-01-02" ...

$ time : POSIXct, format: "2012-07-19" "2012-07-19" ...

However, we strongly recommend to get familiar with the zoo package since

it has wonderful facilities for plotting, aggregating and filling time series.

Filters are based on methods relying on different parameters that can be

tuned by the user (called filter options). A function allows to return default

filter options that can be in turn changed.

16

> my.options <- get.options()

> names(my.options) # a named list, one element for each filter

[1] "night.filter" "blue.filter" "mad.filter" "max.filter"

[5] "spline.filter"

> ## see help file for th meaning

> my.options$max.filter$qt <- 0.95 ## use 95th percentile instead

> ## of 90th for max.filter

> filtered.data2 <- autoFilter(VI.data$fg, filter.options=my.options, plot=FALSE)

> plot(filtered.data$max.filtered) ## default options

> lines(filtered.data2$max.filtered, col='red') ## customized options

> legend('topleft', col=palette()[1:2], lty=1, legend=c('90th', '95th'), bty='n')

Jan Mar May Jul Sep Nov

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

Index

fil
te

re
d.

da
ta

$m
ax

.fi
lte

re
d

90th
95th

Figure 6: Effect (not that large indeed) of changing filter options with function

autoFilter()

9 Fit a curve to the data

The seasonal trajectory of greenness index of a vegetation canopy provides per

se important information, but to turn qualitative information into quantitative

17

data we need to make some more computation. Traditionally, data similar to

these (e.g. satellite-based NDVI trajectories) are processed in two main ways:

- extract time thresholds based on a percentage of development (e.g. the day

when half of the maximum value of the index is reached);

- fit a curve and extract relevant thresholds based on curve properties.

In the package phenopix both possibilities are available. The core function

for data fitting and phenophase extraction is greenProcess(). This function

calls and is related to several rather internal functions that perform the different

fittings. Available fittings include:

- the fit of a cubic spline

- the fit of an equation proposed by Beck et al. (2006)

- the fit of an equation proposed by Elmore et al. (2012)

- the fit of an equation proposed by Klosterman et al. (2014) with two

implementations

- the fit of an equation proposed by Gu et al. (2009)

All fits are based on a double - logistic function with a different number of

parameters.

After curve fitting, relevant dates in the seasonal trajectory (aka phenophases)

are extracted with different methods:

- A method called trs which splits the seasonal course into increasing and

decreasing trajectory based on the sign of the first derivative and then identifies

a given threshold (by default the 50%) of both the increasing and decreasing

trajectory. It allows to determine start of season (sos), end of season (eos) and

length of season (los) as the difference between the two.

- A method called derivatives which extends trs in that it also calculates

maximum growing and decreasing rates

- A method based on Klosterman approach which individuates 4 moments in

the seasonal trajectory. Greenup represents the beginning of growth, maturity

represents the reaching of some summer plateau, senescence represents the be-

ginning of green decrease (or yellowing increase) and dormancy represents the

end of the growing season.

- A method based on Gu approach which individuates 4 moments and some

other curve parameters. The 4 relevant moments do not differ in their meaning

compared to Klosterman phases, and are called upturn date (UD), stabilization

date (SD), downturn date (DD) and recession date (RD).

Detail on curve fitting and phenophase extraction is provided in the help

function of ?greenProcess as well as in the help files of other more internal

functions such as ?KlostermanFit, ?GuFit, ?PhenoExtract. In fig.6 we show

18

4 different fitting methods applied to the same data (Torgnon grassland). But

let’s first have a look at the arguments of greenProcess:

> args(greenProcess)

function (ts, fit, threshold = NULL, plot = TRUE, which = "light",

uncert = FALSE, nrep = 100, envelope = "quantiles", quantiles = c(0.1,

0.9), hydro = FALSE, ncores = "all", ...)

NULL

ts is the zoo time series in input. It must be a time series with no NA. Argu-

ments fit and threshold allows to choose the fitting and phenopahse methods,

respectively. plot is a logical determining if a plot is returnoed or not, which

is pertinent only if fit = ’klosterman’, uncert is a logical for uncertainty com-

putation, for which number of replicates is controlled by nrep. envelope and

quantiles will be detailed later. hydro is a logical indicating wheter days must

be converted to hydrodays before the analysis, where october 1t will be doy 1

and so on (designed for southern emisphere or for winter-growing plants). Since

phenopix version > 2.0 the uncertainty estimation benefits from parallelization,

for which arguments ncores controls the number of cores used in parallel com-

putation, default is ’all’ and the actual number of cores you want to use can be

set with an integer. Parallelization is performed by calling function foreach in

the foreach package.

> ## spline curve + trs phenophases

> fit1 <- greenProcess(filtered.data$max.filtered,

+ 'spline',

+ 'trs',

+ plot=FALSE

+)

> summary(fit1)

> ## check the plot

> plot(fit1, type='p', pch=20, col='grey')

> ## Beck fitting + derivatives

> fit2 <- greenProcess(filtered.data$max.filtered,

+ 'beck',

+ 'derivatives',

+ plot=FALSE)

> summary(fit2)

> plot(fit2, type='p', pch=20, col='grey')

19

> ## klosterman fitting + klosterman phenophases

> fit3 <- greenProcess(filtered.data$max.filtered,

+ 'klosterman',

+ 'klosterman',

+ plot=FALSE)

> summary(fit3)

> ## plot(fit3, type='p', pch=20, col='grey')

>

> ## gu fitting and phenophases

> fit4 <- greenProcess(filtered.data$max.filtered,

+ 'gu',

+ 'gu',

+ plot=FALSE)

> summary(fit4)

> plot(fit4, type='p', pch=20, col='grey')

20

> ## show all together

> library(zoo)

> t <- as.numeric(format(index(filtered.data$max.filtered), '%j'))

> par(lwd=3)

> plot(t, dataframed$max.filtered, type='p', pch=20,

+ ylab='Green chromatic coordinate', xlab='DOYs')

> lines(fitted(fit1), col='blue')

> lines(fitted(fit2), col='red')

> lines(fitted(fit3), col='green')

> lines(fitted(fit4), col='violet')

> legend('topleft', col=c('blue', 'red', 'green', 'violet'),

+ lty=1, legend=c('Spline', 'Beck', 'Klosterman', 'Gu'),

+ bty='n')

●●●●●●●●●●●●
●●●●●●●●

●
●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●

●●●●●● ●●●●● ●●
●●●●●●●

●●●
●●●

●●
●●
●
●
●
●
●
●

●●●
●
●

●

●
●

●

●

●●
●

●●
●●●

●

●

●

●●
●
●
●

●
●●

●

●
●

●

●
●●●

●●
●

●●●

●

●

●●
●●

●●●●●
●●●

●●●
●

●

●

●●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●
●●●

●
●●
●●●●● ●

●
●●●●●●

●● ●

●
● ●●●●●●●●●●●

●●●●●●●●●
●●●●●●

0 50 100 150 200 250 300

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

DOYs

G
re

en
 c

hr
om

at
ic

 c
oo

rd
in

at
e

Spline
Beck
Klosterman
Gu

Figure 7: Comparison of 4 different fittings from phenopix package

The function greenProcess creates an object of class phenopix with ded-

icated methods. The summary function displays a summary of the input data

and of the predicted points. It then reports the formula of the fitting equa-

tion, if pertinent, see e.g. summary of fit1 which is not based on an equation.

21

Phenophases are printed as well. Note also the fitted function applied to

phenopix object that returns a zoo time series of fitted values that can be

directly lined to the plot.

To complete the overview on display generic methods applied to the objects

of class phenopix here is the application of generic plot (fig.8) and print

functions:

> plot(fit4, pch=20, col='grey', type='p',

+ xlab='DOYs', ylab='Green chromatic coordinates')

0 50 100 150 200 250 300

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

DOYs

G
re

en
 c

hr
om

at
ic

 c
oo

rd
in

at
es

●●●●●●●●●●●●
●●●●●●●●

●
●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●

●●●●●● ●●●●● ●●
●●●●●●●

●●●
●●●

●●
●●
●
●
●
●
●
●

●●●
●
●

●

●
●

●

●

●●
●

●●
●●●

●

●

●

●●
●
●
●

●
●●

●

●
●

●

●
●●●

●●
●

●●●

●

●

●●
●●

●●●●●
●●●

●●●
●

●

●

●●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●
●●●

●
●●
●●●●● ●

●
●●●●●●

●● ●

●
● ●●●●●●●●●●●

●●●●●●●●●
●●●●●●

fit: GU − thresholds: GU

UD

SD

DD

RD

Figure 8: Generic plot function applied to phenopix objects

> print(fit4)

phenopix time series processing

FITTING: GU

PREDICTED VALUES:

Index predicted

Min. : 1.0 Min. :0.3340

1st Qu.: 71.0 1st Qu.:0.3340

22

Median :152.0 Median :0.3397

Mean :150.6 Mean :0.3582

3rd Qu.:223.0 3rd Qu.:0.3750

Max. :314.0 Max. :0.4368

FITTING EQUATION:

expression(y0 + (a1/(1 + exp(-(t - t01)/b1))^c1) - (a2/(1 + exp(-(t -

t02)/b2))^c2))

FITTING PARAMETERS:

y0 a1 a2 t01 t02 b1

0.3339788 0.1104471 0.1047788 129.3082257 200.3364257 14.6352282

b2 c1 c2

11.7331508 11.1601187 9.0723878

THRESHOLDS: GU

UD SD DD RD maxline

148.661704355 187.342880427 214.467153725 248.926022679 0.436761779

baseline prr psr plateau.slope

0.333978802 0.002657183 -0.003004145 0.000327951

UNCERTAINTY: FALSE

N of replications = 0

HYDROLOGICAL DAY OF YEAR:

The print function returns information similar to summary but it also reports

which fitting and phenophase methods were used, and if the uncertainty was

estimated. The plot function returns a plot similar to the one constructed

above, except that extracted phenophases are also shown the as vertical colored

lines. Fig.5 shows that different fitting equation lead to very similar fitted values

on the example from Torgnon data. For the sake of robustness, in such situation

it is preferable to choose a fitted equation rather than a spline fit. Let’s decide

to choose the fitting from Gu. Now let’s look from closer how do the different

phenophase extraction methods impact when applied to the same fitted curve

in fig.9 (and note the use of update generic function with method phenopix):

23

> fit4.trs <- update(fit4, 'trs', plot=FALSE)

> fit4.klosterman <- update(fit4, 'klosterman', plot=FALSE)

> fit4.gu <- update(fit4, 'gu', plot=FALSE)

> par(mfrow=c(2,2), oma=rep(5,4,4,2), mar=rep(0,4))

> plot(fit4.trs, type='n', main='', xaxt='n')

> mtext('trs', 3, adj=0.1, line=-2)

> plot(fit4.klosterman, type='n', main='', xaxt='n', yaxt='n')

> mtext('klosterman', 3, adj=0.1, line=-2)

> plot(0, type='n', axes=FALSE, xlab='', ylab='')

> plot(fit4.gu, type='n', main='', yaxt='n')

> axis(4)

> mtext('gu', 3, adj=0.1, line=-2)

0.
34

0.
38

0.
42

Index

x$
da

ta

sos

eos

pop

trs

Index

x$
da

ta

Greenup

Maturity

Senescence

Dormancy

klosterman

0 50 100 200 300

Index

x$
da

ta

UD

SD

DD

RD 0.
34

0.
38

0.
42

gu

Figure 9: Three phenophase methods applied to the Gu fitting

The trs thresholds (50% of increasing and decreasing trajectory) hold a dif-

ferent meaning compared to Klosterman and Gu phenophases. The latter two

show good correspondence except that the Klosterman s beginning of senes-

cence occurs later compared to correspondent phase in Gu thresholds (i.e DD,

downturn date).

24

In this paragraph we have shown 4 different approaches to matematically

describe the seasonal trajectory of greenness, with additionally 5 methods to

extract phenophases on the obtained curves. The combination of curves and

phenophase methods leads to as many as 20 possible approaches to describe a

seasonal trajectory. Sometimes it could be useful to make a decision on which

curves and phenophases to use, without computing the uncertainty on all of

them. To do so we have designed two functions that provide a quick overview

on what would be the best fit and phenophase method for your actual trajectory.

Here is how to compute the 20 combinations of fit and uncertainty in a single

function:

> explored <- greenExplore(filtered.data$max.filtered)

explored is a list with 20 + 1 elements, i.e. the 20 combinations + a vector

containing the RMSEs from each of the 4 fittings. This object will only be used

as argument of the plotExplore() function (fig.10):

> plotExplore(explored)

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

S
P

LI
N

E 0.002

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●sos

eos

pop

TRS

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●sos

eos

pop

DERIVATIVES

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●Greenup

Maturity

Senescence

Dormancy

KLOSTERMAN

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●UD

SD

DD

RD

GU

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.004

B
E

C
K

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

sos

eos

pop

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

sos

eos

pop

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Greenup

Maturity

Senescence

Dormancy

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

UD

SD

DD

RD

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.005

E
LM

O
R

E

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

sos

eos

pop

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

sos

eos

pop

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●UD

SD

DD

RD

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.003

K
LO

S
T

E
R

M
A

N

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●sos

eos

pop

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●sos

eos

pop

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●Greenup

Maturity

Senescence

Dormancy

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●UD

SD

DD

RD

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.003

G
U

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●sos

eos

pop

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●sos

eos

pop

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●Greenup

Maturity

Senescence

Dormancy

Index

x$
da

ta

●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●
●●●●
●●
●●
●●
●●●
●●
●
●●
●

●
●●●

●●●●●
●
●
●
●●●
●●
●●●
●
●●
●
●●●●
●●
●
●●●
●
●
●●●●
●●●●●●●●

●●●●
●
●
●●●
●●●
●●
●
●
●
●

●
●●
●
●
●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●UD

SD

DD

RD

DIFFERENT TRESHOLDS

D
IF

F
E

R
E

N
T

 F
IT

S

RMSE

Figure 10: Overview of all combinations of curves and fits as obtained by the

plotExplore function

The plot in fig.10 shows the impact of different fittings (moving up-downwards)

25

and different phenophases (from left to right) on the same data (Torgnon grass-

land). The RMSE for each of the four fitting methods is also annotated in the

first column. This plot might be useful to choose the most appropriate fitting

and thresholding methods on your data.

greenProcess is a wrapper function that allows to define the fitting and

phenophase methods as arguments. The ”primitive” functions that actually

perform the fits are the following:

BeckFit, ElmoreFit, KlostermanFit and so on. Their usage is generally:

> args(ElmoreFit)

function (ts, uncert = FALSE, nrep = 100, ncores = "all")

NULL

with the most important argument beeing ts, the time series. Compared

to using greenProcess, the single fitting functions have the advantage to allow

more flexibility but in general the user won’t need to use them.

The phenophase extraction methods also have a dedicated wrapper function

already embedded in the greenProcess() function, PhenoExtract() which us-

age is:

> args(PhenoExtract)

function (data, method = "trs", uncert = FALSE, breaks = 3, envelope = "quantiles",

quantiles = c(0.1, 0.9), plot = TRUE, ...)

NULL

where the argument method allows to choose the phenophase method. Note

that input data in this case should be a fitted time series in output from e.g.

FitDoubleLogElmore and not a phenopix object in output from greenProcess.

Here is an example:

> fit.elmore <- greenProcess(filtered.data$max.filtered,

+ 'elmore',

+ 'trs',

+ plot=FALSE

+)

> extract(fit.elmore, 'metrics')

sos eos los pop mgs rsp

170.0000000 233.0000000 63.0000000 199.0000000 0.4193983 NA

rau peak msp mau

NA 0.4389800 0.3852258 0.3866796

26

> fit.elmore.2 <- ElmoreFit(filtered.data$max.filtered)

> PhenoExtract(fit.elmore.2, 'trs', plot=FALSE)

$metrics

sos eos los pop mgs rsp

170.0000000 233.0000000 63.0000000 199.0000000 0.4193983 NA

rau peak msp mau

NA 0.4389800 0.3852258 0.3866796

$unc.df

NULL

> try(PhenoExtract(fit.elmore, plot=FALSE)) ## will fail

$metrics

sos eos los pop mgs rsp rau peak msp mau

NA NA NA NA NA NA NA NA NA NA

$unc.df

NULL

10 The uncertainty estimation

One main functionality of the package is the uncertainty estimation. This is

performed in different ways depending on the fitting equation. The basic idea

behind the uncertainty estimation is how good the smoothing curve fits to the

data. The residuals between fitted and observed is therefore used to generate

random noise to the data and fitting is applied recursively to randomly - noised

original data. This procedure results in an ensemble of curves, curve parame-

ters and extracted phenophases that represent the uncertainty estimate. The

uncertainty on curve parameters is automatically propagated to phenophase ex-

traction. In the following example the uncertainty estimation is performed on

Torgnon grassland data fitted with the approach of Klosterman et al. (2014),

with 100 replications. Here is the code:

> fit.complete <- greenProcess(ts = filtered.data$max.filtered,

+ fit = 'gu',

+ threshold= 'gu',

+ plot = FALSE,

+ uncert = TRUE,

+ nrep = 100)

27

And here is fit.complete printed:

> print(fit.complete)

phenopix time series processing

FITTING: KLOSTERMAN

PREDICTED VALUES:

Index predicted

Min. : 1.0 Min. :0.3329

1st Qu.: 71.0 1st Qu.:0.3342

Median :152.0 Median :0.3388

Mean :150.6 Mean :0.3582

3rd Qu.:223.0 3rd Qu.:0.3758

Max. :314.0 Max. :0.4375

FITTING EQUATION:

expression((a1 * t + b1) + (a2 * t^2 + b2 * t + c) * (1/(1 +

q1 * exp(-B1 * (t - m1)))^v1 - 1/(1 + q2 * exp(-B2 * (t -

m2)))^v2))

FITTING PARAMETERS:

a1 a2 b1 b2 c

1.867151e-05 5.090923e-06 3.328690e-01 -1.245649e-03 1.519304e-01

B1 B2 m1 m2 q1

8.736767e-02 8.705025e-02 1.299899e+02 2.056079e+02 3.967244e+00

q2 v1 v2

1.995802e+00 4.198100e+00 2.418243e+00

THRESHOLDS: GU ENVELOPE:QUANTILES

UD SD DD RD maxline baseline prr

10% 146.9326 188.5265 213.0008 251.0400 0.4374889 0.3328877 0.002446034

50% 147.2705 189.1760 213.1443 251.4086 0.4374889 0.3328877 0.002498147

90% 147.6557 189.7483 213.3274 251.6832 0.4374889 0.3328877 0.002559312

psr plateau.slope

10% -0.002779570 0.0003013841

50% -0.002737603 0.0003013841

90% -0.002707150 0.0003013841

28

UNCERTAINTY: TRUE

N of replications = 100

HYDROLOGICAL DAY OF YEAR:

As you can see from the output, the default behavior of greenProcess()

for the computation of uncertainty is to provide the median, 10th and 90th

percentile of the uncertainty ensemble. This may be changed by modifying the

envelope argument. The other possible option is min-max to get minimum

mean and maximum. In addition, the quantiles to be chosen with envelope

= quantiles can be changed by modifying the quantile argument. Here is the

example:

> print(update(fit.complete, 'gu', envelope='min-max', plot = FALSE))

phenopix time series processing

FITTING: KLOSTERMAN

PREDICTED VALUES:

Index predicted

Min. : 1.0 Min. :0.3329

1st Qu.: 71.0 1st Qu.:0.3342

Median :152.0 Median :0.3388

Mean :150.6 Mean :0.3582

3rd Qu.:223.0 3rd Qu.:0.3758

Max. :314.0 Max. :0.4375

FITTING EQUATION:

expression((a1 * t + b1) + (a2 * t^2 + b2 * t + c) * (1/(1 +

q1 * exp(-B1 * (t - m1)))^v1 - 1/(1 + q2 * exp(-B2 * (t -

m2)))^v2))

FITTING PARAMETERS:

a1 a2 b1 b2 c

1.867151e-05 5.090923e-06 3.328690e-01 -1.245649e-03 1.519304e-01

B1 B2 m1 m2 q1

8.736767e-02 8.705025e-02 1.299899e+02 2.056079e+02 3.967244e+00

q2 v1 v2

29

1.995802e+00 4.198100e+00 2.418243e+00

THRESHOLDS: GU ENVELOPE:MIN-MAX

UD SD DD RD maxline baseline prr

min 146.1843 186.1598 212.4913 250.4383 0.4374889 0.3328877 0.002368027

mean 147.2843 189.1266 213.1333 251.3941 0.4374889 0.3328877 0.002501166

max 149.1719 190.3566 213.5794 252.0516 0.4374889 0.3328877 0.002827987

psr plateau.slope

min -0.002850601 0.0002539504

mean -0.002739581 0.0003043358

max -0.002667329 0.0004128567

UNCERTAINTY: TRUE

N of replications = 100

HYDROLOGICAL DAY OF YEAR:

Beside the few options available by default and described above, the uncer-

tainty data.frame is accessible via the extract command, by running:

> extract(fit.complete, 'metrics.uncert') ## get threshold uncertainty data`

> extract(fit.complete, 'params.uncert') ## get parameters of each fitting curve`

For example, if you want to use phenophases extracted from the true model

and construct uncertainty envelope on them, you can access the uncertainty

data.frame by the commands given above. Note than when the uncertainty is

computed, also the plot function changes its behavior, in that it also shows the

uncertainty curve ensemble and an error bar on extracted phases (fig.10.

30

> plot(fit.complete, type='p', pch=20)

0 50 100 150 200 250 300

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

Index

x$
da

ta

●●●●●●●●●●●●
●●●●●●●●

●
●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●

●●●●●● ●●●●● ●●
●●●●●●●

●●●
●●●

●●
●●
●
●
●
●
●
●

●●●
●
●

●

●
●

●

●

●●
●

●●
●●●

●

●

●

●●
●
●
●

●
●●

●

●
●

●

●
●●●

●●
●

●●●

●

●

●●
●●

●●●●●
●●●

●●●
●

●

●

●●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●
●●
●●●

●
●●
●●●●● ●

●
●●●●●●

●● ●

●
● ●●●●●●●●●●●

●●●●●●●●●
●●●●●●

fit: KLOSTERMAN − thresholds: GU

UD

SD

DD

RD

Figure 11: The Uncertainty Estimation (100 rep) on Klosterman fit and Gu

phenophases

The distribution of uncertainty parameters (phenophases + curve parame-

ters) can also be evaluated by means of box-plots with an extra option to the

default plot method:

> plot(fit.complete, what='thresholds')

By using the update function you can also extract phenophases according

to a different method, without refitting the data. Here is the code:

> update(fit.complete, 'klosterman', plot=FALSE)

phenopix time series processing

FITTING: KLOSTERMAN

PREDICTED VALUES:

Index predicted

31

Min. : 1.0 Min. :0.3329

1st Qu.: 71.0 1st Qu.:0.3342

Median :152.0 Median :0.3388

Mean :150.6 Mean :0.3582

3rd Qu.:223.0 3rd Qu.:0.3758

Max. :314.0 Max. :0.4375

FITTING EQUATION:

expression((a1 * t + b1) + (a2 * t^2 + b2 * t + c) * (1/(1 +

q1 * exp(-B1 * (t - m1)))^v1 - 1/(1 + q2 * exp(-B2 * (t -

m2)))^v2))

FITTING PARAMETERS:

a1 a2 b1 b2 c

1.867151e-05 5.090923e-06 3.328690e-01 -1.245649e-03 1.519304e-01

B1 B2 m1 m2 q1

8.736767e-02 8.705025e-02 1.299899e+02 2.056079e+02 3.967244e+00

q2 v1 v2

1.995802e+00 4.198100e+00 2.418243e+00

THRESHOLDS: KLOSTERMAN ENVELOPE:QUANTILES

Greenup Maturity Senescence Dormancy

10% 136 223 225 253

50% 138 224 225 253

90% 140 224 225 253

UNCERTAINTY: TRUE

N of replications = 100

HYDROLOGICAL DAY OF YEAR:

Phenophase extraction method trs allows to set an extra argument that

controls which threshold in the trajectory be used. Default is when 50% of

seasonal maximum gcc is reached (indicated as 0.5). Let’s see how it works:

> extract(update(fit.complete, 'trs', plot=FALSE), 'metrics')## default to 50% of increasing and decreasing traj.

sos eos los pop mgs rsp rau peak msp mau

10% 168 232 63 204 0.4181612 NA NA 0.4378156 0.3840606 0.3870297

32

50% 168 232 64 204 0.4182994 NA NA 0.4380581 0.3842862 0.3871845

90% 169 232 64 204 0.4184024 NA NA 0.4383000 0.3862703 0.3873570

> extract(update(fit.complete, 'trs', trs=0.2, plot=FALSE), 'metrics')## changed to 20%

sos eos los pop mgs rsp rau peak msp mau

10% 154 248 93.0 204 0.4019350 NA NA 0.4378156 0.3528151 0.3581498

50% 155 248 93.0 204 0.4023703 NA NA 0.4380581 0.3544500 0.3593544

90% 155 250 95.1 204 0.4025902 NA NA 0.4383000 0.3547449 0.3596394

There is a last method to define thresholds on a time series that does not need

a fitting. It implements the use of break points from the package strucchange

and works as follows:

> print(PhenoBP(x = filtered.data$max.filtered,

+ breaks = 3, plot = FALSE,

+ confidence= 0.99))

bp1 bp2 bp3

0.5% 1400623200 1405980000 1409522400

mean 1400709600 1406066400 1409608800

99.5% 1400796000 1406152800 1409695200

The user can set the maximum number of breakpoints to be identified, the

confidence interval at which the calculation must be performed and an option

or a plot. The output dataframe contains the day of the year for each of the

breakpoints and their respective confidence intervals.

11 Pushing forward the analysis: pixel - based

phenology

In order to thoroughly exploit the capabilities of an imagery archive, spatial

analysis represents the most promising feature. Hence, specific functions are

built to fit curves and extract phenophases on each pixel included in a region of

interest instead of averaging the greenness index over the entire ROI. A specific

vignette of this package is devoted to explain details on the pixel-based analysis.

12 Other functions

A number of other functions are available in the package, that do not necessarily

enter the main workflow of the processing but still may be worth to mention.

33

plotVI() gets in input a VI.data data.frame as produced by extractVIs and

reproduces the default plots from extractVIs. Useful when you use extractVIs

with argument begin switched on and you want to update existing plots. hy-

drodoy to convert from and to hydrological day of year, to be used in conjuction

with greenProcess with hydro=TRUE

13 Summary and future of the package

The phenopix package is currently available for download from the R-forge.

The package was tested on approx 300 site-years belonging to the phenocam

imagery archive, on the camera network of the project e-pheno and will soon be

deployed to process images in the European Network of Flux Towers. A paper

presenting the software will be soon published.

The R package phenopix is available at the R forge site and directily within

R by running the command:

> install.packages("phenopix", repos="http://R-Forge.R-project.org")

It is under constant maintainance by Gianluca Filippa and the co-authors. Feel

free to write me in case of any problem with the package.

14 References

14.1 General background to digital image analysis

Richardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P., Ollinger, S.V.,

2009. Near-surface remote sensing of spatial and temporal variation in canopy

phenology. Ecological Applications 19, 1417-28.

Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A.M., Friedl, M.,

Braswell, B.H., Milliman, T., OKeefe, J., Richardson, A.D., 2012. Digital re-

peat photography for phenological research in forest ecosystems. Agricultural

and Forest Meteorology 152, 159-177.

Wingate, L., Ogee, J., Cremonese, E., Filippa, G., Mizunuma, T., Migli-

avacca, M., Moisy, C., Wilkinson, M., Moureaux, C., Wohlfahrt, G., Hammerle,

A., Hortnagl, L., Gimeno, C., Porcar-Castell, A., Galvagno, M., Nakaji, T.,

Morison, J., Kolle, O., Knohl, A., Kutsch, W., Kolari, P., Nikinmaa, E., Ibrom,

A., Gielen, B., Eugster, W., Balzarolo, M., Papale, D., Klumpp, K., Kostner, B.,

Grunwald, T., Joffre, R., Ourcival, J.M., Hellstrom, M., Lindroth, A., Charles,

34

G., Longdoz, B., Genty, B., Levula, J., Heinesch, B., Sprintsin, M., Yakir, D.,

Manise, T., Guyon, D., Ahrends, H., Plaza-Aguilar, A., Guan, J.H., Grace, J.,

2015. Interpreting canopy development and physiology using the EUROPhen

camera network at flux sites. Biogeosciences Discussions 12, 7979-8034.

14.2 Curve fitting and filtering

Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., We-

ber, U., Carvalhais, N., 2015. Codominant water control on global interannual

variability and trends in land surface phenology and greenness. Global Change

Biology 21, 3414-3435.

Gu L, Post WM, Baldocchi D, Black TA, Suyker AE, Verma SB, Vesala T,

Wofsy SC. (2009) Characterizing the Seasonal Dynamics of Plant Community

Photosynthesis Across a Range of Vegetation Types. In: Phenology of Ecosys-

tem Processes (Ed: Noormets A, Springer New York), pp 35-58.

Klosterman ST, Hufkens K, Gray JM, Melaas E, Sonnentag O, Lavine I,

Mitchell L, Norman R, Friedl MA, Richardson A D (2014) Evaluating remote

sensing of deciduous forest phenology at multiple spatial scales using PhenoCam

imagery, Biogeosciences, 11, 4305-4320, doi:10.5194/bg-11-4305-2014.

Migliavacca M., Galvagno M., Cremonese E., Rossini M., Meroni M., Cogliati

S., Manca G., Diotri F., Busetto L., Colombo R., Fava F., Pari E., Siniscalco

C., Morra di Cella U., Richardson A.D. (2011) Using digital repeat photogra-

phy and eddy covariance data to model grassland phenology and photosynthetic

CO2 uptake. Agricultural and forest meteorology 151:1325-1337.

Papale D, Reichstein M, Aubinet M et al. (2006) Towards a standardized

processing of Net Ecosystem Exchange measured with eddy covariance tech-

nique: algorithms and uncertainty estimation. Biogeosciences, 3, 571-583.

Sonnentag O., Hufkens K., Teshera-Sterne C., Young A.M., Friedl M., Braswell

B.H., Milliman T., O’Keefe J., Richardson A.D. (2012) Digital repeat photog-

raphy for phenological research in forest ecosystems. Agricultural and forest

meteorology 152:159-177.

Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed

35

BC, Huete A (2003) Monitoring vegetation phenology using MODIS, Remote

Sens. Environ., 84, 471-475.

36

