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1 Introduction

This tutorial demonstrates the use of the gslcca package for Generalised Semi-linear Canonical
Correlation Analysis (GSLCCA) of data from EEG (Electroencephalogram) experiments.

Input in red relies on .txt files not included in the package, so is provided for illustration
only. Input in blue can be run after the package is loaded.

2 Preparing Data for Analysis

The data required for a GSLCCA analysis are a matrix of mutlivariate responses, a time variable
and possibly also treatment and subject variables. In the case of EEG experiments, the response
matrix is the mean power at each time point for a number of frequencies. These power spectra
are usually stored along with the other variables in a tabular format.

As an illustration we shall consider the clonidine data, which is included in the gslcca
package, see ?clonidine. This data was originally in a tab-delimited text file, with the first
six rows and columns as follows

Rat Treatment Time 0.98 1.95 2.93

1 35 Control 0 0.000073800 0.000182702 0.000153585

2 35 Control 300 0.000081100 0.000210315 0.000187891

3 35 Control 600 0.000105919 0.000269269 0.000232081

4 35 Control 900 0.000094700 0.000228982 0.000207461

5 35 Control 1200 0.000091400 0.000236652 0.000228351

6 35 Control 1500 0.000088800 0.000249708 0.000269962

Such data can be prepared for analysis with the gslcca package using the readSpectra

function:

> clonidine <- readSpectra("Clonidine Light.txt", info = 1:3,

> treatment = c("Control", "Low Dose", "Middle Dose", "High Dose"))

here the first argument is the name of the tab-delimited file, info gives the indices for the
”information” columns, i.e. Rat, Treatment and Time, and treatment gives the levels of the
treatment factor, in order of increasing dose (over-riding the default alphabetical order). The
values shown are the defaults for the info and treatment arguments so can be omitted.

The function readSpectra has three additional arguments that allow the user to subset
or aggregate the spectra that are read in. The argument resolution specifies the desired
resolution of frequencies in Hz – data read in at a higher resolution is aggregated to obtain the
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desired resolution. For example, the default setting is 1 Hz frequencies, so data read in at 0.5
Hz frequencies would be aggregated by summing over each pair of frequencies.

The arguments end and nfreq specify the end time and the number of frequencies to include
in the result, respectively. The defaults for these arguments are 42900 seconds (the last 5 minute
bin in a 12 hour period) and 36 frequencies (so up to 36 Hz when resolution is 1).

The object returned by readSpectra is a data frame containing the information columns
with their orginal names and the matrix of spectra named spectra. This data frame can be
passed to the data argument of the gslcca function (described later in Section 3).

For the clonidine data set, the data were then sub-sampled to keep every other time point,
however this was done purely to limit the size of the data set and would not normally be done
in practice.

2.1 Banded Spectra

The bandSpectra function can be used to aggregate the multivariate response into bands, such
as the frequency bands typically used in the analysis of EEG data. For example, the clonidine
data could be grouped into the delta (0–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30
Hz) and gamma (>=30Hz) bands as follows:

> library(gslcca)

> data(clonidine)

> banded <- bandSpectra(clonidine$spectra, breaks = c(4, 8, 13, 30),

+ labels = c("delta", "theta", "alpha", "beta", "gamma"))

> head(banded)

delta theta alpha beta gamma

[1,] 0.000521588 0.000645512 0.000294778 0.000201440 5.894e-05

[2,] 0.000791357 0.000570954 0.000284136 0.000238900 5.963e-05

[3,] 0.000736195 0.000579941 0.000254093 0.000218480 5.377e-05

[4,] 0.000751376 0.000556839 0.000235300 0.000255800 5.263e-05

[5,] 0.001749510 0.001354050 0.000959060 0.000658797 4.676e-05

[6,] 0.000626571 0.000706522 0.000266890 0.000260420 5.230e-05

3 GSLCCA Analysis

The aim of GSLCCA is to find a linear combination of the multivariate response that is maxi-
mally correlated with a nonlinear model. Thus we have

Y a = ρ(X(t, θ)b)

where Y is a data matrix with rows of observations recorded at times t, a is a vector of loadings,
X(t, θ) is a matrix with columns defined by a nonlinear function with unknown parameters, b
is a vector of coefficients and ρ is the correlation to be maximised.

The gslcca package provides the gslcca function to conduct GSLCCA analysis. The two
key outputs from the analysis are the vector of loadings a, which we describe as the signature
and the fitted model, given by the x scores X(t, θ)b.
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3.1 Performing GSLCCA

To demonstrate the use of gslcca, we shall consider a particular application of GSLCCA to the
clonidine data. Section 5 gives details on how to customise the analysis, for example specifying
an alternative model.

A typical call to gslcca may be as follows:

> result <- gslcca(spectra, "Double Exponential", time=Time,

+ subject = Rat, global = FALSE,

+ treatment = Treatment, ref = 1, separate = FALSE,

+ subject.smooth = TRUE, pct.explained = 0.96,

+ data = clonidine)

In this example the matrix of power spectra has been specified as the multivariate response
and the model is specified as "Double Exponential" which refers to the two compartment
model:

exp(−k1t) − exp(−k2t).

This is equivalent to specifying the model via the symbolic formula

~ exp(-K1 * time) + exp(-K2 * time)

where time is the variable specified via the time argument and K1 and K2 are parameters.
Specifying the model by name means that starting values for K1 and K2 are set by default.

The subject argument has been specified as Rat , so a separate signature will be estimated
for each rat and since global = FALSE, the nonlinear model will also be separately estimated
for each rat.

The treatment argument has been specified as Treatment, so a separate linear coefficient
will be estimated for each non-reference level of the treatment factor. Since separate = FALSE,
the nonlinear parameters will be the same. The model is fixed at zero for the reference treatment
level, which is specified by ref.

The subject.smooth argument is set to TRUE, so the power spectra are smoothed for each
rat separately prior to analysis. The pct.explained argument specifies that the smoothed
matrix must capture at least 96% of the variance in the original data, for each rat.

Finally the data argument has been specified, so that the objects spectra, Time, Rat and
Treatment can be found.

3.2 Examining the Result

A summary of the GSLCCA analysis can be obtained by using the summary function:

> summary(result)

Call:

gslcca(Y = spectra, formula = "Double Exponential", time = Time,

subject = Rat, global = FALSE, treatment = Treatment, ref = 1,

separate = FALSE, data = clonidine, subject.smooth = TRUE,

pct.explained = 0.96)

Data smoothed at subject level using 5 roots

Percent variance explained by SVD approximation:
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subject 35 subject 36 subject 37 subject 38 subject 39 subject 40 subject 41

0.9929 0.9730 0.9936 0.9894 0.9828 0.9814 0.9805

subject 42

0.9786

Nonlinear parameters:

subject 35 subject 36 subject 37 subject 38 subject 39 subject 40 subject 41

K1 10.024 10.874 10.304 10.361 10.001 10.179 10.097

K2 5.810 6.737 6.297 7.374 7.312 6.983 8.198

subject 42

K1 9.808

K2 7.131

Correlation at final iteration:

subject 35 subject 36 subject 37 subject 38 subject 39 subject 40 subject 41

0.8900 0.8239 0.8876 0.8653 0.8528 0.8511 0.8006

subject 42

0.9067

This summary gives some details of the smoothing performed and the model fitted for each
rat. In this case the models are reasonably consistent across the rats, with the rate parameters
estimated as around 10 and 7 (a model with K1 = 10 and K2 = 7 is equivalent to a model
with K1 = 7 and K2 = 10 if the sign of the linear coefficient is reversed). The models fit well,
giving a correlation of at least 80% for all rats – we would hope to see at least a correlation of
60%. The algorithm has converged for each rat, so an optimal model has been found for each
rat, although as the model is nonlinear it is possible that this is a local optimum and a better
solution could be found with different starting values.

After checking the summary, we can view the fitted model using the plot function:

> plot(result, "fitted", lattice = TRUE)
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Here the lattice option is set to TRUE to display all the models together. Again we see the
models are broadly similar across rats. For each model, the amplitude varies by treatment,
but the rate parameters are constant, so the curves for each treatment are proportional. The
baseline for the control treatment is a non-zero constant because the X and Y matrices have
been centred prior to Canonical Correlation Analysis (CCA). This adjustment is controlled by
the partial argument.

In order to check the fit of the model, we can plot both the x scores (the fitted model) and
the y scores (the projected observed values) as follows:

> plot(result, "scores", lattice = TRUE)
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As indicated by the correlations in the summary, the sets of scores agree quite well.
Finally we can look at the model signatures, using the option overlay = TRUE to display

them in a single plot:

> plot(result, "signatures", overlay = TRUE)
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We can see that the scale varies across rats, but the shape of the signature is quite consistent,
with a positive peak around 6-7 Hz and negative peaks around 2 and 9 Hz.

3.3 Saving Signatures for Further Analysis

The object returned by the gslcca function is a list containing several components useful for
further analysis, see ?gslcca. One of these components is "ycoef", which is a data frame
of the Y coefficients, i.e. the signatures, for each rat. These can be extracted directly, using
result$ycoefor using the utility function signatures. For example, we can save the signatures
in a tab-delimited text file as follows:

> write.table(signatures(result), "clonidine signatures.txt",

+ sep = "\t")

4 Comparing Signatures Across Experiments (Snapshot Anal-
ysis)

In the analysis of data from EEG experiments, it is hypothesised that the signature represents
the relative importance of each frequency in the power spectrum in relation to the pharmaco-
dynamic response in the brain. The signature is thus related to the drug mechanism and it is
of interest to compare signatures obtained from EEG experiments using related drugs.

A simple way to do this is to use a snapshot analysis, that is to compare the mean signature
at each frequency using a t-test. The gslcca package provides the snapshot function for this
purpose.

As an illustration, suppose we have saved the signatures from the GSLCCA analysis of two
compounds, in the files, “Compound1 signatures.txt” and “Compound2 signatures.txt”. These
are read in as follows:

> sig1 <- read.delim("Compound1 signatures.txt",

+ check.names = FALSE)

> sig2 <- read.delim("Compound2 signatures.txt",

+ check.names = FALSE)

using check.names = FALSE to preserve the numeric column names. We can then call the
snapshot function to perform a snapshot analysis:

> result <- snapshot(sig1, sig2, normalise = TRUE)

Setting nomalise = TRUE means that the signatures will be normalised so that the sum of
squared values in each signature sums to one. This normalisation removes the differences in
scale between rats and makes the signatures comparable across experiments.

The snapshot function returns the set of (normalised) signatures for each compound, the
two mean signatures and p-values from the t-tests comparing the mean signatures at each
frequency. The p-values are corrected for multiple testing using Benjamini and Hochberg’s
false discovery rate, by default, alternative options can be specified using the p.adjust.method
argument.

The main components of the result object can be displayed using plot with the argument
type = c("signatures", "means", "pvalue"); the names argument provides names for the
two compounds, which are used in the default titles/legends of the plots produced.

6



> par(mfrow = c(2,2))

> plot(result, type = c("signatures", "means", "pvalue"),

> names = c(comp1, comp2))
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A more compact display of the snapshot analysis can be obtained using the option type =

"compact":

> par(mfrow = c(1,1))

> plot(result, type = "compact", names = c(comp1, comp2))
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This produces a plot of the mean signatures for each compound, color-coded by the signifi-
cance level of the t-test at each frequency. As before, this shows significant differences between
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the mean signatures over the conventional theta and alpha frequency bands.

5 Appendix

5.1 Model Specification

5.1.1 Using a ”standard” model

The formula argument to the gslcca function specifies the ”base” model, which defines the
columns of X(t, θ). The gslcca package provide shortcuts for two models useful for describing
the type of pharmacodynamic response that may be expected in the brain following an oral
dose of a drug. Specifying the model by name means that starting values for the parameters
are set automatically.

The first option is formula = "Double Exponential" which specifies the two compartment
model:

α(exp(−k1t) + exp(−k2t))

This is equivalent to specifying

formula = ~ exp(-K1 * time) - exp(-K2 * time)

where time is the variable specified via the time argument and K1 and K2 are parameters. In
this case the parameters are initialised at K1 = 9 and K2 = 8.5, which correspond to a time
to maximum of approximately 1 hours when time is recorded in seconds. Alternative starting
values can be specified by passing a named list to the start argument, e.g.

start = list(K1 = 8, K2 = 7.5)

The second model shortcut is formula = "Critical Exponential" which specifies the lim-
iting case of the Double Exponential model when the rate parameters k1 and k2 are essentially
the same:

αt exp(−k1t)

This corresponds to setting formula = ~ time * exp(-K1 * time) and start = list(K1 =

8.5).
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