Using the package hypergsplines:
some examples.

Daniel Sabanés Bové

21st November 2013

This short vignette shall introduce into the usage of the package hypergsplines. For
more information on the methodology, see the technical report (Sabanés Bové, Held, and
Kauermann, 2011)).

If you have any questions or critique concerning the package, write an email to me:
daniel.sabanesbove@ifspm.uzh.ch. Many thanks in advance!

0.1 Pima Indians diabetes data

First, we will have a look at the Pima Indians diabetes data, which is available in the
package MASS:

> library(MASS)

> pima <- rbind(Pima.tr, Pima.te)

> pima$hasDiabetes <- as.numeric(pima$type == "Yes")
> pima.n0Obs <- nrow(pima)

Setup For n = 532 women of Pima Indian heritage, seven possible predictors for the
presence of diabetes are recorded. We would like to investigate with an additive logistic
regression, which of them are relevant, and what form the statistical association has — is
it a linear effect, or rather a nonlinear effect? We will use a fully and automatic Bayesian
approach for this, see the technical report (Sabanés Bové et al., |2011) for more details.

The first step is to define a modelData object, where we input the response vector y,
the matrix with the covariates, the spline type (here we use cubic O’Sullivan splines
with 4 inner knots) and the exponential family (here a canonical binomial model, i.e.
we want logistic regression):

> library(hypergsplines)
> modelData.pima <- with(pima,
+ glmModelData(y=hasDiabetes,
X=
cbind (npreg,

glu,

bp,

skin,

bmi,

ped,

age),
splineType="cubic",
nKnots=4L,
family=binomial))

+ + + + + + + + + + +

Stochastic model search

mailto:daniel.sabanesbove@ifspm.uzh.ch

> chainlength.pima <- 100
> computation.pima <- getComputation(uselpenMP=FALSE,
+ higherOrderCorrection=FALSE)

Next, we will do a stochastic search on the (very large) model space to find “good”
models. Here we have to decide on the model prior, and in this example we use the
dependent type which corrects for the implicit multiplicity of testing. We use a chain-
length of 100, which is very small but enough for illustration purposes (usually one
should use at least 100000), and save all models (in general nModels is the number of
models which are saved from all visited models). Finally, we decide that we do not want
to use OpenMP acceleration and no higher order correction for the Laplace approxima-
tions. In order to be able to reproduce the analysis, it is advisable to set a seed for the
random number generator before starting the stochastic search.

> set.seed(93)
> time.pima <-
+ system.time (models.pima <-

+ stochSearch (modelData=modelData.pima,

+ modelPrior="dependent",

+ chainlength=chainlength.pima,
+ nModels=chainlength.pima,

+ computation=computation.pima))
-———25-—-50---75---100

el LR P PR

Number of non-identifiable model proposals: 0

Number of total cached models: 77

Number of returned models: 7

Wee see that the search took 11 seconds, and 77 models were found. The “models”
list element of models.pima gives the table of the found models, with their degrees of
freedom for every covariate, the log marginal likelihood, the log prior probability, the
posterior probability and the number of times that the sampler encountered that model:

> head(models.pima$models)

npreg glu bp skin bmi ped age logMarglLik logPrior post hits
1 3 1 0 0 4 2 4 -242.2493 -14.08276 0.28527824 2
2 3 1 0 0 4 2 3 -242.4728 -14.08276 0.22813320 2
3 3 1 0 0 3 2 3 -242.5401 -14.08276 0.21329269 2
4 1 1 0 0O 2 2 2 -244.2944 -14.08276 0.03690369 5
5 3 1 1 0 4 2 4 -243.6871 -14.77591 0.03386998 3
6 0 1 0 3 4 2 3 -244.6538 -14.08276 0.02576411 0

> map.pima <- models.pima$models[1, 1:7]

We have saved the degrees of freedom vector of the estimated MAP model in map.pima.

Inclusion probabilities The estimated marginal inclusion probabilities (probabilities for
exclusion, linear inclusion and nonlinear inclusion) for all covariates are also saved:

> round (models.pima$inclusionProbs,2)

npreg glu bp skin bmi ped age
not included 0.03 0.00 0.91 0.86 0.00 0.00 O
linear 0.07 0.96 0.09 0.09 0.04 0.01 O
non-linear 0.90 0.04 0.00 0.05 0.96 0.99 1

Sampling model parameters If we now want to look at the estimated covariate effects
in the estimated MAP model which has configuration (3,1,0,0,4,2,4), then we first need
to generate parameter samples from that model:

> mcmc.pima <- getMcmc (samples=500L,

+ burnin=100L,
+ step=1L,
+ nIwlsIterations=2L)

> set.seed(634)
> map.samples.pima <- glmGetSamples(config=map.pima,

+ modelData=modelData.pima,
+ mcmc=mcmc . pima,
+ computation=computation.pima)

~---25---50---75---100
e e B P

With the function getMcmc, we have defined a list of MCMC settings, comprising the
number of samples we would like to have in the end, the length of the burn-in, the
thinning step (here no thinning) and the number of IWLS iterations used (with 2 steps
you get a higher acceptance rate than with 1 step, here the acceptance rate was 0.52).
The result map.samples.pima has the following structure:

> str(map.samples.pima)

List of 3
$ samples :List of 5
8t : num [1:500] 0.992 0.992 0.992 0.992 0.997 ...

..$ intercept : num [1:500(1d)] -0.946 -0.946 -0.946 -0.946 -0.905 ...
..$ linearCoefs:List of 5

$ npreg: num [1:500(1d)] -0.354 -0.354 -0.354 -0.354 1.223 ...
$ glu : num [1:500(1d)] 5.81 5.81 5.81 5.81 4.86 ...
$ bmi : num [1:500(1d)] 4.15 4.15 4.15 4.15 3.93 ...
..$ ped : num [1:500(1d)] 4.09 4.09 4.09 4.09 2.46 ...
.. ..$ age : num [1:500(1d)] 3.67 3.67 3.67 3.67 2.01 ...
..$ spl
..$

ineCoefs:List of 4
npreg: num [1:6, 1:500] 10.55 -8.13 11.9 -12.16 1.97 ...
..$ bmi : num [1:6, 1:500] 12.13 -17 66.08 -3.97 -4.98 ...
..$ ped : num [1:6, 1:500] -7.12 7.86 1.71 -6.35 -7.14 ...
..$ age : num [1:6, 1:500] 46.16 26.28 4.27 6.25 -18.3 ...
..$z : num [1:500] 4.87 4.87 4.87 4.87 5.98 ...
$ mcmc :List of 2
..$ nAccepted : num 309

..$ acceptanceRatio: num 0.515
$ logMarglLik:List of 4

..$ ilaEstimate : num -242
..$ mcmcEstimate : num -242
..$ mcmcSe : num 0.114

..$ margApproxZdens:List of 2
..$ args: num [1:100] -52.0976 -29.1796 -0.8346 -0.0443 0.4362 ...
..$ dens: num [1:100] 0.00 1.41e-51 7.72e-30 3.36e-23 1.09e-18 ...

It is a list with the samples, two diagnostics for the memc, and estimates for the log
marginal likelihood (logMargLik). The latter one contains the original ILA estimate,
the MCMC estimate of the log marginal likelihood with its standard error, and the
coordinates of the posterior density of z = log(g).

Curve estimates Now we can use the samples to plot the estimated effects of the MAP
model covariates, with the plotCurveEstimate function. For example:

> plotCurveEstimate (covName="age",
+ samples=map.samples.pima$samples,
+ modelData=modelData.pima)

N_
o_
o
|
~
)
o
S <
= Y -
© _| .
| N
\
\\
\
\
\
o _| '
| N

20 30 40 50 60 70 80

age

Post-processing If we want to have estimates of the degrees of freedom on a continuous
scale instead of the fixed grid (0, 1,2,3,4), we can optimise the marginal likelihood with
respect to the degrees of freedom of the MAP covariates:

> optim.map.pima <- postOptimize(modelData=modelData.pima,

+ modelConfig=map.pima,

+ computation=computation.pima)
> optim.map.pima

npreg glu bp skin bmi ped age
1 2.276746 1 O 0 3.555901 2.103911 3.653702

For that model, we could again produce samples and plot curve estimates.

Prediction samples If we would like to get prediction samples for new covariate values,
this is also very easy via the getFitSamples function. Here we get posterior predictive
samples because we input a covariate matrix which is part of the original covariate matrix
used to fit the MAP model. Because the getFitSamples function produces samples on
the linear predictor scale, we have to apply the appropriate response function (here the
logistic distribution function plogis) to get samples on the observation scale.

> fit.samples.pima <- getFitSamples(X=modelData.pima$origX[1:10,],

+ samples=map.samples.pima$samples,
+ modelData=modelData.pima)

> obs.samples.pima <- plogis(fit.samples.pima)

The posterior predictive means are thus:
> rowMeans (obs.samples.pima)

[1] 0.04672958 0.63051441 0.08926869 0.69338988 0.03227731 0.29412741
[7] 0.06373851 0.58590940 0.28167756 0.68851588

and could be compared to the actual observations
> modelData.pima$Y[1:10]

(1] 0100010001

Model averaging Model averaging works in principle similar to sampling from a single
model, but multiple model configurations are supplied and their respective log posterior
probabilities. For example, if we wanted to average the top ten models found, we would
do the following:

> average.samples.pima <-

+ with (models.pima,

+ getBmaSamples (config=models[1:10,],

+ logPostProbs=models$logMarglik[1:10] +
+ models$logPrior([1:10],

+ nSamples=500L,

+ modelData=modelData.pima,

+ mcmc=mcmc . pima,

+ computation=computation.pima))

~---25---50---75---100
e e B P

Then internally, first the models are sampled, and for each sampled model so many
samples are drawn as determined by the model frequency in the model average sample.
On this sample object, the above presented functions can again be applied (e.g. plot-
CurveEstimate).

To be continued . ..

Bibliography

D. Sabanés Bové, L. Held, and G. Kauermann. Hyper-g priors for generalised additive
model selection with penalised splines. Technical report, University of Zurich and
University Bielefeld, 2011. URL http://arxiv.org/abs/1108.3520.

http://arxiv.org/abs/1108.3520

	Pima Indians diabetes data

