Advanced R programming: solutions 1
Dr Colin Gillespie
August 18, 2016

1 Rprofile and Renviron
1. Create an .Rprofile file. Add the line

if(interactive()) {
suppressWarnings(require(colorout, quietly=TRUE))
message("Successfully loaded .Rprofile at ", date(), "\n")

to the file and restart R. Does the welcome message appear?

An easy way of creating the file is to use the R function file.create,
SO

file.exists("~/.Rprofile")
file.create("~/.Rprofile")

2. Try adding my suggestions to your .Rprofile, e.g.

options(prompt="R> ", digits=4,

show.signif.stars=FALSE)

and setting the CRAN mirror:

r = getOption("repos")

r["CRAN"] = "http://cran.rstudio.com/"
options(repos = r)

rm(r)

3. Try adding a few functions to your .Rprofile. Use the hidden
environment trick. Also take a look at this stackoverflow question
http://goo.gl/TLFLQR

for ideas.

4. Create an .Renviron file and add the path to your packages.

2 Argument matching

R allows a variety of ways to match function arguments.” We didn’t
cover argument matching in the lecture, so let’s try and figure out the
rules from the examples below. First we’ll create a little function to
help

* For example, by position, by complete
name, or by partial name.

http://goo.gl/TLFLQR

ADVANCED R PROGRAMMING: SOLUTIONS 1 2

arg_explore = function(argl, rg2, rg3)

paste("al, a2, a3 =", argl, rg2, rg3)

Next we’ll create a few examples. Try and predict what’s going to
happen before calling the functions

arg_explore(1l, 2, 3)
arg_explore(2, 3, argl = 1)
arg_explore(2, 3, a = 1)
arg_explore(1l, 3, rg = 1)

Can you write down a set of rules that R uses when matching argu-
ments?

SOLUTION

See http://goo.gl/NKsved for the offical document

To summeriase, matching happens in a three stage pass:
#1. Exact matching on tags

#2. Partial matching on tags.

#3. Positional matching

Following on from the above example, can you predict what will
happen with

plot(type="1", 1:10, 11:20)

and

rnorm(mean=4, 4, n=5)

SOLUTION

#plot(type="1", 1:10, 11:20) is equivilent to
plot(x=1:10, y=11:20, type="1")

#rnorm(mean=4, 4, n=5) is equivilent to
rnorm(n=5, mean=4, sd=4)

3 Functions as first class objects
Suppose we have a function that performs a statistical analysis

Use regression as an example
stat_ana = function(x, y) {
Im(y ~ x)

However, we want to alter the input data set using different trans-
formations®. In particular, we want the ability to pass arbitrary
transformation functions to stat_ana.

One of these examples will raise an error
- why?

2 For example, the log transformation.

ADVANCED R PROGRAMMING

¢ Add an argument trans to the stat_ana function. This argument
should have a default value of NULL.

stat_ana = function(x, y, trans=NULL) {
lm(y ~ x)

e Using is.function to test whether a function has been passed
to trans, transform the vectors x and y when appropriate. For
example,

stat_ana(x, y, trans=log)

would take log’s of x and y.

stat_ana = function(x, y, trans=NULL) {
if(is.function(trans)) {
x = trans(x)
y = trans(y)
}
Im(y ~ x)

e Allow the trans argument to take character arguments in addi-
tional to function arguments. For example, if we used trans =
'normalise’, then we would normalise the data3.

stat_ana = function(x, y, trans=NULL) {
if(is.function(trans)) {

x = trans(x)
y = trans(y)
} else if (trans == "normalise") {
x = scale(x)
y = scale(y)
}
Im(y ~ x)

4 Variable scope

Scoping can get tricky. Before running the example code below,
predict what is going to happen

1. A simple one to get started

: SOLUTIONS 1

3

3 Subtract the mean and divide by the
standard deviation.

ADVANCED R PROGRAMMING: SOLUTIONS 1 4

f = function(x) return(x + 1)
f(10)

##Nothing strange here. We just get
f(10)

[1] 11

. A bit more tricky

f = function(x) {

f = function(x) {
X + 1

}

X =X+1

return(f(x))

}
f(10)

. More complex

f = function(x) {
f = function(x) {
f = function(x) {
X + 1
}
X =Xx+1
return(f(x))
}
X =x+1
return(f(x))
}
(10)

Solution: The easiest way to understand is to use print statements
f = function(x) {
f = function(x) {
f = function(x) {
message("fl: = ", Xx)
X + 1
}
message("f2: =", Xx)
X =Xx+1
return(f(x))
}
message("f3: = ", X)
X =x+1

ADVANCED R PROGRAMMING: SOLUTIONS 1 §

return(f(x))

}

f(10)

f3: =10
f2: =11
f1: =12
[1] 13

4. f = function(x) {
f = function(x) {

x = 100

f = function(x) {
X+ 1

}

X=X+ 1

return(f(x))

}
X =X+ 1
return(f(x))

}
f(10)

##Solution: The easiest way to understand is to use print statements as above

5 Function closures

Consider the examples in the notes where we created functions that
return function closures for the normal and uniform distributions.
Create a similar function for

¢ the Poisson distribution,4 4+ Hint: see rpois and dpois.

poisson = function(lambda) {
r

function(n=1) rpois(n, lambda)
d = function(x, log=FALSE) dpois(x, lambda, log=log)
return(list(r=r, d=d))

¢ and the Geometric distribution.> 5 Hint: see rgeom and dgeom.

geometric = function(prob) {
r = function(n=1) rgeom(n, prob)
d = function(x, log=FALSE) dgeom(x, prob, log=log)
return(list(r=r, d=d))

ADVANCED R PROGRAMMING: SOLUTIONS 1

6 Mutable states

In chapter 2, we created a random number generator where the state,
was stored between function calls.

® Reproduce the randu generator from the notes and make sure that
it works as advertised.

¢ When we initialise the random number generator, the very first
state is called the seed. Store this variable and create a new function
called get_seed that will return the initial seed, i.e.

r = randu(10)
rsr()

[1] 0.0003051898
r$get_state()

[1] 655390
r$¢get_seed()

[1] 10

¢ Create a variable that stores the number of times the generator has
been called. You should be able to access this variable with the
function get_num_calls

r = randu(10)
r$get_num_calls()

[1] O

r$r()

[1] 0.0003051898
r$r()

[1] 0.001831097
réget_num_calls()

[1] 2

6

##Solutions
randu = function(seed) {
state = seed
calls = 0 #Store the number of calls
r = function() {
state <<- (65539xstate) %% 2731

ADVANCED R PROGRAMMING: SOLUTIONS 1

Update the variable outside of this enviroment

calls <<- calls + 1
state/2731
}

set_state = function(initial) state <<- initial

get_state = function() state
get_seed = function() seed
get_num_calls = function() calls

list(r=r, set_state=set_state, get state=get_state,

get_seed = get_seed, get_num_calls=get_num_calls)

}
r = randu(10)
r$r()

[1] 0.0003051898
r$get_state()

[1] 655390
r$get_seed()

[1] 10

Solutions

Solutions are contained within the course package

library("nclRadvanced")
vignette("solutionsl", package="nclRadvanced")

7

	Rprofile and Renviron
	Argument matching
	Functions as first class objects
	Variable scope
	Function closures
	Mutable states

